134
Views
21
CrossRef citations to date
0
Altmetric
Review

Caveolin-1: a marker for pancreatic cancer diagnosis

Pages 395-404 | Published online: 09 Jan 2014

References

  • Warshaw AL, Fernandez-del Castillo C. Pancreatic carcinoma. N. Engl. J. Med.326(7), 455–465 (1992).
  • Jemal A, Siegel R, Ward E et al. Cancer statistics, 2006. CA Cancer J. Clin.56(2), 106–130 (2006).
  • Melle C, Ernst G, Escher N et al. Protein profiling of microdissected pancreas carcinoma and identification of HSP27 as a potential serum marker. Clin. Chem.53(4), 629–635 (2007).
  • Jeong S, Lee DH, Lee JI et al. Expression of Ki-67, p53, and K-ras in chronic pancreatitis and pancreatic ductal adenocarcinoma. World J. Gastroenterol.11(43), 6765–6769 (2005).
  • Liao Q, Zhao YP, Yang YC, Li LJ, Long X, Han SM. Combined detection of serum tumor markers for differential diagnosis of solid lesions located at the pancreatic head. Hepatobiliary Pancreat. Dis. Int.6(6), 641–645 (2007).
  • Misek DE, Patwa TH, Lubman DM, Simeone DM. Early detection and biomarkers in pancreatic cancer. J. Natl Compr. Canc. Netw.5(10), 1034–1041 (2007).
  • Stanton KJ, Sidner RA, Miller GA et al. Analysis of Ki-67 antigen expression, DNA proliferative fraction, and survival in resected cancer of the pancreas. Am. J. Surg.186(5), 486–492 (2003).
  • Goonetilleke KS, Siriwardena AK. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur. J. Surg. Oncol.33(3), 266–270 (2007).
  • Fujioka S, Misawa T, Okamoto T et al. Preoperative serum carcinoembryonic antigen and carbohydrate antigen 19-9 levels for the evaluation of curability and resectability in patients with pancreatic adenocarcinoma. J. Hepatobiliary Pancreat. Surg.14(6), 539–544 (2007).
  • Hess V, Glimelius B, Grawe P et al. CA 19-9 tumor-marker response to chemotherapy in patients with advanced pancreatic cancer enrolled in a randomised controlled trial. Lancet Oncol.9(2), 132–138 (2008).
  • Schneider J, Schulze G. Comparison of tumor M2-pyruvate kinase (tumor M2-PK), carcinoembryonic antigen (CEA), carbohydrate antigens CA 19-9 and CA 72-4 in the diagnosis of gastrointestinal cancer. Anticancer Res.23(6D), 5089–5093 (2003).
  • Ventrucci M, Cipolla A, Racchini C, Casadei R, Simoni P, Gullo L. Tumor M2-pyruvate kinase, a new metabolic marker for pancreatic cancer. Dig. Dis. Sci.49(7–8), 1149–1155 (2004).
  • Sandblom G, Granroth S, Rasmussen IC. TPS, CA 19-9, VEGF-A, and CEA as diagnostic and prognostic factors in patients with mass lesions in the pancreatic head. Ups. J. Med. Sci.113(1), 102–109 (2008).
  • Itakura J, Ishiwata T, Shen B, Kornmann M, Korc M. Concomitant over-expression of vascular endothelial growth factor and its receptors in pancreatic cancer. Int. J. Cancer85(1), 27–34 (2000).
  • Tonini G, Pantano F, Vincenzi B, Gabbrielli A, Coppola R, Santini D. Molecular prognostic factors in patients with pancreatic cancer. Expert Opin. Ther. Targets11(12), 1553–1569 (2007).
  • Salek C, Benesova L, Zavoral M et al. Evaluation of clinical relevance of examining K-ras, p16 and p53 mutations along with allelic losses at 9p and 18q in EUS-guided fine needle aspiration samples of patients with chronic pancreatitis and pancreatic cancer. World J. Gastroenterol.13(27), 3714–3720 (2007).
