78
Views
14
CrossRef citations to date
0
Altmetric
Review

Hereditary sensorineural hearing loss: advances in molecular genetics and mutation analysis

&
Pages 375-386 | Published online: 09 Jan 2014

References

  • Petit C, Levilliers J, Marlin S, Hardelin J-P. Hereditary hearing loss. In: The Metabolic & Molecular Bases of Inherited Disease. Eighth Edition, Volume IV. Scriver CR, Beaudet AL, Sly WS, Valle D (Eds), McGraw Hill, NY, USA, 6281–6328 (2001).
  • White KR. Early hearing detection and intervention programs: opportunities for genetic services. Am. J. Med. Genet.130(1), 29–36 (2004).
  • Mason JA, Herrmann KR. Universal infant hearing screening by automated auditory brainstem response measurement. Pediatrics101, 221–228 (1998).
  • Parving A. The need for universal neonatal hearing screening – some aspects of epidemiology and identification. Acta Paediatr. Suppl.88, 69–72 (1999).
  • Marres HA. Congenital abnormalities of the inner ear. In: Diseases of the Ear.Ludman H, Wright T (Eds), Arnold & Oxford University Press, Bath, UK, 288–296 (1998).
  • Friedman TB, Griffith AJ. Human non-syndromic sensorineural deafness.Annu. Rev. Genomics Hum. Genet.4, 341–402 (2003)
  • Ming JE, Muenke M. Multiple hits during early embryonic development: digenic diseases and holoprosencephaly.Am. J. Hum. Genet.71, 1017–1032 (2002).
  • Van Camp G, Willems PJ, Smith RJ. Non-syndromic hearing impairment: unparalleled heterogeneity. Am. J. Hum. Genet.60, 758–764 (1997).
  • ACMG. Genetics evaluation guidelines for the etiologic diagnosis of congenital hearing loss. Genetic Evaluation of Congenital Hearing Loss Expert Panel. ACMG statement. Genet. Med.4, 162–171 (2002).
  • Cryns K, Van Camp G. Deafness genes and their diagnostic applications. Audiol. Neurootol.9(1), 2–22 (2004).
  • Li XC, Friedman RA. Non-syndromic hereditary hearing loss. Otolaryngol. Clin. North Am.35, 275–285 (2002).
  • Van Laer L, Cryns K, Smith RJ, Van Camp G. Non-syndromic hearing loss. Ear Hear.24, 275–288 (2003).
  • Morton CC. Gene discovery in the auditory system using a tissue specific approach. Am. J. Med. Genet. A130, 26–28 (2004).
  • Avraham KB. Mouse models for deafness: lessons for the human inner ear and hearing loss. Ear Hear.24, 332–341 (2003).
  • Guilford P, Ben Arab S, Blanchard S et al. A non-syndrome form of neurosensory, recessive deafness maps to the pericentromeric region of chromosome 13q. Nature Genet.6(1), 24–28 (1994).
  • Kelsell DP, Dunlop J, Stevens HP et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature387, 80–83 (1997).
  • Del Castillo I, Moreno-Pelayo MA, Del Castillo FJ et al. Prevalence and evolutionary origins of the del(GJB6-D13S1830) mutation in the DFNB1 locus in hearing-impaired subjects: a multicenter study. Am. J. Hum. Genet.73, 1452–1458 (2003).
  • Estivill X, Fortina P, Surrey S et al. Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet351, 394–398 (1998).
  • Morell RJ, Kim HJ, Hood LJ et al. Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with non-syndromic recessive deafness. N. Engl. J. Med.339(21), 1500–1505 (1998).
  • Azaiez H, Chamberlin GP, Fischer SM et al. GJB2: the spectrum of deafness-causing allele variants and their phenotype. Hum. Mutat.24(4), 305–311 (2004).
