361
Views
45
CrossRef citations to date
0
Altmetric
Review

Bubble dynamics involved in ultrasonic imaging

&
Pages 493-502 | Published online: 09 Jan 2014

References

  • Webb A. Chapter 3: Ultrasonic imaging. In: Introduction to Biomedical Imaging. John Wiley & Sons, NJ, USA, 107–156 (2003).
  • Pierce AD. Acoustics: An Introduction to Its Physical Principles and Applications. Acoustical Society of America, NY, USA, 424–430 (1989).
  • Schmitz G. Ultrasound in medical diagnosis. In: Scattering: Scattering and Inverse Scattering in Pure and Applied Science. Pike R, Sabatier P (Eds), Academic Press, London, UK, 162–174 (2002).
  • Schutt EG, Klein DH, Mattrey RM, Riess JG. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew. Chem. Int. Ed.42, 3218–3235 (2003).
  • Patel DN, Bloch SH, Dayton PA, Ferrara KW. Acoustic signatures of submicron contrast agents. IEEE Trans. Ultrason. Ferroelectr. Freq. Control51(3), 293–301 (2004).
  • de Jong N. Acoustic properties of ultrasound contrast agents. PhD Thesis, Erasmus Universiteit Rotterdam, Rotterdam, The Netherlands (1993).
  • Krestan C. Ultraschallkontrastmittel: Substanzklassen, Pharmakokinetik, klinische Anwendungen, Sicherheitsaspekte. Radiologe45, 513–519 (2005).
  • Bouakaz A, Frinking PJA, de Jong N, Bom N. Noninvasive measurement of the hydrostatic pressure in a fluid-filled cavity based on the disappearance time of micrometer-sized free gas bubbles. Ultrasound Med. Biol.25(9), 1407–1415 (1999).
  • Postema MAB. Medical Bubbles. PhD Thesis, Universiteit Twente, Enschede, The Netherlands (2004).
  • Gorce JM, Arditi M, Schneider M. Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: a study of SonoVueTM. Invest. Radiol.35(11), 661–671 (2000).
  • Postema M, de Jong N, Schmitz G. Nonlinear behavior of ultrasound-insonified encapsulated microbubbles. Proc. 17th Int. Symp. Nonlinear Acoustics (2005) (In Press).
  • MacDonald CA, Sboros V, Gomatam J, Pye SD, Moran CM, McDicken WN. A numerical investigation of the resonance of gas-filled microbubbles: resonance dependence on acoustic pressure amplitude. Ultrasonics43, 113–122 (2004).
  • Guan J, Matula TJ. Using light scattering to measure the response of individual ultrasound contrast microbubbles subjected to pulsed ultrasound in vitro. J. Acoust. Soc. Am.116(5), 2832–2842 (2004).
  • Sarkar K, Shi WT, Chatterjee D, Forsberg F. Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation. J. Acoust. Soc. Am.118(1), 539–550 (2005).
  • Tickner EG. The Resonant Frequency of a Bubble with a Thin, Surrounding Membrane. Technical report, POINT Biomedical Corp., CA, USA, 1–7 (2005).
  • Fisher NG, Christiansen JP, Klibanov A, Taylor RP, Kaul S, Lindner JR. Influence of microbubble surface charge on capillary transit and myocardial contrast enhancement. J. Am. Coll. Cardiol.40(4), 811–819 (2002).
  • Lathia JD, Leodore L, Wheatley MA. Polymeric contrast agent with targeting potential. Ultrasonics42, 763–768 (2004).
  • Zhao S, Borden M, Bloch SH, Kruse D, Ferrara KW, Dayton PA. Radiation-force assisted targeting facilitates ultrasonic molecular imaging. Mol. Imaging3(3), 135–148 (2004).
  • Tortoli P, Boni E, Corsi M, Arditi M, Frinking P. Different effects of microbubble destruction and translation in Doppler measurements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(7), 1183–1188 (2005).
  • Zheng H, Mukdadi O, Shandas R. Theoretical predicitions of harmonic generation from submicron ultrasound contrast agents for nonlinear biomedical ultrasound imaging. Phys. Med. Biol.51, 557–573 (2006).
  • Frinking PJA, de Jong N. Acoustic modeling of shell-encapsulated gas bubbles. Ultrasound Med. Biol.24(4), 523–533 (1998).
  • Forsberg F, Goldberg BB, Liu JB, Merton DA, Rawool NM, Shi WT. Tissue-specific US contrast agent for evaluation of hepatic and splenic parenchyma. Radiology210, 125–132 (1999).
  • Sontum PC, Østensen J, Dyrstad K, Hoff L. Acoustic properties of NC100100 (SonazoidTM) and their relationship with the microbubble size distribution: motivation for choice of assay and dosage parameter. Proc. IEEE Ultrason. Symp.1743–1748 (1999).
  • Heckemann RA, Harvey CJ, Blomley MJK et al. Enhancement characteristics of the microbubble agent Levovist: reproducibility and interaction with aspirin. Eur. J. Radiol.41, 179–183 (2002).