  • Ohuchida K, Mizumoto K, Miyasaka Y et al. Over-expression of S100A2 in pancreatic cancer correlates with progression and poor prognosis. J. Pathol.213(3), 275–282 (2007).
  • Pham NA, Schwock J, Iakovlev V, Pond GR, Hedley DW, Tsao MS. Immunohistochemical analysis of changes in signaling pathway activation downstream of growth factor receptors in pancreatic duct cell carcinogenesis. BMC Cancer8(1), 43 (2008).
  • Yoo SH, Park YS, Kim HR et al. Expression of caveolin-1 is associated with poor prognosis of patients with squamous cell carcinoma of the lung. Lung Cancer42(2), 195–202 (2003).
  • Liedtke C, Kersting C, Burger H, Kiesel L, Wulfing P. Caveolin-1 expression in benign and malignant lesions of the breast. World J. Surg. Oncol.5, 110 (2007).
  • Zhu H, Weisleder N, Wu P, Cai C, Chen JW. Caveolae/caveolin-1 are important modulators of store-operated calcium entry in hs578/t breast cancer cells. J. Pharmacol. Sci.106(2), 287–294 (2008).
  • Timme TL, Satoh T, Tahir SA et al. Therapeutic targets for metastatic prostate cancer. Curr. Drug Targets4(3), 251–261 (2003).
  • Tahir SA, Ren C, Timme TL et al. Development of an immunoassay for serum caveolin-1: a novel biomarker for prostate cancer. Clin. Cancer Res.9(10 Pt 1), 3653–3659 (2003).
  • Yang G, Addai J, Wheeler TM et al. Correlative evidence that prostate cancer cell-derived caveolin-1 mediates angiogenesis. Hum. Pathol.38(11), 1688–1695 (2007).
  • Wiechen K, Diatchenko L, Agoulnik A et al. Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am. J. Pathol.159(5), 1635–1643 (2001).
  • Kato K, Hida Y, Miyamoto M et al. Overexpression of caveolin-1 in oesophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer94(4), 929–933 (2002).
  • Hu YC, Lam KY, Law S, Wong J, Srivastava G. Profiling of differentially expressed cancer-related genes in oesophageal squamous cell carcinoma (ESCC) using human cancer cDNA arrays: overexpression of oncogene MET correlates with tumor differentiation in ESCC. Clin. Cancer Res.7(11), 3519–3525 (2001).
  • Cassoni P, Senetta R, Castellano I et al. Caveolin-1 expression is variably displayed in astroglial-derived tumors and absent in oligodendrogliomas: concrete premises for a new reliable diagnostic marker in gliomas. Am. J. Surg. Pathol.31(5), 760–769 (2007).
  • Barresi V, Cerasoli S, Paioli G et al. Caveolin-1 in meningiomas: expression and clinico-pathological correlations. Acta Neuropathol.112(5), 617–626 (2006).
  • Ito Y, Yoshida H, Nakano K et al. Caveolin-1 overexpression is an early event in the progression of papillary carcinoma of the thyroid. Br. J. Cancer86(6), 912–916 (2002).
  • Cohen AW, Hnasko R, Schubert W, Lisanti MP. Role of caveolae and caveolins in health and disease. Physiol. Rev.84(4), 1341–1379 (2004).
  • Williams TM, Lisanti MP. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am. J. Physiol. Cell Physiol.288(3), C494–C506 (2005).
  • Krajewska WM, Maslowska I. Caveolins: structure and function in signal transduction. Cell. Mol. Biol. Lett.9(2), 195–220 (2004).
  • Shatz M, Liscowitch M. Caveolin-1: a tumor-promoting role in human cancer. Int. J. Radiat. Biol.84(3), 177–189 (2008).
  • Liu P, Rudick M, Anderson RG. Multiple function of caveolin-1. J. Biol. Chem.277(44), 41295–41298 (2002).
