121
Views
20
CrossRef citations to date
0
Altmetric
Review

Role of DMP1 and its future in lung cancer diagnostics

, , , , &
Pages 435-447 | Published online: 09 Jan 2014

References

  • Jemal A, Siegel R, Ward E et al. Cancer Statistics, 2008. CA Cancer J. Clin.58(2), 71–96 (2008).
  • Spira A, Ettinger DS. Multidisciplinary management of lung cancer. N. Engl. J. Med.350(4), 379–392 (2004).
  • Sun S, Schiller JH, Spinola M, Minna JD. New molecular targeted therapies for lung cancer. J. Clin. Invest.117(10), 2740–2750 (2007).
  • Ramalingam S, Belani C. Systemic chemotherapy for advanced non-small cell lung cancer: recent advances and future directions. Oncologist13(Suppl. 1), 5–13 (2008).
  • Travis WD. Pathology of lung cancer. Clin. Chest Med.23(1), 65–81 (2002).
  • Meuwissen R, Berns A. Mouse models for human lung cancer. Genes Dev.19(6), 643–664 (2005).
  • Wistuba I, Gazdar AF, Minna JD. Molecular genetics of small cell lung carcinoma. Semin. Oncol.28(2 Suppl. 4) 3–13 (2001).
  • Zochbauer-Muller S, Gazdar AF, Minna JD. Molecular pathogenesis of lung cancer. Annu. Rev. Physiol.64, 681–708 (2002).
  • Sherr CJ. Principles of tumor suppression. Cell116(2), 235–246 (2004).
  • Sherr CJ, Roberts JM. Living with or without cyclins and cyclin-dependent kinases. Genes Dev.18(22), 2699–2711 (2004).
  • Cobrinik D. Pocket proteins and cell cycle control. Oncogene24(17), 2796–2809 (2005).
  • Giacinti C, Giordano A. RB and cell cycle progression. Oncogene25(38), 5220–5227 (2006).
  • Taneja P, Frazier DP, Sugiyama T, Lagedrost SJ, Inoue K. Control of cellular physiology by transcription factors E2F and their roles in carcinogenesis. Res. Signp.179–197 (2008).
  • Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev.13(12), 1501–1512 (1999).
  • Pei XH, Xiong Y. Biochemical and cellular mechanisms of mammalian CDK inhibitors: a few unresolved issues. Oncogene24(17), 2787–2795 (2005).
  • Salgia R, Skarin AT. Molecular abnormalities in lung cancer. J. Clin. Oncol.16(3), 1207–1217 (1998).
  • Scambia G, Lovergine S, Masciullo V. RB family members as predictive and prognostic factors in human cancer. Oncogene25(38), 5302–5308 (2006).
  • Xu HJ, Quinlan DC, Davidson AG et al. Altered retinoblastoma protein expression and prognosis in early-stage non-small-cell lung carcinoma. J. Natl Cancer Inst.86(9), 695–699 (1994).
  • Hommura F, Dosaka-Akita H, Kinoshita I et al. Predictive value of expression of p16INK4A, retinoblastoma and p53 proteins for the prognosis of non-small-cell lung cancers. Br. J. Cancer81(4), 696–701 (1999).
  • Chen JT, Chen YC, Chen CY, Wang YC. Loss of p16 and/or pRb protein expression in NSCLC. An immunohistochemical and prognostic study. Lung Cancer31(2–3), 163–170 (2001).
  • Xu HJ, Cagle PT, Hu SX, Li J, Benedict WF. Altered retinoblastoma and p53 protein status in non-small cell carcinoma of the lung: potential synergistic effects on prognosis. Clin. Cancer Res.2(7), 1169–1176 (1996).
  • Zagorski WA, Knudsen ES, Reed MF. Retinoblastoma deficiency increases chemosensitivity in lung cancer. Cancer Res.67(17), 8264–8273 (2007).