  • Camarano G, Jones M, Freidlin RZ, Panza JA. Quantitative assessment of left ventricular perfusion defects using real-time three-dimensional myocardial contrast echocardiography. J. Am. Soc. Echocardiogr.15(3), 206–213 (2002).
  • Lindner JR. Microbubbles in medical imaging: current applications and future directions. Nature Rev. Drug Discov.3, 527–532 (2004).
  • Miller AP, Nanda NC. Contrast echocardiography: new agents. Ultrasound Med. Biol.30(4), 425–434 (2004).
  • Yang L. Real-time myocardial contrast echocardiography and its applications in evaluation for coronary artery disease. Chin. Med. J.117(9), 1388–1394 (2004).
  • Raisinghani A, Rafter P, Phillips P, Vannan MA, DeMaria AN. Microbubble contrast agents for echocardiography: rationale, composition, ultrasound interactions, and safety. Cardiol. Clin.22, 171–180 (2004).
  • Kollmann C, Putzer M. Ultraschallkontrastmittel – physikalische Grundlagen. Radiologe45(6), 503–512 (2005).
  • Becher H, Burns PN. Chapter 1: Contrast agents for echocardiography. In: Handbook of Contrast Echocardiography: LV Function and Myocardial Perfusion. Springer-Verlag, Berlin, Germany, 1–44 (2000).
  • Heynemann H, Jenderka KV, Zacharias M, Fornara P. Neue Techniken der Urosonographie. Urologe43, 1362–1370 (2004).
  • Droste DW, Kaps M, Navabi DG, Ringelstein EB. Ultrasound contrast enhancing agents in neurosonology: principles, methods, future possibilities. Acta Neurol. Scand.102, 1–10 (2000).
  • Wilkening WG. Konzepte zur Signalverarbeitung für die kontrastmittelspezifische Ultraschallabbildung. PhD Thesis, RuhrHUniversität Bochum, Bochum, Germany (2003).
  • Mischi M, Jansen AHM, Kalker AACM, Korsten HHM. Identification of ultrasound contrast agent dilution systems for ejection fraction measurements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(3), 410–420 (2005).
  • Sidhu PS. Microbubbles are here to burst! Radiol. Now20, 2–3 (2003).
  • Heppner P, Lindner JR. Contrast ultrasound assessment of angiogenesis by perfusion and molecular imaging. Expert Rev. Mol. Diagn.5(3), 447–455 (2005).
  • Sboros V, Pye SD, MacDonald CA, Gomatam J, Moran CM, McDicken WN. Absolute measurement of ultrasonic backscatter from single microbubbles. Ultrasound Med. Biol.31(8), 1063–1072 (2005).
  • de Jong N, Frinking PJ, Bouakaz A et al. Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera. Ultrasound Med. Biol.26(3), 487–492 (2000).
  • Morgan KE, Allen JS, Dayton PA, Chomas JE, Klibanov AL, Ferrara KW. Experimental and theoretical evaluation of microbubble behavior: effect of transmitted phase and bubble size. IEEE Trans. Ultrason. Ferroelectr. Freq. Control47(6), 1494–1509 (2000).
  • Chomas JE, Dayton P, May D, Ferrara K. Threshold of fragmentation for ultrasonic contrast. J. Biomed. Opt.6(2), 141–150 (2001).
  • Church CC. The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J. Acoust. Soc. Am.97(3), 1510–1521 (1995).
  • Ganor Y, Adam D, Kimmel E. Time and pressure dependence of acoustic signals radiated from microbubbles. Ultrasound Med. Biol.31(10), 1367–1374 (2005).
  • Stride E, Saffari N. On the destruction of microbubble ultrasound contrast agents. Ultrasound Med. Biol.29(4), 563–573 (2003).
  • Marmottant P, van der Meer S, Versluis M, de Jong N, Hilgenfeldt S, Lohse D. A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. 10th Eur. Symp. Ultrasound Contrast Imaging23–33 (2005) (Abstract).
  • Stride E, Saffari N. Theoretical and experimental investigation of the behaviour of ultrasound contrast agent particles in whole blood. Ultrasound Med. Biol.30(11), 1495–1509 (2004).
  • de Jong N, Bouakaz A, Frinking P. Basic acoustic properties of microbubbles. Echocardiography19(3), 229–240 (2002).
  • Postema M, de Jong N, Schmitz G. The physics of nanoshelled microbubbles. Biomed. Tech.50(S1), 748–749 (2005).
  • Young FR. Cavitation. McGraw-Hill, Maidenhead, UK, 8–186 (1989).
  • Shi WT, Forsberg F, Raichlen JS, Needleman L, Goldberg BB. Pressure dependence of subharmonic signals from contrast microbubbles. Ultrasound Med. Biol.25(2), 275–283 (1999).
  • Frinking PJA. Technological review of contrast-enhanced ultrasonography. In: Contrast-Enhanced General Purpose Ultrasound. Albrecht T, D’Onofrio M, Frauscher F et al. (Eds.), Springer-Verlag, Milan, Italy, 1–8 (2005).
  • Forsberg F, Shi WT, Goldberg BB. Subharmonic imaging of contrast agents. Ultrasonics38, 93–98 (2000).