  • Schlegel A, Lisanti MP. A molecular dissection of caveolin-1 membrane attachement and oligomerization. Two separate regions of caveolin-1 C-terminal domain mediate membrane binding and oligomer/oligomer interaction in vivo. J. Biol. Chem.275(28), 21605–21617 (2000).
  • Glenney JR Jr. Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J. Biol. Chem.264(34), 20163–20166 (1989).
  • Glenney JR Jr, Soppet D. Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc. Natl Acad. Sci. USA89(21), 10517–10521 (1992).
  • Li S, Couet J, Lisanti MP. Src tyrosine kinases, Gα subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. J. Biol. Chem.271, 29182–29190 (1996).
  • Couet J, Sargiacomo M, Lisanti MP. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. J. Biol. Chem.272, 30429–30438 (1997).
  • Sowa G, Pypaert M, Sessa WC. Distinction between signaling mechanism in lipid rafts vs. caveolae. Proc. Natl Acad. Sci. USA98(24), 14072–14077 (2001).
  • Sasai K, Kakumoto K, Hanafusa H, Akagi T. The Ras-MAPK pathway downregulates caveolin-1 in rodent fibroblast but not in human fibroblasts: implications in the resistance to oncogene-mediated transformation. Oncogene26(3), 449–455 (2007).
  • Galbiati F, Volonte D, Engelman JA et al. Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J.17(22), 6633–6648 (1998).
  • Zhang W, Razani B, Altschuler Y et al. Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). Transformation suppressor effects of adenovirus-mediated gene delivery of caveolin-1. J. Biol. Chem.275(27), 20717–20725 (2000).
  • Podar K, Anderson KC. Caveolin-1 as a potential new therapeutic target in multiple myeloma. Cancer Lett.233(1), 10–15 (2006).
  • Li L, Ren CH, Tahir SA, Ren C, Thompson TC. Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol. Cell Biol.23(24), 9389–9404 (2003).
  • Zundel W, Swiersz LM, Garcia A. Caveolin-1 mediated regulation of receptor tyrosine kinase-associated phosphatidyl-inositol 3-kinase activity by ceramide. Mol. Cell Biol.20(5), 1507–1514 (2000).
  • Shack S, Wang XT, Kokkonen GC, Gorospe M, Longo DL, Holbrook NJ. Caveolin-induced activation of the phosphatidylinositol 3-kinase Akt pathway increases arsenite cytotoxicity. Mol. Cell Biol.23(7), 2407–2414 (2003).
  • Ravid D, Maor S, Werner H, Liscovitch M.Caveolin-1 inhibits cell detachement-induced p53 activation and anoikis by upregulation of insulin-like growth factor-1 receptors and signaling. Oncogene24(8), 1338–1347 (2005).
  • Mettouchi A, Klein S, Guo W et al. Integrin-specific activation of Rac controls progression through G(1) phase of the cell cycle. Mol. Cell8(1), 115–127 (2001).
  • Forget MA, Desrosiers RR, Del M et al. The expression of rho proteins decreases with human brain tumor progression: potential tumor markers. Clin. Exp. Metastasis19(1), 9–15 (2002).
  • Razani B, Engelman JA, Wang XB et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J. Biol. Chem.276(41), 38121–38138 (2001).
  • Galbiati F, Volonte D, Liu J et al. Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Mol. Biol. Cell12(8), 2229–2244 (2001).
  • Tamaskar I, Choueiri TK, Sercia L, Rini B, Bukowski R, Zhou M. Differential expression of caveolin-1 in renal neoplasms. Cancer110(4), 776–782 (2007).
  • Burgermeister E, Xing X, Rocken C et al. Differential expression and function of caveolin-1 in human gastric cancer progression. Cancer Res.67(18), 8519–8526 (2007).
  • Galbiati F, Volonte D, Brown AM et al. Caveolin-1 expression inhibits Wnt/β-catenin/Lef-1 signaling by recruiting β-catenin to caveolae membrane domains. J. Biol. Chem.275(30), 23368–23377 (2000).
