220
Views
40
CrossRef citations to date
0
Altmetric
Review

Biomarkers for amyotrophic lateral sclerosis

, &
Pages 387-398 | Published online: 09 Jan 2014

References

  • Cleveland DW, Rothstein J. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nature Rev. Neurosci.2, 806–819 (2001).
  • Strong MJ. The basic aspects of therapeutics in amyotrophic lateral sclerosis. Pharmacol. Ther.98, 379–414 (2003).
  • Testa D, Lovati R, Ferrarini M, Salmoiraghi F, Filippini G. Survival of 793 patients with amyotrophic lateral sclerosis diagnosed over a 28-year period. Amyotroph. Lateral Scler. Other Motor Neuron Disord.5, 208–212 (2004).
  • Atkinson AJJ, Warren G, Colburn WA et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther.69, 89–95 (2001).
  • Coon KD, Dunckley T, Stephan DA. Biomarker identification in neurologic diseases: improving diagnostics and therapeutics. Expert Rev. Mol. Diagn.4, 361–375 (2004).
  • Katz R. Biomarkers and surrogate markers: an FDA perspective. NeuroRx1, 189–195 (2004).
  • Lewin DA, Weiner MP. Molecular biomarkers in drug development. Drug Discov. Today9, 976–983 (2004).
  • Cudkowicz M, Qureshi M, Shefner J. Measures and markers in amyotrophic lateral sclerosis. NeuroRx1, 273–283 (2004).
  • Frank R, Hargreaves R. Clinical biomarkers in drug discovery and development. Nature Rev. Drug Discov.2, 566–580 (2003).
  • Mitchell JD. Guidelines in motor neuron disease (MND)/amyotrophic lateral sclerosis (ALS) – from diagnosis to patient care. J. Neurol.247, 7–12 (2000).
  • Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord.1, 293–299 (2000).
  • Brooks BR. Diagnostic dilemmas in amyotrophic lateral sclerosis. J. Neurol. Sci.165(Suppl. 1), S1–S9 (1999).
  • Kennedy S. Proteomic profiling from human samples: the body fluid alternative. Toxicol. Lett.120, 379–384 (2001).
  • Cedarbaum J. Survival. Amyotroph. Lateral Scler. Other Motor Neuron Disord.5, 79–83 (2004).
  • Miller RG, Moore DH. ALS trial design: expectation and reality. Amyotroph. Lateral Scler. Other Motor Neuron Disord.5, 52–54 (2004).
  • Loi S, Buyse M, Sotiriou C, Cardoso F. Challenges in breast cancer clinical trial design in the postgenomic era. Curr. Opin. Oncol.16, 536–541 (2004).
  • Cooper R, Kaanders JH. Biological surrogate end-points in cancer trials: potential uses, benefits and pitfalls. Eur. J. Cancer41, 1261–1266 (2005).
  • Rosen DR, Siddique T, Patterson D et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature362, 59–62 (1993).
  • Gurney ME, Pu H, Chiu AY et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science264, 1772–1775 (1994).
  • Majoor-Krakauer D, Willems PJ, Hofman A. Genetic epidemiology of amyotrophic lateral sclerosis. Clin. Genet.63, 83–101 (2003).
  • Lindberg MJ, Bystrom R, Boknas N, Andersen PM, Oliveberg M. Systematically perturbed folding patterns of amyotrophic lateral sclerosis (ALS)-associated SOD1 mutants. Proc. Natl Acad. Sci. USA102, 9754–9759 (2005).
  • Kunst CB. Complex genetics of amyotrophic lateral sclerosis. Am. J. Hum. Genet.75, 933–947 (2004).
  • Yang Y, Hentati A, Deng H-X et al. The gene encoding Alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nature Genet.29, 160–165 (2001).
  • Hadano S, Hand CK, Osuga H et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nature Genet.29, 166–173 (2001).
  • Puls I, Jonnakuty C, LaMonte BH et al. Mutant dynactin in motor neuron disease. Nature Genet.33, 455–456 (2003).
  • Munch C, Sedlmeier R, Meyer T et al. Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology63, 724–726 (2004).
  • LaMonte BH, Wallace KE, Holloway BA et al. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron34, 715–727 (2002).
  • Chen LN, Bennet CL, Huynh HM et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am. J. Hum. Genet.74, 1128–1135 (2004).
  • Hosler BA, Siddique T, Sapp PC et al. Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21-q22. JAMA284, 1664–1669 (2000).
  • Traynor BJ, Zhang H, Shefner JM et al. Functional outcome measures as clinical trial endpoints in ALS. Neurology63, 1933–1935 (2004).
