320
Views
16
CrossRef citations to date
0
Altmetric
Review

Signal amplification systems in immunoassays: implications for clinical diagnostics

Pages 749-760 | Published online: 09 Jan 2014

References

  • Van Weeman BK, Schuurs AHWM. Immunoassay using antigen-enzyme conjugates. FEBS Lett.15, 232–236 (1971).
  • Heim A, Wagner D, Rothamel T, Hartmann U, Flik J, Verhagen W. Evaluation of serological screening of cadaveric sera for donor selection for cornea transplantation. J. Med. Virol.58, 291–295 (1999).
  • Kemeny DM, Challacombe SJ. Theoretical and practical aspects. In: ELISA and Other Solid Phase Immunoassays. John Wiley & Sons Ltd, UK (1988).
  • Meriggioli MN. Use of immunoassays in neurological diagnosis and research. Neuro. Res.27, 734–740 (2005).
  • Hsu H-Y, Huang Y-Y. RCA combined nanoparticle-based optical detection technique for protein microarray: a novel approach. Biosens. Bioelectron.20, 123–126 (2004).
  • Blab G, Schmidt T, Nilsson M. Homogeneous detection of signal rolling circle replication products. Anal. Chem.76, 495–498 (2004).
  • Ohmichi T, Takashima A, Sugimoto N. A nano-circular single-stranded DNA as a novel tool for SNPs detection. Nucleosides Nucleotides Nucleic Acids24, 359–366 (2005).
  • Hotz CZ. Applications of quantum dots in biology: an overview. Methods Mol. Biol.303, 1–17 (2005).
  • Liu T, Liu B, Zhang H, Wang Y. The fluorescence bioassay platforms on quantum dots nanoparticles. J. Fluoresc.15, 729–733 (2005).
  • Weng J, Ren J. Luminescent quantum dots: a very attractive and promising tool in biomedicine. Curr. Med. Chem.13, 897–909 (2006).
  • Yao G, Wang L, Wu Y et al. FloDots: luminescent nanoparticles. Anal. BioAnal. Chem.385, 518–524 (2006).
  • Edgar R, McKinstry, Hwang J et al. High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc. Natl Acad. Sci. USA103, 4841–4845 (2006).
  • Evanko D. Bioluminescent quantum dots. Nat. Methods3, 240–241 (2006).
  • Didenko VV, Baskin DS. Horseradish peroxidase-driven fluorescent labeling of nanotubes with quantum dots. Biotechniques40, 295–302 (2006).
  • Bao P, Frutos AG, Greef C et al. High-sensitivity detection of DNA hybridization of DNA on microarrays using resonance light scattering. Anal. Chem.74, 1792–1797 (2002).
  • Keller BO, Wang Z, Li L. Low-mass proteome analysis based on liquid chromatography fractionation, nanoliter protein concentration/digestion, and microspot matrix-assisted laser desorption ionization mass spectroscopy. J. Chromatography782, 317–329 (2002).
  • Stupak J, Liu H, Wang Z, Brix BJ, Fliegel L, Li L. Nanoliter sample handling combined with microspot MALDI-MS for detection of gel-separated phosphoproteins. J. Proteom. Res.4, 515–522 (2005).
  • Niemeyer CM, Adler M, Blohm D. Fluorometric polymerase chain reaction (PCR) enzyme-linked immunosorbent assay for quantification of immuno-PCR products in microplate. Anal. Biochem.246, 140–145 (1997).
  • Rondeel JM. Immunofluorescence versus ELISA for the detection of antinuclear antigens. Expert Rev. Mol. Diagn.2, 226–232 (2002).
  • Kim M-G, Shin Y-B, Jung J-M, Ro H-S, Chung BH. Enhanced sensitivity of surface plasmon resonance (SPR) immunoassays using a peroxidase-catalized precipitation reaction and its application to a protein microarray. J. Immunol. Methods297, 125–132 (2005).
  • Niemeyer CM, Adler M Wacker R. Immuno-PCR: high sensitivity detection of proteins by nucleic acid amplification. Trends Biotech.23, 208–216 (2005).
  • Gehring AG, Irwin PL, Reed SA, Tu SI. Enzyme-linked immunomagnetic chemiluminescent detection of Escherichia coli 0157:H7. J. Immunol. Methods4, 3717–3726 (2004).