  • Hulit J, Bash T, Fu M et al. The cyclin D1 gene is transcriptionally repressed by caveolin-1. J. Biol. Chem.275(28), 21203–21209 (2000).
  • Torres VA, Tapia JC, Rodriguez DA et al. Caveolin-1 controls cell proliferation and cell death by suppressing expression of the inhibitor of apoptosis protein survivin. J. Cell. Sci.119(Pt 9), 1812–1823 (2006).
  • Wiechen K, Sers C, Agoulnik A et al. Down-regulation of caveolin-1, a candidate tumor suppressor gene, in sarcomas. Am. J. Pathol.158(3), 833–839 (2001).
  • Bender FC, Reymond MA, Bron C, Quest AF. Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Res.60(20), 5870–5878 (2000).
  • Cui J, Rohr LR, Swanson G, Speights VO, Maxwell T, Brothman AR. Hypermethylation of the caveolin-1 gene promoter in prostate cancer. Prostate46(3), 249–256 (2001).
  • Ho CC, Huang PH, Huang HY, Chen YH, Yang PC, Hsu SM. Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. Am. J. Pathol.161(5), 1647–1656 (2002).
  • Capozza F, Williams TM, Schubert W et al. Absence of caveolin-1 sensitizes mouse skin to carcinogen-induced epidermal hyperplasia and tumor formation. Am. J. Pathol.162(6), 2029–2039 (2003).
  • Lee H, Woodman SE, Engelman JA et al. Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (TYR-14). J. Biol. Chem.276(37), 35150–35158 (2001).
  • Lee H, Park DS, Wang XB, Scherer PE, Schwartz PE, Lisanti MP. Src-induced phosphorylation of caveolin-2 on tyrosine 19. Phospho-caveolin-2 (Tyr(P)19) is localized near focal adhesions, remains associated with lipid rafts/caveolae, but no longer forms a high molecular mass hetero-oligomer with caveolin-1. J. Biol. Chem.277(37), 34556–34567 (2002).
  • Tahir SA, Yang G, Ebara S et al. Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Res.61(10), 3882–3885 (2001).
  • Hayashi K, Matsuda S, Machida K et al. Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res.61(6), 2361–2364 (2001).
  • Moon KC, Lee GK, Yoo SH et al. Expression of caveolin-1 in pleomorphic carcinoma of the lung is correlated with a poor prognosis. Anticancer Res.25(6C), 4631–4637 (2005).
  • Fong A, Garcia E, Gwynn L, Lisanti MP, Fazzari MJ, Li M. Expression of caveolin-1 and caveolin-2 in urothelial carcinoma of the urinary bladder correlates with tumor grade and squamous differentiation. Am. J. Clin. Pathol.120(1), 93–100 (2003).
  • Ito Y, Yoshida H, Tomoda C et al. Caveolin-1 and 14-3-3 sigma expression in follicular variant of thyroid papillary carcinoma. Pathol. Res. Pract.201(8–9), 545–549 (2005).
  • Park SS, Kim JE, Kim YA, Kim YC, Kim SW. Caveolin-1 is down-regulated and inversely correlated with HER2 and EGFR expression status in invasive ductal carcinoma of the breast. Histopathology47(6), 625–630 (2005).
  • Juhasz M, Chen J, Tulassay Z, Malfertheiner P, Ebert MP. Expression of caveolin-1 in gastrointestinal and extraintestinal cancers. J. Cancer Res. Clin. Oncol.129(9), 493–497 (2003).
  • Murakami S, Miyamoto M, Hida Y et al. Caveolin-I overexpression is a favourable prognostic factor for patients with extrahepatic bile duct carcinoma. Br. J. Cancer88(8), 1234–1238 (2003).
  • Fine SW, Lisanti MP, Galbiati F, Li M. Elevated expression of caveolin-1 in adenocarcinoma of the colon. Am. J. Clin. Pathol.115(5), 719–724 (2001).
  • Lee H, Volonte D, Galbiati F et al. Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol. Endocrinol.14(11), 1750–1775 (2000).