  • de Carvalho M, Chio A, Dengler R et al. Neurophysiological measures in amyotrophic lateral sclerosis: markers of progression in clinical trials. Amyotroph. Lateral Scler. Other Motor Neuron Disord.6, 17–28 (2005).
  • Andres PL, Hedlund W, Finison L et al. Quantitative motor assessment in amyotrophic lateral sclerosis. Neurology36, 937–941 (1986).
  • Stambler N, Charatran M, Cedarbaum J. Prognostic indicators of survival in ALS. Neurology50, 66–72 (1998).
  • Cudkowicz M, Shefner J, Schoenfeld D et al. A randomized, placebo-controlled trial of topiramate in patients with amyotrophic lateral sclerosis. Neurology61, 456–464 (2003).
  • Cudkowicz M, Zhang H, Qureshi M, Schoenfeld D. Maximum voluntary isometric contraction (MVIC). Amyotroph. Lateral Scler. Other Motor Neuron Disord.5, 84–85 (2004).
  • Beck M, Giess R, Wurffel W. Comparison of maximal voluntary isometric contraction and Drachman’s hand-held dynamometry in evaluating patients with amyotrophic lateral sclerosis. Muscle Nerve22, 1265–1270 (1999).
  • Sorensen EJ. Assessment of strength measurements. Amyotroph. Lateral Scler. Other Motor Neuron Disord.5, 86–89 (2004).
  • Sorenson EJ, Barkhaus PE, David W et al. A comparison of muscle strength testing techniques in amyotrophic lateral sclerosis. Neurology61, 1503–1506 (2003).
  • Armon C, Brandstater ME. Motor unit number estimate-based rates of progression of ALS predict patient survival. Muscle Nerve22, 1571–1575 (1999).
  • Jillapalli D, Shefner JM. Single motor unit variability with threshold stimulation in patients with amyotrophic lateral sclerosi and normal subjects. Muscle Nerve30, 578–584 (2004).
  • Shefner JM, Cudkowicz ME, Zhang H et al. The use of statistical MUNE in a multicenter clinical trial. Muscle Nerve30, 463–469 (2004).
  • de Carvalho M, Scotto M, Lopes AAS, Swash M. Quantitating progression in ALS. Neurology64, 1783–1785 (2005).
  • de Carvalho M, Costa J, Swash M. Clinical trials in ALS: a review of the role of clinical and neurophysiological measurements. Amyotroph. Lateral Scler. Other Motor Neuron Disord.6, 202–212 (2005).
  • Kaufmann P, Levy G, Thompson JL et al. The ALSFRSr predicts survival time in an ALS clinic population. Neurology64, 38–43 (2005).
  • Miano B, Stoddard GJ, Davis S, Bromberg MB. Inter-evaluator reliability of the ALS functional rating scale. Amyotroph. Lateral Scler. Other Motor Neuron Disord.5, 235–239 (2004).
  • Moore DH, Miller RG, Group WS, Group ACS. ALSFRS as a measure of disease progression and a predictor of survival. Amyotroph. Lateral Scler. Other Motor Neuron Disord.4, 42 (2003).
  • Kalra S, Arnold D. Neuroimaging in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord.4, 243–248 (2003).
  • Graham JM, Papadakis N, Evans J et al. Diffusion tensor imaging for the assessment of upper motor neuron integrity in ALS. Neurology63, 2111–2119 (2004).
  • Rule RR, Suhy J, Schuff N et al. Reduced NAA in motor and non-motor brain regions in amyotrophic lateral sclerosis: a cross-sectional and longitudinal study. Amyotroph. Lateral Scler. Other Motor Neuron Disord.5, 141–149 (2004).
  • Bowen BC, Bradley WG. Amyotrophic lateral sclerosis: the search for a spectroscopic marker of upper motoneuron involvement. Arch. Neurol.58, 714–716 (2001).
  • Kalra S, Cashman NR, Caramanos Z, Genge A, Arnold DL. Gabapentin therapy for amyotrophic lateral sclerosis: lack of improvement in neuronal integrity shown by MR spectroscopy. AJNR Am. J. Neuroradiol.24, 476–480 (2003).
  • Vielhaber S, Kaufmann J, Kanowski M et al. Effect of creatine supplementation on metabolite levels in ALS motor cortices. Exp. Neurol.172, 377–382 (2001).
  • Camu W, Billiard M, Baldy-Moulinier M. Fasting plasma and CSF amino acid levels in amyotrophic lateral sclerosis: a subtype analysis. Acta Neurol. Scand.88, 18–25 (1993).