  • Bacaresse-Hamilton T, Ardizzoni A, Gray J, Crisanti A. Protein arrays for serodiagnosis of disease. Methods Mol. Biol.264, 271–283 (2004).
  • Russo D, Ambrosino A, Vittoria A, Cecio A. Signal amplification by combining two advanced immunohistochemical techniques. Eur. J. Histochem.47, 379–384 (2003).
  • Dwyer R. The ADVIA Centaur infectious disease assays: a technical review. J. Clin. Virol. Suppl.1, 81–85 (2004).
  • Kusnezow W, Hoheisel JD. Solid supports for microassay immunoassays. J. Mol. Recognit.16, 165–176 (2003).
  • Kobayashi N, Goto J. Noncompetitive immunoassays for small molecules with high sensitivity and specificity. Adv. Clin. Chem.36, 139–170 (2001).
  • Yalow RS, Berson SA. Assay of plasma insulin in human subjects by immunological methods. Nature (London)184, 1648–1649 (1959).
  • Miles LEM, Hales CN. Labeled antibodies and immunological assay systems. Nature (London)219, 186–189 (1968).
  • Goddard J-P, Reynond J-L. Recent advances in enzyme assays. Trends Biotech.22, 363–370 (2004).
  • Hashida S, Imagava M, Inoue S, Ruan K-H, Ishikawa E. More useful maleimide compounds for the conjugation of Fab’ to horseradish peroxidase through thiol groups in the hinge. J. Appl. Biochem.6, 56–63 (1984).
  • Madersbacher Wolf H, Gerth R, Berger P. Increased ELISA sensitivity using a modified method for conjugating horseradish peroxidase to monoclonal antibodies. J. Immunol. Methods152, 9–13 (1992).
  • Presentini R, Terrana B. Influence of the antibody-peroxidase coupling methods on the conjugate stability and on the methodologies for the preservation of the activity in time. J. Immunoassay16, 309–324 (1995).
  • Tsurta J, Yamamoto T, Kozono K, Kambara T. Application of a new method of antibody-enzyme conjugation with maleimide derivative for immunohistochemistry: hepatocellular production, interestitial tissue distribution, and renal cell reabsorption of plasma albumin in guinea pig. J. Histochem. Cytochem.33, 767–777 (1985).
  • Tuuminen T, Seppanen H, Pitkanen E-M, Palomaki P, Kapyaho K. Improvement of immunoglobulin M capture immunoassay specificity: toxoplasma antibody detection method as a model. J. Clin Microbiol.37, 270–273 (1991).
  • Yoshitake S, Imahawa M, Ishikawa E et al. Mild and efficient conjugation of rabbit Fab’ and horseradish peroxidase using a maleimide compound and its use for enzyme immunoassay. J. Biochem (Tokyo)92, 1413–1424 (1982).
  • Boorsma DM, Kalsbeek GL. A comparative study of horseradish peroxidase conjugates prepared with a one-step and a two-step method. J. Histochem. Cytochem.23, 200–207 (1975).
  • Boorsma DM, Streefkerk JG. Peroxidase-conjugate chromatography isolation of conjugates prepared with glutaraldehyde or periodate using polyacrylamide-agarose gel. J. Histochem Cytochem.24, 481–486 (1976).
  • Boorsma DM, Streefkerk JG. Some aspects of immunoenzyme cytometry. Acta Histochem. (Suppl.35), 41–51 (1998).
  • Dhawan S. Design and construction of novel molecular conjugates for signal amplification (I): conjugation of multiple horseradish peroxidase molecules to immunoglobulin via primary amines on lysine peptide chains. Peptides23, 2091–2098 (2002).
  • Dhawan S. Design and construction of novel molecular conjugates for signal amplification (II): use of multivalent polystyrene microparticles on lysine peptide chains to generate immunoglobulin–horseradish peroxidase conjugates. Peptides23, 2099–2110 (2002).
  • Seydack M. Nanoparticle labels in immunosensing using optical detection methods. Biosensors Bioelectronics20, 2454–2469 (2005).
  • Grubisha DS, Lipert RJ, Park HY, Driskell J, Porter MD. Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal. Chem.75, 5936–5943 (2003).
  • Kambhampati DK, Knoll W. Surface-plasmon optical techniques. Curr. Opin. Colloid. Sci.4, 273–280 (1999).