  • Hensel CH, Hsieh CL, Gazdar AF et al. Altered structure and expression of the human retinoblastoma susceptibility gene in small cell lung cancer. Cancer Res.50(10), 3067–3072 (1990).
  • Jin M, Inoue S, Umemura T et al. Cyclin D1, p16 and retinoblastoma gene product expression as a predictor for prognosis in non-small cell lung cancer at stages I and II. Lung Cancer34(2), 207–218 (2001).
  • Singhal S, Vachani A, Antin-Ozerkis D, Kaiser LR, Albelda SM. Prognostic implications of cell cycle, apoptosis, and angiogenesis biomarkers in non-small cell lung cancer: a review. Clin. Cancer Res.11(11), 3974–3986 (2005).
  • Kratzke RA, Greatens TM, Rubins JB et al. Rb and p16INK4a expression in resected non-small cell lung tumors. Cancer Res.56(15), 3415–3420 (1996).
  • Nakagawa K, Conrad NK, Williams JP, Johnson BE, Kelley MJ. Mechanism of inactivation of CDKN2 and MTS2 in non-small cell lung cancer and association with advanced stage. Oncogene11(9), 1843–1851 (1995).
  • Kawamata N, Miller CW, Koeffler HP. Molecular analysis of a family of cyclin-dependent kinase inhibitor genes (p15/MTS2/INK4b and p18/INK4c) in non-small cell lung cancers. Mol. Carcinogen.14(4), 263–268 (1995).
  • Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat. Rev. Cancer6(12), 909–923 (2006).
  • Pappot H, Francis D, Brunner N, Grondahl-Hansen J, Osterlind K. p53 protein in non-small cell lung cancer as quantitated by enzyme-linked immunosorbent assay: relation to prognosis. Clin. Cancer Res.21(1), 155–160 (1996).
  • Nishio M, Koshikawa T, Kuroishi T et al. Prognostic significance of abnormal p53 accumulation in primary, resected non-small-cell lung cancers. J. Clin. Oncol.14(2), 497–502 (1996).
  • Kawasaki M, Nakanishi Y, Kuwano K, Yatsunami J, Takayama K, Hara N. The utility of p53 immunostaining of transbronchial biopsy specimens of lung cancer: p53 overexpression predicts poor prognosis and chemoresistance in advanced non-small cell lung cancer. Clin. Cancer Res.3(7), 1195–1200 (1997).
  • Lee JS, Yoon A, Kalapurakal SK et al. Expression of p53 oncoprotein in non-small-cell lung cancer: a favorable prognostic factor. J. Clin. Oncol.13(8), 1893–1903 (1995).
  • Quinlan DC, Davidson AG, Summers CL, Warden HE, Doshi HM. Accumulation of p53 protein correlates with a poor prognosis in human lung cancer. Cancer Res.52(17), 4828–4831 (1992).
  • Fujino M, Dosaka-Akita H, Harada M et al. Prognostic significance of p53 and rasp21 expression in nonsmall cell lung cancer. Cancer76(12), 2457–2463 (1995).
  • Tormanen U, Eerola AK, Rainio P et al. Enhanced apoptosis predicts shortened survival in non-small cell lung carcinoma. Cancer Res.55(23), 5595–5602 (1995).
  • Passlick B, Izbicki JR, Riethmuller G, Pantel K. p53 in non-small-cell lung cancer. J. Natl Cancer Inst.86(10), 801–803 (1994).
  • Ebina M, Steinberg SM, Mulshine JL, Linnoila RI. Relationship of p53 overexpression and up-regulation of proliferating cell nuclear antigen with the clinical course of non-small cell lung cancer. Cancer Res.54(9), 2496–2503 (1994).
  • Carbone DP, Mitsudomi T, Chiba I et al. p53 immunostaining positivity is associated with reduced survival and is imperfectly correlated with gene mutations in resected non-small cell lung cancer. A preliminary report of LCSG 871. Chest106(6 Suppl.), 377S–381S (1994).