  • Beal MF, Ferrante RJ, Browne SE et al. Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann. Neurol.42, 644–654 (1997).
  • Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH. Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology62, 1758–1765 (2004).
  • Wiederkehr F, Wacker M, Vonderschmitt DJ. Analysis of immune complexes of cerebrospinal fluid by twoHdimensional gel electrophoresis. Electrophoresis10, 473–479 (1989).
  • Smith RG, Henry YK, Mattson MP, Appel SH. Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Ann. Neurol.44, 696–699 (1998).
  • Jacobsson J, Jonsson PA, Andersen PM, Forsgren L, Marklund SL. Superoxide dismutase in CSF from amyotrophic lateral sclerosis patients with and without CuZn-superoxide dismutase mutations. Brain124, 1461–1466 (2001).
  • Strey CW, Spellman D, Stieber A et al. Dysregulation of stathmin, a microtubuleHdestabilizing protein, and upHregulation of Hsp25, Hsp27, and the antioxidant peroxiredoxin 6 in a mouse model of familial amyotrophic lateral sclerosis. Am. J. Pathol.165, 1701–1718 (2004).
  • Jokic N, Gonzalez de Aguilar G, Pradat PF et al. Nogo expression in muscle correlates with amyotrophic lateral sclerosis severity. Ann. Neurol.57, 553–556 (2005).
  • Sussmuth SD, Tumani H, Ecker D, Ludolph AC. Amyotrophic lateral sclerosis: disease stage related changes of tau protein and S100 β in cerebrospinal fluid and creatine kinase in serum. Neurosci. Lett.353, 57–60 (2003).
  • Kuncl RW, Bilak MM, Bilak SR et al. Pigment epithelium-derived factor is elevated in CSF of patients with amyotrophic lateral sclerosis. J. Neurochem.81, 178–184 (2002).
  • Jimenez-Jimenez FJ, Hernanz A, MedinaHAcebron S et al. Tau protein concentrations in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neurol. Scand.111, 114–117 (2005).
  • Brockington A, Wharton SB, Fernando M et al. Expression of vascular endothelial growth factor and its receptors in the central nervous system in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol.65, 26–36 (2006).
  • Maragakis NJ, Dykes-Hoberg M, Rothstein JD. Altered expression of the glutamate transporter EAAT2b in neurological disease. Ann. Neurol.55, 469–477 (2004).
  • McGeer PL, McGeer EG. Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve26, 459–470 (2002).
  • Hensley K, Floyd RA, Gordon B et al. Temporal patterns of cytokine and apoptosis-related gene expression in spinal cords of the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. J. Neurochem.82, 365–374 (2002).
  • Tsuboi Y, Yamada T. Increased concentration of C4d complement protein in CSF in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry57, 859–861 (1994).
  • Sekizawa T, Openshaw H, Ohbo K et al. Cerebrospinal fluid interleukin 6 in amyotrophic lateral sclerosis: immunological parameter and comparison with inflammatory and non-inflammatory central nervous system diseases. J. Neurol. Sci.154, 194–199 (1998).
  • Baron P, Bussini S, Cardin V et al. Production of monocyte chemoattractant protein-1 in amyotrophic lateral sclerosis. Muscle Nerve32, 541–544 (2005).
  • Apostolski S, Nikolic J, BugarskiHProkopljevic C et al. Serum and CSF immunological findings in ALS. Acta Neurol. Scand.83, 96–98 (1991).
  • Pullen AH, Demestre M, Howard RS, Orrell RW. Passive transfer of purified IgG from patients with amyotrophic lateral sclerosis to mice results in degeneration of motor neurons accompanied by Ca2+ enhancement. Acta Neuropathol.107, 35–46 (2004).
  • Cutler RG, Pedersen WA, Camandola S, Rothstein JD, Mattson MP. Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Ann. Neurol.52, 448–457 (2002).
  • Bogdanov M, Brown RH, Matson WR et al. Increased oxidative damage to DNA in ALS patients. Free Radic. Biol. Med.29, 652–658 (2000).
  • Dangond F, Hwang D, Camelo S et al. Molecular signature of late-stage human ALS revealed by expression profiling of postmortem spinal cord gray matter. Physiol. Genomics16, 229–239 (2003).
  • Jiang YM, Yamamoto M, Kobayashi Y et al. Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis. Ann. Neurol.57, 236–251 (2005).
  • Lindon JC, Holmes E, Bollard ME, Stanley EG, Nicholson JK. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers9, 1–31 (2004).