  • Van Laer L, Coucke P, Mueller RF et al. A common founder for the 35delG GJB2 gene mutation in connexin 26 hearing impairment. J. Med. Genet.38, 515–518 (2001).
  • Green GE, Scott DA, McDonald JM, Woodworth GG, Sheffield VC, Smith RJ. Carrier rates in the midwestern United States for GJB2 mutations causing inherited deafness. JAMA281, 2211–2216 (1999).
  • Fitzgerald T, Duva S, Ostrer H et al. The frequency of GJB2 and GJB6 mutations in the New York State newborn population: feasibility of genetic screening for hearing defects. Clin. Genet.65, 338–342 (2004).
  • Gasparini P, Rabionet R, Barbujani G et al. High carrier frequency of the 35delG deafness mutation in European populations. Eur. J. Hum. Genet.8, 19–23 (2000).
  • Yan D, Park HJ, Ouyang XM et al. Evidence of a founder effect for the 235delC mutation of GJB2 (connexin 26) in east Asians. Hum. Genet.114, 44–50 (2003).
  • Feldmann D, Denoyelle F, Loundon N et al. Clinical evidence of the nonpathogenic nature of the M34T variant in the connexin 26 gene. Eur. J. Hum. Genet.12, 279–284 (2004).
  • Oguchi T, Ohtsuka A, Hashimoto S et al. Clinical features of patients with GJB2 (connexin 26) mutations: severity of hearing loss is correlated with genotypes and protein expression patterns. J. Hum. Genet.50, 76–83 (2005).
  • Snoeckx RL, Huygen PL, Feldmann D et al. GJB2 mutations and degree of hearing loss: a multicenter study. Am. J. Hum. Genet.77, 945–957 (2005).
  • Grifa A, Wagner CA, D’Ambrosio L et al. Mutations in GJB6 cause non-syndromic autosomal dominant deafness at DFNA3 locus. Nature Genet.23, 16–18 (1999).
  • Del Castillo I, Villamar M, Moreno-Pelayo MA et al. A deletion involving the connexin 30 gene in non-syndromic hearing impairment. N. Engl. J. Med.346, 243–249 (2002).
  • Del Castillo FJ, Rodriguez-Ballesteros M, Alvarez A et al. A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. J. Med. Genet.42, 588–594 (2005).
  • Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication. Annu. Rev. Biochem.65, 475–502 (1996).
  • Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC. Plasma membrane channels formed by connexins: their regulation and functions. Physiol. Rev.83, 1359–3400 (2003).
  • Battey JF Jr. Using genetics to understand auditory function and improve diagnosis. Ear Hear.24, 266–269 (2003).
  • Rabionet R, Gasparini P, Estivill X. Molecular genetics of hearing impairment due to mutations in gap junction genes encoding β connexins. Hum. Mutat.16, 190–202 (2000).
  • Teubner B, Michel V, Pesch J et al. Connexin30 (GJB6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum. Mol. Genet.12, 13–21 (2003).
  • Zhang Y, Tang W, Ahmad S, Sipp JA, Chen P, Lin X. Gap junction-mediated intercellular biochemical coupling in cochlear supporting cells is required for normal cochlear functions. Proc. Natl Acad. Sci. USA102, 15201–15206 (2005).
  • Stevenson VA, Ito M, Milunsky JM. Connexin-30 deletion analysis in connexin-26 heterozygotes. Genet. Test.7, 151–154 (2003).
  • Maestrini E, Korge BP, Ocana-Sierra J et al. A missense mutation in connexin26, D66H, causes mutilating keratoderma with sensorineural deafness (Vohwinkel’s syndrome) in three unrelated families. Hum. Mol. Genet.8, 1237–1243 (1999).
  • Lamartine J, Munhoz Essenfelder G, Kibar Z et al. Mutations in GJB6 cause hidrotic ectodermal dysplasia. Nature Genet.26, 142–144 (2000).