  • Huang C, Taki T, Adachi M, Konishi T, Higashiyama M, Miyake M. Mutations in exon 7 and 8 of p53 as poor prognostic factors in patients with non-small cell lung cancer. Oncogene16(19), 2469–2477 (1998).
  • Ahrendt SA, Hu Y, Buta M et al. p53 mutations and survival in stage I non-small-cell lung cancer: results of a prospective study. J. Natl Cancer Inst.95(13), 961–970 (2003).
  • Burke L, Flieder DB, Guinee DG et al. Prognostic implications of molecular and immunohistochemical profiles of the Rb and p53 cell cycle regulatory pathways in primary non-small cell lung carcinoma. Clin. Cancer Res.11(1), 232–241 (2005).
  • Fukuyama Y, Mitsudomi T, Sugio K, Ishida T, Akazawa K, Sugimachi K. K-ras and p53 mutations are an independent unfavourable prognostic indicator in patients with non-small-cell lung cancer. Br. J. Cancer75(8), 1125–1130 (1997).
  • Skaug V, Ryberg D, Kure EH et al. p53 mutations in defined structural and functional domains are related to poor clinical outcome in non-small cell lung cancer patients. Clin. Cancer Res.6(3), 1031–1037 (2000).
  • Hashimoto T, Tokuchi Y, Hayashi M et al. p53 null mutations undetected by immunohistochemical staining predict a poor outcome with early-stage non-small cell lung carcinomas. Cancer Res.59(21), 5572–5577 (1999).
  • Mitsudomi T, Oyama T, Kusano T, Osaki T, Nakanishi R, Shirakusa T. Mutations of the p53 gene as a predictor of poor prognosis in patients with non-small-cell lung cancer. J. Natl Cancer Inst.85(24), 2018–2023 (1993).
  • Tomizawa Y, Kohno T, Fujita T et al. Correlation between the status of the p53 gene and survival in patients with stage I non-small cell lung carcinoma. Oncogene18(4), 1007–1014 (1999).
  • Laudanski J, Niklinska W, Burzykowski T, Chyczewski L, Niklinski J. Prognostic significance of p53 and bcl-2 abnormalities in operable nonsmall cell lung cancer. Eur. Respir. J.17(4), 660–666 (2001).
  • Vega FJ, Iniesta P, Caldes T et al. p53 exon 5 mutations as a prognostic indicator of shortened survival in non-small-cell lung cancer. Br. J. Cancer76(1), 44–51 (1997).
  • Horio Y, Takahashi T, Kuroishi T et al. Prognostic significance of p53 mutations and 3p deletions in primary resected non-small cell lung cancer. Cancer Res.53(1), 1–4 (1993).
  • Sherr CJ. The INK4a/ARF network in tumor suppression. Nat. Rev. Mol. Cell Biol.2 (10), 731–737 (2001).
  • Lowe S, Sherr CJ. Tumor suppression by Ink4a-Arf: progress and puzzles. Curr. Opin. Genet. Dev.13(1), 77–83 (2003).
  • Sherr CJ. Divorcing ARF and p53: an unsettled case. Nat. Rev. Cancer6(9) 663–673 (2006).
  • Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell83(6), 993–1000 (1995).
  • Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell127(2), 265–275 (2006).
  • Ruas M, Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim. Biophys. Acta Rev. Cancer1378(2), F115–F177 (1998).
  • Zindy F, Williams RT, Baudino TA et al. Arf tumor suppressor promoter monitors latent oncogenic signals in vivo. Proc. Natl Acad. Sci. USA100(26), 15930–15935 (2003).
  • Kamijo T, Bodner S, van de Kamp E, Randle DH, Sherr CJ. Tumor spectrum in ARF-deficient mice. Cancer Res.59(9), 2217–2222 (1999).