  • Urbanczyk-Wochniak E, Luedemann A, Kopka J et al. Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep.4, 989–993 (2003).
  • Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotech.22, 245–252 (2004).
  • Brindle JT, Antti H, Holmes E et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nature Med.8, 1439–1444 (2002).
  • Keun HC, Ebbels TM, Bollard ME et al. Geometric trajectory analysis of metabolic responses to toxicity can define treatment specific profiles. Chem. Res. Toxicol.17, 579–587 (2004).
  • Volicer L, Langlais PJ, Matson WR, Mark KA, Gamache PH. Serotoninergic system in dementia of the Alzheimer type. Abnormal forms of 5-hydroxytryptophan and serotonin in cerebrospinal fluid. Arch. Neurol.42, 1158–1161 (1985).
  • Rozen S, Cudkowicz ME, Bogdanov M et al. Metabolomic analysis and signatures in motor neuron disease. Metabolomics1, 101–108 (2005).
  • Kell DB. Metabolomics and systesm biology: making sense of the soup. Curr. Opin. Microbiol.7, 296–307 (2004).
  • Kennedy RL, Lee Y, Van Roy B et al.Solving data mining problems through pattern recognition. Kennedy RL, Lee Y, Van Roy B, Reed CD, Lippman RP (Eds), Prentice Hall PTR, NJ, USA (1997).
  • Golub TR, Slonim DK, Tamayo P et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science286, 531–537 (1999).
  • Eriksson L, Johansson E, Kettaneh-Wold N et al.Multi- and Megavariate Analysis: Principles and Applications. Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (Eds), Umetrics Inc., NJ, USA (2001).
  • Anderson NL, Anderson NG. The human plasma proteome. Mol. Cell. Proteomics1, 845–867 (2002).
  • Dumont D, Noben J-P, Raus J, Stinissen P, Robben J. Proteomic analysis of cerebrospinal fluid from multiple sclerosis patients. Proteomics4, 2117–2124 (2004).
  • Tsuji T, Shiozaki A, Kohno R, Yoshizato K, Shimohama S. Proteomic profiling and neurodegeneration in Alzheimer’s disease. Neurochem. Res.27, 1245–1253 (2002).
  • Choe LH, Dutt MJ, Relkin N, Lee KH. Studies of potential cerebrospinal fluid molecular markers for Alzheimer’s disease. Electrophoresis23, 2247–2251 (2002).
  • Allen S, Heath PR, Kirby J et al. Analysis of the cytosoloic proteome in a cell-culture model of familial amyotrophic lateral sclerosis reveals alterations to the proteasome, antioxidant defences and nitric oxide synthetic pathways. J. Biol. Chem.278, 6371–6383 (2003).
  • Luo X, Carlson KA, Wojna V et al. Macrophage proteomic fingerprinting predicts HIV-1-associated cognitive impairment. Neurology60, 1931–1937 (2003).
  • Blennow K. CSF biomarkers for Alzheimer’s disease: use in early diagnosis and evaluation of drug treatment. Expert Rev. Mol. Diagn.5, 661–672 (2005).
  • Palma A, de Carvalho M, Barata N et al. Biochemical characterization of plasma in amyotrophic lateral sclerosis: amino acid and protein composition. Amyotroph. Lateral Scler. Other Motor Neuron Disord.6, 104–110 (2005).
  • Ramstrom M, Ivonin I, Johansson A et al. Cerebrospinal fluid protein patterns in neurodegenerative disease revealed by liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry. Proteomics4, 4010–4018 (2005).
  • Ranganathan S, Williams E, Ganchev P et al. Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J. Neurochem.95, 1461–1471 (2005).
  • Provost F, Buchanan B. Inductive policy: the pragmatics of bias selection. Machine Learning20, 35–61 (1995).
  • Marcinkiewicz M, Touraine P, Chretien M. Pan-neuronal mRNA expression of the secretory polypeptide 7B2. Neurosci. Lett.177, 91–94 (1994).
  • Hwang JR, Lindberg I. Inactivation of the 7B2 inhibitory CT peptide depends on a functional furin cleavage site. J. Neurochem.79, 437–444 (2001).
  • Gonatas NK. Fragmentation of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis. Am. J. Pathol.140, 731–737 (1992).
  • van Welsem ME. The relationship between Bunina bodies, skein-like inclusions and neuronal loss in amyotrophic lateral sclerosis. Acta Neuropathol.103, 583–589 (2002).
  • Schreiber G. The evolution of transthyretin synthesis in the choroid plexus. Clin. Chem. Lab. Med.40, 1200–1210 (2002).
