250
Views
5
CrossRef citations to date
0
Altmetric
Review

Apical junction complex proteins and ulcerative colitis: a focus on the PTPRS gene

&
Pages 465-477 | Published online: 09 Jan 2014

References

  • Nikolaus S, Schreiber S. Diagnostics of inflammatory bowel disease. Gastroenterology133(5), 1670–1689 (2007).
  • Saibeni S, Folli C, de Franchis R, Borsi G, Vecchi M. Diagnostic role and clinical correlates of anti-Saccharomyces cerevisiae antibodies (ASCA) and anti-neutrophil cytoplasmic antibodies (p-ANCA) in Italian patients with inflammatory bowel diseases. Dig. Liver Dis.35(12), 862–868 (2003).
  • Jaskowski TD, Litwin CM, Hill HR. Analysis of serum antibodies in patients suspected of having inflammatory bowel disease. Clin. Vaccine Immunol.13(6), 655–660 (2006).
  • Kugathasan S, Werlin SL. Measurement of pANCA (antineutrophil cytoplasmic antibodies) and ASCA (anti-Saccharomyces cerevisiae) in screening for IBD in young children. Inflamm. Bowel Dis.5(4), 283–284 (1999).
  • Wei B, Huang T, Dalwadi H, Sutton CL, Bruckner D, Braun J. Pseudomonas fluorescens encodes the Crohn’s disease-associated I2 sequence and T-cell superantigen. Infect. Immun.70(12), 6567–6575 (2002).
  • Sutton CL, Kim J, Yamane A et al. Identification of a novel bacterial sequence associated with Crohn’s disease. Gastroenterology119(1), 23–31 (2000).
  • Zholudev A, Zurakowski D, Young W, Leichtner A, Bousvaros A. Serologic testing with ANCA, ASCA, and anti-OmpC in children and young adults with Crohn’s disease and ulcerative colitis: diagnostic value and correlation with disease phenotype. Am. J. Gastroenterol.99(11), 2235–2241 (2004).
  • Lodes MJ, Cong Y, Elson CO et al. Bacterial flagellin is a dominant antigen in Crohn disease. J. Clin. Invest.113(9), 1296–1306 (2004).
  • Targan SR, Landers CJ, Yang H et al. Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn’s disease. Gastroenterology128(7), 2020–2028 (2005).
  • D’Inca R, Dal Pont E, Di Leo V et al. Calprotectin and lactoferrin in the assessment of intestinal inflammation and organic disease. Int. J. Colorectal Dis.22(4), 429–437 (2007).
  • Kappelman MD, Rifas-Shiman SL, Kleinman K et al. The prevalence and geographic distribution of Crohn’s disease and ulcerative colitis in the United States. Clin. Gastroenterol. Hepatol.5(12), 1424–1429 (2007).
  • Sartor RB. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat. Clin. Pract. Gastroenterol. Hepatol.3(7), 390–407 (2006).
  • Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature411(6837), 599–603 (2001).
  • Rioux JD, Xavier RJ, Taylor KD et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet.39(5), 596–604 (2007).
  • Duerr RH, Taylor KD, Brant SR et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science314(5804), 1461–1463 (2006).
  • Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447(7145), 661–678 (2007).
  • Muise AM, Walters T, Wine E et al. Protein-tyrosine phosphatase σ is associated with ulcerative colitis. Curr. Biol.17(14), 1212–1218 (2007).
  • Daly MJ, Pearce AV, Farwell L et al. Association of DLG5 R30Q variant with inflammatory bowel disease. Eur. J. Hum. Genet.13(7), 835–839 (2005).
  • Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature411(6837), 603–606 (2001).
  • Girardin SE, Boneca IG, Viala J et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem.278(11), 8869–8872 (2003).
  • Maeda S, Hsu LC, Liu H et al. Nod2 mutation in Crohn’s disease potentiates NF-kB activity and IL-1β processing. Science307(5710), 734–738 (2005).