  • Wu X, Bayle JH, Olson D, Levine AJ. The p53–mdm-2 autoregulatory feedback loop. Genes Dev.7(7A), 1126–1132 (1993).
  • Zauberman A, Flusberg D, Haupt Y, Barak Y, Oren M. A functional p53-responsive intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res.23(14), 2584–2592 (1995).
  • Robertson KD, Jones PA. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol. Cell Biol.18(11), 6457–6473 (1998).
  • Wang YC, Lin RK, Tan YH, Chen JT, Chen CY, Wang YC. Wild-type p53 overexpression and its correlation with MDM2 and p14ARF alterations: an alternative pathway to non-small-cell lung cancer. J. Clin. Oncol.23(1), 154–164 (2005).
  • Hirai H, Sherr CJ. Interaction of D-type cyclins with a novel myb-like transcription factor, DMP1. Mol. Cell Biol.16(11), 6457–6467 (1996).
  • Inoue K, Sherr CJ. Gene expression and cell cycle arrest mediated by transcription factor DMP1 is antagonized by D-type cyclins through a cyclin-dependent-kinase-independent mechanism. Mol. Cell Biol.18(3), 1590–1600 (1998).
  • Inoue K, Roussel MF, Sherr CJ. Induction of ARF tumor suppressor gene expression and cell cycle arrest by transcription factor DMP1. Proc. Natl Acad. Sci. USA.96(7), 3993–3998 (1999).
  • Inoue K, Sherr CJ, Shapiro LH. Regulation of the CD13/aminopeptidase N gene by DMP1, a transcription factor antagonized by D-type cyclins. J. Biol. Chem.273(44), 29188–29194 (1998).
  • Inoue K, Wen R, Rehg JE et al. Disruption of the ARF transcriptional activator DMP1 facilitates cell immortalization, Ras transformation, and tumorigenesis. Genes Dev.14(14), 1797–1809 (2000).
  • Inoue K, Zindy F, Randle DH, Rehg JE, Sherr CJ. Dmp1 is haplo-insufficient for tumor suppression and modifies the frequencies of Arf and p53 mutations in Myc-induced lymphomas. Genes Dev.15(22), 2934–2939 (2001).
  • Quon KC, Berns A. Haplo-insufficiency? Let me count the ways. Genes Dev.15(22), 2917–2921 (2001).
  • Inoue K, Mallakin A, Frazier DP. Dmp1 and tumor suppression (Review). Oncogene26(30), 4329–4335 (2007).
  • Sugiyama T, Taneja P, Frazier DP et al. Oncogenic and non-oncogenic signaling pathways that regulate Dmp1 (Dmtf1). Clin. Med. Oncol.2, 1–11 (2008).
  • Sreeramaneni R, Chaudhry A, McMahon M, Sherr CJ, Inoue K. Ras–Raf–Arf signaling critically depends on Dmp1 transcription factor. Mol. Cell Biol.25(1), 220–232 (2005).
  • Mallakin A, Taneja P, Matise LA, Willingham MC, Inoue K. Expression of Dmp1 in specific differentiated, nonproliferating cells and its repression by E2Fs. Oncogene25(59), 7703–7713 (2006).
  • Taneja P, Mallakin A, Matise LA, Frazier DP, Choudhary M, Inoue K. Repression of Dmp1 and Arf transcription by anthracyclins: critical roles of the NF-κB subunit p65. Oncogene26(33), 7457–7466 (2007).
  • Mallakin A, Sugiyama T, Taneja P et al. Mutually exclusive inactivation of DMP1 and ARF/p53 in lung cancer. Cancer Cell12(4), 381–394 (2007).
  • Johnson L, Mercer K, Greenbaum D et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature410(6832), 1111–1116 (2001).
  • Maeda T, Hobbs RM, Merghoub T et al. Role of the proto-oncogene Pokemon in cellular transformation and ARF repression. Nature433(7023), 278–285 (2005).