  • Bruemmel Y, Chan CP-y, Renneberg R, Thuenemann A, Seydack M. On the influence of different surface in nano- and submicrometer particle based fluorescence immunoassays. Langmuir20, 9371–9379 (2004).
  • Chan CP, Bruemmel Y, Seydack M et al. Nanocrystal biolabels with releasable fluorophores for immunoassays. Anal. Chem.76, 3638–3645 (2004).
  • Li J, Xue M, Wang H et al. Amplifying the electrical hybridization signals of DNA array by multilayer assembly of Au nanoparticle probes. Analyst128, 917–923 (2003).
  • Huber M, Wei T-F, Muller UR, Lefebvre PA, Maris SS, Bao YP. Gold nanoparticle probe-based gene expression analysis with unamplified total human RNA. Nucleic Acids Res.32, e137 (2004).
  • Lee TM, Cai H, Hsing IM. Effects of gold nanoparticle and electrode surface properties on electrocatalytic silver deposition for electrochemical DNA hybridization detection. Analyst130, 364–369 (2005).
  • Zhang Z-L, Pang D-W, Yuan H, Cai R-X. Electrochemical DNA sensing based on gold nanoparticle amplification. Anal. BioAnal. Chem.381, 833–838 (2005).
  • Thaxton CS, Georganopoulou DG, Mirkin CA. Gold nanoparticle probes for the detection of nucleic acid targets. Clin. Chim. Acta.363, 120–126 (2006).
  • Wilson S, Howell S. High-throughput screening in the diagnostics industry. Biochem. Soc. Trans.30, 794–797 (2002).
  • Ketema F, Zink HL, Kreisel KM, Croxton T, Constantine NT. A 10-minute, US Food and Drug Administration-approved HIV test. Expert Rev. Mol. Diagn.5, 135–143 (2005).
  • Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science301, 1884–1886 (2003).
  • Nam J-M, Stoeva SI, Mirkin CA. Bio-bar-code-based DNA detection with PCR-like sensitivity. J. Am. Chem. Soc.126, 5932–5933 (2004).
  • Gianneschi NC, Nguyen ST, Mirkin CA. Signal amplification and detection via a supramolecular allosteric catalyst. J. Am. Chem. Soc.127, 1644–1645 (2005).
  • Han MS, Lytton-Jean AKR, Mirkin CA. A gold nanoparticle based approach for screening triplex DNA binders. J. Am. Chem. Soc.128, 4954–4955 (2006).
  • Bhattacharya R, Bhattachrya D, Dhar TK. A novel signal amplification technology based on catalyzed reporter deposition and its application in a Dot-ELISA with ultra high sensitivity. J. Immunol. Methods227, 31–39 (1999).
  • Bhattacharya D, Bhattacharya R, Dhar TK. A novel signal amplification technology for ELISA based on catalyzed reporter deposition. Demonstration of its applicability for measuring aflatoxin B1. J. Immunol. Methods230, 71–86 (1999).
  • Jani HV, Janossy G, Brown DWG, Mandy F. Multiplexed immunoassays by flow cytometry for diagnosis and surveillance of infectious diseases in resource-poor settings. Lancet Infect. Dis.2, 243–250 (2002).
  • Szurdoki F, Michael KL, Walt DR. A duplexed microsphere-based fluorescent immunoassay. Anal. Biochem.291, 219–228 (2001).
  • Ladergerber B, Flepp M, Boni J et al. Human immunodeficiency virus type 1 p24 concentration measured by boosted ELISA of heat-denatured plasma correlates with decline in CD4 cells, progression to AIDS, and survival: comparison with viral RNA measurement. J. Infect. Dis.181, 1280–1287 (2000).
  • Barletts JM, Edelman DC, Constantine NT. Lowering the detection limits of HIV-1 viral load using real-time immuno-PCR for HIV-1 p24 antigen. Am. J. Clin. Pathol.122, 20–27 (2004).
  • Emrich T, Karl G. Non-radioactive detection of telomerase activity using a PCR-ELISA-based telomeric repeat amplification protocol. Methods Mol. Biol.191, 147–158 (2002).
  • Morgan E, Varro R, Sepulveda H et al. Cytometric bead array: a multiplexed assay platform with applications in various areas of biology. Clin. Immunol.110, 252–266 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.