  • Smith FJ, Morley SM, McLean WH. A novel connexin 30 mutation in Clouston syndrome. J. Invest. Dermatol.118, 530–532 (2002).
  • Blons H, Feldmann D, Duval V et al. Screening of SLC26A4 (PDS) gene in Pendred’s syndrome: a large spectrum of mutations in France and phenotypic heterogeneity. Clin. Genet.66(4), 333–340 (2004).
  • Everett LA, Glaser B, Beck JC et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nature Genet.17, 411–422 (1997).
  • Li XC, Everett LA, Lalwani AK et al. A mutation in PDS causes non-syndromic recessive deafness. Nature Genet.18, 215–217 (1998).
  • Park HJ, Shaukat S, Liu XZ et al. Origins and frequencies of SLC26A4 (PDS) mutations in east and south Asians: global implications for the epidemiology of deafness. J. Med. Genet.40, 242–248 (2003).
  • Fischel-Ghodsian N. Mitochondrial deafness. Ear Hear.24, 303–313 (2003).
  • Sinnathuray AR, Raut V, Awa A, Magee A, Toner JG. A review of cochlear implantation in mitochondrial sensorineural hearing loss. Otol. Neurotol.24, 418–426 (2003).
  • Fischel-Ghodsian N. Genetic factors in aminoglycoside toxicity. Pharmacogenomics6, 27–36 (2005).
  • Sue CM, Tanji K, Hadjigeorgiou G et al. Maternally inherited hearing loss in a large kindred with a novel T7511C mutation in the mitochondrial DNA tRNA(Ser(UCN)) gene. Neurology52, 1905–1908 (1999).
  • Hutchin TP, Cortopassi GA. Mitochondrial defects and hearing loss. Cell Mol. Life Sci.57, 1927–1937 (2000).
  • Jacobs HT, Hutchin TP, Kappi T et al. Mitochondrial DNA mutations in patients with postlingual, nonsyndromic hearing impairment. Eur. J. Hum. Genet.13, 26–33 (2005).
  • Bitner-Glindzicz M, Turnpenny P, Hoglund P et al. Further mutations in Brain 4 (POU3F4) clarify the phenotype in the X-linked deafness, DFN3. Hum. Mol. Genet.4, 1467–1469 (1995).
  • de Kok YJ, Vossenaar ER, Cremers CW et al. Identification of a hot spot for microdeletions in patients with X-linked deafness type 3 (DFN3) 900 kb proximal to the DFN3 gene POU3F4. Hum. Mol. Genet.5, 1229–1235 (1996).
  • Strom TM, Hortnagel K, Hofmann S et al. Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum. Mol. Genet.7, 2021–2028 (1998).
  • Bespalova IN, Van Camp G, Bom SJ et al. Mutations in the Wolfram syndrome 1 gene (WFS1) are a common cause of low frequency sensorineural hearing loss. Hum. Mol. Genet.10, 2501–2508 (2001).
  • Cryns K, Sivakumaran TA, Van den Ouweland JM et al. Mutational spectrum of the WFS1 gene in Wolfram syndrome, non-syndromic hearing impairment, diabetes mellitus, and psychiatric disease. Hum. Mutat.22, 275–287 (2003).
  • Robertson NG, Lu L, Heller S et al. Mutations in a novel cochlear gene cause DFNA9, a human non-syndromic deafness with vestibular dysfunction. Nature Genet.20, 299–303 (1998).
  • Coucke PJ, Van Hauwe P, Kelley PM et al. Mutations in the KCNQ4 gene are responsible for autosomal dominant deafness in four DFNA2 families. Hum. Mol. Genet.8(7), 1321–1328 (1999).
  • Van Hauwe P, Coucke PJ, Ensink RJ, Huygen P, Cremers CW, Van Camp G. Mutations in the KCNQ4 K+ channel gene, responsible for autosomal dominant hearing loss, cluster in the channel pore region. Am. J. Med. Genet.93(3), 184–187 (2000).
  • Guilford P, Ben Arab S, Blanchard S et al. Year 2000 position statement: principles and guidelines for early hearing detection and intervention programs. Pediatrics106, 798–817 (2000).