  • Maestro R, Dei Tos AP, Hamamori Y et al. Twist is a potential oncogene that inhibits apoptosis. Genes Dev.13(17), 2207–2217 (1999).
  • Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M. The oncogene and polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature397(6715), 164–168 (1999).
  • Jacobs JJ, Keblusek P, Robanus-Maandag E et al. Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nat. Genet.26(3), 291–299 (2000).
  • Yang J, Mani S, Donaher JL et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell117(7), 927–939 (2004).
  • Bieche I, Champeme MH, Matifas F, Hacene K, Callahan R, Lidereau R. Loss of heterozygosity on chromosome 7q and aggressive primary breast cancer. Lancet339(8786), 139–143 (1992).
  • Kerr J, Leary JA, Hurst T et al. Allelic loss on chromosome 7q in ovarian adenocarcinomas: two critical regions and a rearrangement of the PLANH1 locus. Oncogene13(8), 1815–1818 (1996).
  • Bodner SM, Naeve CW, Rakestraw KM et al. Cloning and chromosomal localization of the gene encoding human cyclin D-binding Myb-like protein (hDMP1). Gene229(1–2), 223–228 (1999).
  • Tschan MP, Fischer KM, Fung VS et al. Alternative splicing of the human cyclin D-binding Myb-like protein (hDMP1) yields a truncated protein isoform that alters macrophage differentiation patterns. J. Biol. Chem.278(44), 42750–42760 (2003).
  • Trimarchi JM, Lees JA. Sibling rivalry in the E2F family. Nat. Rev. Mol. Cell Biol.3(1), 11–20 (2002).
  • Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell132(3), 344–362 (2008).
  • Awaya H, Takeshima Y, Amatya VJ et al. Inactivation of the p16 gene by hypermethylation and loss of heterozygosity in adenocarcinoma of the lung. Pathol.Int.54(7), 486–489 (2004).
  • Tanaka R, Wang D, Morishita Y et al. Loss of function of p16 gene and prognosis of pulmonary adenocarcinoma. Cancer103(3), 608–615 (2005).
  • Zienolddiny S, Ryberg D, Arab MO, Skaug V, Haugen A. Loss of heterozygosity is related to p53 mutations and smoking in lung cancer. Br. J. Cancer84(2), 226–231 (2001).
  • Nelson HH, Wilkojmen M, Marsit CJ, Kelsey KT. TP53 mutation, allelism and survival in non-small cell lung cancer. Carcinogenesis26(10), 1770–1773 (2005).
  • Toyooka S, Tsuda T, Gazdar AF. The TP53 gene, tobacco exposure, and lung cancer. Hum. Mutat.21(3), 229–239 (2003).
  • Kim TY, Han SW, Bang YJ. Chasing targets for EGFR tyrosine kinase inhibitors in non-small cell lung cancer: Asian perspectives. Expert Rev. Mol. Diagn.7(6), 821–836 (2007).
  • Stahel RA. Adenocarcinoma, a molecular perspective. Ann. Oncol.18(Suppl. 9), ix147–ix 149 (2007).
  • Helmig S, Schneider J. Oncogene and tumor-suppressor gene products as serum biomarkers in occupational-derived lung cancer. Expert Rev. Mol. Diagn.7(5), 555–568 (2007).
  • Nakamura H, Kawasaki N, Taguchi M, Kabasawa K. Association of HER-2 overexpression with prognosis in nonsmall cell lung carcinoma: a meta analysis. Cancer103(9), 1865–1873 (2005).
  • Gray J, Simon G, Bepler G. Molecular predictors of chemotherapy response in non-small-cell lung cancer. Expert Rev. Anticancer Ther.7(4), 545–549 (2007).
  • So CK, Nie Y, Song Y et al. Loss of heterozygosity and internal tandem duplication mutations of the CBP gene are frequent events in human esophageal squamous cell carcinoma. Clin. Cancer Res.10(1 Pt 1), 19–27 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.