  • Goertz DE, Cherin E, Needles A et al. High frequency nonlinear B-scan imaging of microbubble contrast agents. IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(1), 65–79 (2005).
  • Christopher T. Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(1), 125–139 (1997).
  • Eckersley RJ, Chin CT, Burns PN. Optimising phase and amplitude modulation schemes for imaging microbubble contrast agents at low acoustic power. Ultrasound Med. Biol.31(2), 213–219 (2005).
  • Hope Simpson D, Chin CT, Burns PN. Pulse inversion Doppler: a new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Trans. Ultrason. Ferroelectr. Freq. Control46(2), 372–382 (1999).
  • Hope Simpson D. Detecting and Imaging Microbubble Contrast Agents With Ultrasound. PhD Thesis, University of Toronto, Ontario, Canada (2000).
  • Borsboom JMG. Advanced Detection Strategies for Ultrasound Contrast Agents. PhD Thesis, Erasmus Universiteit Rotterdam, Rotterdam, The Netherlands (2005).
  • Chin CT. Modelling the Behaviour of Microbubble Contrast Agents for Diagnostic Ultrasound. PhD Thesis, University of Toronto, Ontario, Canada (2001).
  • Zheng H, Mukdadi O, Kim H, Hertzberg JR, Shandas R. Advantages in using multifrequency excitation of contrast microbubbles for enhancing echo particle image velocity techniques: initial numerical studies using rectangular and triangular waves. Ultrasound Med. Biol.31(1), 99–108 (2005).
  • Postema M, Bouakaz A, Chin CT, de Jong N. Optical observations of ultrasound contrast agent destruction. Acta Acust. United Acust.89, 728 (2003) (Abstract).
  • Yeh CK. Ultrasonic Quantitative Blood Flow Estimation. PhD Thesis, National Taiwan University, Taipei, Taiwan (2004).
  • Bloch SH, Wan M, Dayton PA, Ferrara KW. Optical observation of lipid- and polymer-shelled ultrasound microbubble contrast agents. Appl. Phys. Lett.84(4), 631–633 (2004).
  • Prentice P, Cuschieri A, Dholakia K, Prausnitz M, Campbell P. Membrane disruption by optically controlled microbubble cavitation. Nature Phys.1, 107–110 (2005).
  • Ammi AY, Cleveland RO, Mamou J, Wang GI, Bridal SL, O’Brien Jr WD. Shelled ultrasound contrast agent rupture identification by inertial cavitation and rebound signals. Ultrasonic Imaging26(4), 257–258 (2004).
  • Moran CM, Anderson T, Pye SD, Sboros V, McDicken WN. Quantification of microbubble destruction of three fluorocarbon-filled ultrasonic contrast agents. Ultrasound Med. Biol.26(4), 629–639 (2000).
  • Biagi E, Breschi L, Masotti L. Transient subharmonic and ultraharmonic acoustic emission during dissolution of free gas microbubbles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(6), 1048–1054 (2005).
  • Adam D, Sapunar M, Burla E. On the relationship between encapsulated ultrasound contrast agent and pressure. Ultrasound Med. Biol.31(5), 673–686 (2005).
  • Canadian Institute for Health Information.Medical imaging in Canada. Canadian Institute for Health Information, Ontario, Canada (2004).
  • Christiansen JP, Leong-Poi H, Klibanov AL, Kaul S, Lindner JR. Noninvasive imaging of myocardial reperfusion injury using leukocyte-targeted contrast echocardiography. Circulation105, 1764–1767 (2002).
  • May D, Allen J, Gut J, Ferrara K. Acoustic fragmentation of therapeutic contrast agents designed for localized drug delivery. Proc. IEEE Ultrason. Symp.1385–1388 (2001).
  • Shortencarier MJ, Dayton PA, Bloch SH, Schumann PA, Matsunaga TO, Ferrara KW. A method for radiation-force localized drug delivery using gas-filled lipospheres. IEEE Trans. Ultrason. Ferroelectr. Freq. Control51(7), 822–831 (2004).
  • Postema M, Bouakaz A, ten Cate F, Schmitz G, de Jong N, van Wamel A. Nitric oxide delivery by ultrasonic cracking: some limitations. Ultrasonics (2006) (In Press).
  • Reimer P, Balzer T. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur. Radiol.13, 1266–1276 (2003).
  • Deutsche Gesellschaft für Biomedizinische Technik, Deutsche Gesellschaft für Ultraschall in der Medizin, DRG Deutsche Röntgengesellschaft e.V. Ultraschall in der Medizin: Grundlegende Aspekte zur sicheren Anwendung von Ultraschall in der Diagnostik. Deutsche Gesellschaft für Biomedizinische Technik im VDE, Frankfurt am Main, Germany (2004).

Website

  • World Health Organization. Essential diagnostic imaging www.who.int/entity/eht/en/Diagnostic Imaging.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.