  • Terris B, Blaveri E, Crnogorac-Jurcevic T et al. Characterization of gene expression profiles in intraductal papillary-mucinous tumors of the pancreas. Am. J. Pathol.160(5), 1745–1754 (2002).
  • Suzuoki M, Miyamoto M, Kato K et al. Impact of caveolin-1 expression on prognosis of pancreatic ductal adenocarcinoma. Br. J. Cancer87(10), 1140–1144 (2002).
  • Tanase C, Mihai M, Ardeleanu C et al. Correlation of Caveolin-1 expression and profileration markers in human pancreatic cancer. Virchows Archiv.451, 379 (2007).
  • Tanase C, Raducan E, Albulescu L et al. Caveolin-1 expression as a possible biomarker in pancreatic cancer diagnosis. Presented at: Proteomics Europe. Amsterdam, The Netherlands, 4–5 September 2007.
  • Duxbury MS, Ito H, Ashley SW, Whang EE. CEACAM6 cross-linking induces caveolin-1-dependent, Src-mediated focal adhesion kinase phosphorylation in BxPC3 pancreatic adenocarcinoma cells. J. Biol. Chem.279(22), 23176–23182 (2004).
  • Lin M, DiVito MM, Merajver SD, Boyanapalli M, van Golen KL. Regulation of pancreatic cancer cell migration and invasion by RhoC GTPase and caveolin-1. Mol. Cancer4(1), 21 (2005).
  • Cronogorac-Jurcevic T, Efthimiou E, Nielsen T et al. Expression profiling of microdissected pancreatic adenocarcinomas. 21, 4587–4594 (2002).
  • van Golen KL. Is caveolin-1 a viable therapeutic target to reduce cancer metastasis? Expert Opin. Ther. Targets10(5), 709–721 (2006).
  • Cordes N, Frick S, Brunner TB et al. Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin-1. Oncogene26(48), 6851–6862 (2007).
  • Brouet A, DeWever J, Martinive P et al. Antitumor effects of in vivo caveolin gene delivery are associated with the inhibition of the proangiogenic and vasodilatory effects of nitric oxide. FASEB J.19(6), 602–604 (2005).
  • Bouzin C, Brouet A, De Vriese J, Dewever J, Feron O. Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J. Immunol.178(3), 1505–1511 (2007).
  • Felley-Bosco E, Bender F, Quest AF. Caveolin-1-mediated post-transcriptional regulation of inducible nitric oxide synthase in human colon carcinoma cells. Biol. Res.35(2), 169–176 (2002).
  • Burgermeister E, Tencer L, Liscovitch M. Peroxisome proliferator-activated receptor-g upregulates caveolin-1 and caveolin-2 expression in human carcinoma cells. Oncogene22(25), 3888–3900 (2003).
  • Juhasz M, Vertesaljai M, Herszenyi L, Malfertheiner P, Ebert MP, Tulassay Z. The role of caveolin-1 gene in carcinogenesis. Orv. Hetil.145(39), 1985–1989 (2004).
  • Patlolla JM, Swamy MV, Raju J, Rao CV. Overexpression of caveolin-1 in experimental colon adenocarcinomas and human colon cancer cell lines. Oncol. Rep.11(5), 957–963 (2004).
  • Lin SY, Yeh KT, Chen WT, Chen HC, Chen ST, Chang JG. Promoter CpG methylation of caveolin-1 in sporadic colorectal cancer. Anticancer Res.24(3a), 1645–1650 (2004).
  • Gao X, Sun Y, Huang L et al. Down-regulation of caveolin-1 in gastric carcinoma and its clinical biological significance. Ai Zheng24(3), 311–316 (2005).
  • Cavallo-Medved D, Mai J, Dosescu J, Sameni M, Sloane BF. Caveolin-1 mediates the expression and localization of cathepsin B, pro-urokinase plasminogen activator and their cell-surface receptors in human colorectal carcinoma cells. J. Cell Sci.118(Pt 7), 1493–1503 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.