  • Baroch KA. Universal newborn hearing screening: fine-tuning the process. Curr. Opin. Otolaryngol. Head Neck Surg.11, 424–427 (2003).
  • Centers for Disease Control and Prevention (CDC). Infants tested for hearing loss – United States, 1999–2001. Morb. Mortal. Wkly Rep.52, 981–984 (2003).
  • Yoshinaga-Itano C, Sedey AL, Coulter DK, Mehl AL. Language of early- and later-identified children with hearing loss. Pediatrics102, 1161–1171 (1998).
  • Armitage IM, Burke JP, Buffin JT. Visual impairment in severe and profound sensorineural deafness. Arch. Dis. Child.73, 53–56 (1995).
  • Hone SW, Smith RJ. Medical evaluation of pediatric hearing loss. Laboratory, radiographic, and genetic testing. Otolaryngol. Clin. North Am.35, 751–764 (2002).
  • Preciado DA, Lawson L, Madden C et al. Improved diagnostic effectiveness with a sequential diagnostic paradigm in idiopathic pediatric sensorineural hearing loss. Otol. Neurotol.26, 610–615 (2005).
  • Smith RJ, Bale JF Jr, White KR. Sensorineural hearing loss in children. Lancet365(9462), 879–890 (2005).
  • Bauer PW, Geers AE, Brenner C, Moog JS, Smith RJ. The effect of GJB2 allele variants on performance after cochlear implantation. Laryngoscope113, 2135–2140 (2003).
  • Schrijver I. Hereditary non-syndromic sensorineural hearing loss: transforming silence to sound. J. Mol. Diagn.6, 275–284 (2004).
  • Kenneson A, Van Naarden Braun K, Boyle C. GJB2 (connexin 26) variants and non-syndromic sensorineural hearing loss: a HuGE review. Genet. Med.4, 258–274 (2002).
  • Alvarez A, del Castillo I, Villamar M et al. High prevalence of the W24X mutation in the gene encoding connexin-26 (GJB2) in Spanish Romani (gypsies) with autosomal recessive non-syndromic hearing loss. Am. J. Med. Genet. A137, 255–258 (2005).
  • Hamelmann C, Amedofu GK, Albrecht K et al. Pattern of connexin 26 (GJB2) mutations causing sensorineural hearing impairment in Ghana. Hum. Mutat.18, 84–85 (2001).
  • Pandya A, Arnos KS, Xia XJ et al. Frequency and distribution of GJB2 (connexin 26) and GJB6 (connexin 30) mutations in a large North American repository of deaf probands. Genet. Med.5, 295–303 (2003).
  • Shafer DN. Genetic hearing test moves ahead: goal is to identify sensorineural hearing loss earlier. The ASHA Leader5, 27 (2005).
  • Gardner P, Oitmaa E, Messner A, Hoefsloot L, Metspalu A, Schrijver I. Simultaneouos multi-gene mutation detection in patients with sensorineural hearing loss through a novel diagnostic microarray: a new approach for newborn screening follow-up. Pediatrics (2006) (In Press).
  • Green GE, Smith RJ, Bent JP, Cohn ES. Genetic testing to identify deaf newborns. JAMA284(10), 1245 (2000).
  • Mazzoli M, Newton V, Murgia A et al. Guidelines and recommendations for testing of Cx26 mutations and interpretation of results. Int. J. Pediatr. Otorhinolaryngol.68, 1397–1398 (2004).

Websites

  • OMIM™ – Online Mendelian Inheritance in Man™ www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM
  • Hereditary Hearing Loss Homepage http://webhost.ua.ac.be/hhh
  • Connexin-deafness homepage http://davinci.crg.es/deafness
  • MITOMAP: a human mitochondrial genome database www.mitomap.org
  • GeneTests www.genetests.org

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.