  • Power DM. Evolution of the thyroid hormone-binding protein, transthyretin. Gen. Comp. Endocrinol.119, 241–255 (2000).
  • Monaco HL. The transthyretin-retinol-binding protein complex. Biochim Biophys. Acta1482, 65–72 (2000).
  • Serot JM, Christmann D, Dubost T, Couturier M. Cerebrospinal fluid transthyretin: aging and late onset Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry63, 506–508 (1997).
  • Stein TD, Anders NJ, DeCarli C et al. Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPsw mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J. Neurosci.24, 7707–7717 (2004).
  • Winkleman J, Wybenga DR, Ibbott FA. Phenotyping of hyperlipoproteinemias: effect on electrophoretic pattern of serum storage at ambient, refrigerator or freezing temperatures. Clin. Chem.16, 507–511 (1970).
  • Hulmes JD, Bethea D, Ho K et al. An investigation of plasma collection, stabilization, and storage procedures for proteomic analysis of clinical samples. Clin. Proteomics1, 17–31 (2004).
  • Ranganathan S, Polshyna A, Nicholl G, Lyons-Weiler J, Bowser R. Assessment of protein stability in cerebrospinal fluid using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry protein profiling. Clin. Proteomics (2006) (In Press).
  • Zhang J, Goodlett D, Quinn JF et al. Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer disease. J. Alzheimers Dis.7, 125–133 (2005).
  • Zhang J, Goodlett DR, Peskind ER et al. Quantitative proteomic analysis of age-related changes in human cerebrospinal fluid. Neurobiol. Aging26, 207–227 (2005).
  • Yuan X, Desiderio DM. Human cerebrospinal fluid peptidomics. J. Mass Spectrom.40, 176–181 (2005).
  • Hand CK, Khoris J, Salachas F et al. A novel locus for familial amyotrophic lateral sclerosis on chromosome 18q. Am. J. Hum. Genet.70, 251–256 (2002).
  • Hentati A, Ouahchi K, Pericak-Vance MA et al. Linkage of a commoner form of recessive amyotrophic lateral sclerosis to chromosome 15q15-q22 markers. Neurogenetics2, 55–60 (1998).
  • Ruddy DM, Parton MJ, Al-Chalabi A et al. Two families with familial amyotrophic lateral sclerosis are linked to a novel locus on chromosome 16q. Am. J. Hum. Genet.73, 390–396 (2003).
  • Sapp PC, Hosler BA, McKenna-Yasek D et al. Identification of two novel loci for dominantly inherited familial amyotrophic lateral sclerosis. Am. J. Hum. Genet.73, 397–403 (2003).
  • Nishimura AL, Mitne-Neto M, Silva HC et al. A novel locus for late onset amyotrophic lateral sclerosis/motor neurone disease variant at 20q13. J. Med. Genet.41, 315–320 (2004).
  • Nishimura AL, Mitne-Neto M, Silva HC et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet.75, 822–831 (2004).
  • Clark LN, Poorkaj P, Wszolek Z et al. Pathogenic implications of mutations in the tau gene in palido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc. Natl Acad. Sci. USA95, 13103–13107 (1998).
  • Wilhelmsen KC, Forman MS, Rosen HJ et al. 17q-linked frontotemporal dementia-amyotrophic lateral sclerosis without tau mutations with tau and α-synuclein inclusions. Arch. Neurol.61, 398–406 (2004).
  • Dupuis L, Gonzalez de Aguilar JL, di Scala F et al. Nogo provides a molecular marker for diagnosis of amyotrophic lateral sclerosis. Neurobiol. Dis.10, 358–365 (2002).
  • Almer G, Teismann P, Stevic Z et al. Increased levels of the pro-inflammatory prostaglandin PGE2 in CSF from ALS patients. Neurology58, 1277–1279 (2002).
  • Beuche W, Yushchenko M, Mader M et al. Matrix metalloproteinase-9 is elevated in serum of patients with amyotrophic lateral sclerosis. Neuroreport11, 3419–3422 (2000).
  • Oteiza PI, Uchitel OD, Carrasquedo F et al. Evaluation of antioxidants, protein, and lipid oxidation products in blood from sporadic amyotrophic lateral sclerosis patients. Neurochem. Res.22, 535–539 (1997).
  • Ferrante RJ, Browne SE, Shinobu LA et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem.69, 2064–2074 (1997).
  • Tohgi H, Abe T, Yamazaki K et al. Remarkable increase in cerebrospinal fluid 3-nitrotyrosine in patients with sporadic amyotrophic lateral sclerosis. Ann. Neurol.46, 129–131 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.