  • Ogura Y, Lala S, Xin W et al. Expression of NOD2 in Paneth cells: a possible link to Crohn’s ileitis. Gut52(11), 1591–1597 (2003).
  • Lala S, Ogura Y, Osborne C et al. Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology125(1), 47–57 (2003).
  • Economou M, Trikalinos TA, Loizou KT, Tsianos EV, Ioannidis JP. Differential effects of NOD2 variants on Crohn’s disease risk and phenotype in diverse populations: a metaanalysis. Am. J. Gastroenterol.99(12), 2393–2404 (2004).
  • Hugot JP. CARD15/NOD2 mutations in Crohn’s disease. Ann. NY Acad. Sci.1072, 9–18 (2006).
  • Peltekova VD, Wintle RF, Rubin LA et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat. Genet.36(5), 471–475 (2004).
  • Silverberg MS, Duerr RH, Brant SR et al. Refined genomic localization and ethnic differences observed for the IBD5 association with Crohn’s disease. Eur. J. Hum. Genet.15(3), 328–335 (2007).
  • Stoll M, Corneliussen B, Costello CM et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat. Genet.36(5), 476–480 (2004).
  • Brant SR, Panhuysen CI, Nicolae D et al. MDR1 Ala893 polymorphism is associated with inflammatory bowel disease. Am. J. Hum. Genet.73(6), 1282–1292 (2003).
  • Annese V, Valvano MR, Palmieri O, Latiano A, Bossa F, Andriulli A. Multidrug resistance 1 gene in inflammatory bowel disease: a meta-analysis. World J. Gastroenterol.12(23), 3636–3644 (2006).
  • Wilk JN, Bilsborough J, Viney JL. The mdr1a-/- mouse model of spontaneous colitis: a relevant and appropriate animal model to study inflammatory bowel disease. Immunol. Res.31(2), 151–159 (2005).
  • Banner KH, Cattaneo C, Le Net JL, Popovic A, Collins D, Gale JD. Macroscopic, microscopic and biochemical characterisation of spontaneous colitis in a transgenic mouse, deficient in the multiple drug resistance 1a gene. Br. J. Pharmacol.143(5), 590–598 (2004).
  • Franke A, Hampe J, Rosenstiel P et al. Systematic association mapping identifies NELL1 as a novel IBD disease gene. PLoS ONE2, E691 (2007).
  • Hampe J, Franke A, Rosenstiel P et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet.39(2), 207–211 (2007).
  • Libioulle C, Louis E, Hansoul S et al. Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet.3(4), E58 (2007).
  • Parkes M, Barrett JC, Prescott NJ et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat. Genet.39(7), 830–832 (2007).
  • Raelson JV, Little RD, Ruether A et al. Genome-wide association study for Crohn’s disease in the Quebec Founder Population identifies multiple validated disease loci. Proc. Natl Acad. Sci. USA104(37), 14747–14752 (2007).
  • Yamazaki K, McGovern D, Ragoussis J et al. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn’s disease. Hum. Mol. Genet.14(22), 3499–3506 (2005).
  • Tremelling M, Cummings F, Fisher SA et al. IL23R variation determines susceptibility but not disease phenotype in inflammatory bowel disease. Gastroenterology132(5), 1657–1664 (2007).
  • Yamazaki K, Onouchi Y, Takazoe M, Kubo M, Nakamura Y, Hata A. Association analysis of genetic variants in IL23R, ATG16L1 and 5p13.1 loci with Crohn’s disease in Japanese patients. J. Hum. Genet.52(7), 575–583 (2007).
  • Burton PR, Clayton DG, Cardon LR et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet.39(11), 1329–1337 (2007).
  • Begovich AB, Chang M, Caillier SJ et al. The autoimmune disease-associated IL12B and IL23R polymorphisms in multiple sclerosis. Hum. Immunol.68(11), 934–937 (2007).
  • McGovern D, Powrie F. The IL23 axis plays a key role in the pathogenesis of IBD. Gut56(10), 1333–1336 (2007).
  • Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science313(5792), 1438–1441 (2006).
  • Meddings J. Barrier dysfunction and Crohn’s disease. Ann. NY Acad. Sci.915, 333–338 (2000).
  • Hollander D. Crohn’s disease – a permeability disorder of the tight junction? Gut29(12), 1621–1624 (1988).
  • Weber CR, Turner JR. Inflammatory bowel disease: is it really just another break in the wall? Gut56(1), 6–8 (2007).
  • Arrieta MC, Bistritz L, Meddings JB. Alterations in intestinal permeability. Gut55(10), 1512–1520 (2006).
  • Arnott ID, Kingstone K, Ghosh S. Abnormal intestinal permeability predicts relapse in inactive Crohn disease. Scand. J. Gastroenterol.35(11), 1163–1169 (2000).
  • Wyatt J, Oberhuber G, Pongratz S et al. Increased gastric and intestinal permeability in patients with Crohn’s disease. Am. J. Gastroenterol.92(10), 1891–1896 (1997).
  • Wyatt J, Vogelsang H, Hubl W, Waldhoer T, Lochs H. Intestinal permeability and the prediction of relapse in Crohn’s disease. Lancet341(8858), 1437–1439 (1993).
  • Mankertz J, Schulzke JD. Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr. Opin. Gastroenterol.23(4), 379–383 (2007).
  • Irvine EJ, Marshall JK. Increased intestinal permeability precedes the onset of Crohn’s disease in a subject with familial risk. Gastroenterology119(6), 1740–1744 (2000).
  • May GR, Sutherland LR, Meddings JB. Is small intestinal permeability really increased in relatives of patients with Crohn’s disease? Gastroenterology104(6), 1627–1632 (1993).
  • Ivanov AI, Nusrat A, Parkos CA. The epithelium in inflammatory bowel disease: potential role of endocytosis of junctional proteins in barrier disruption. Novartis Found. Symp.263, 115–124; discussion 24–32, 211–218 (2004).
  • Hermiston ML, Gordon JI. Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science270(5239), 1203–1207 (1995).
  • Bruewer M, Samarin S, Nusrat A. Inflammatory bowel disease and the apical junctional complex. Ann. NY Acad. Sci.1072, 242–252 (2006).
  • Buhner S, Buning C, Genschel J et al. Genetic basis for increased intestinal permeability in families with Crohn’s disease: role of CARD15 3020insC mutation? Gut55(3), 342–347 (2006).
  • Hugot JP, Zaccaria I, Cavanaugh J et al. Prevalence of CARD15/NOD2 mutations in Caucasian healthy people. Am. J. Gastroenterol.102(6), 1259–1267 (2007).
  • Wapenaar MC, Monsuur A, van Bodegraven A et al. Associations with tight junction genes PARD3 and Magi2 in Dutch patients point to a common barrier defect for celiac disease and ulcerative colitis. Gut57, 463–467 (2008).
  • Wolters VM, Verbeek WH, Zhernakova A et al. The MYO9B gene is a strong risk factor for developing refractory celiac disease. Clin. Gastroenterol. Hepatol.5(12), 1399–1405 (2007).
  • Monsuur AJ, de Bakker PI, Alizadeh BZ et al. Myosin IXB variant increases the risk of celiac disease and points toward a primary intestinal barrier defect. Nat. Genet.37(12), 1341–1344 (2005).
  • Latiano A, Palmieri O, Valvano MR et al. The association of MYO9B gene in Italian patients with inflammatory bowel diseases. Aliment. Pharmacol. Ther.27(3), 241–248 (2008).
  • van Bodegraven AA, Curley CR, Hunt KA et al. Genetic variation in myosin IXB is associated with ulcerative colitis. Gastroenterology131(6), 1768–1774 (2006).
  • Nunez C, Oliver J, Mendoza JL et al. MYO9B polymorphisms in patients with inflammatory bowel disease. Gut56(9), 1321–1322 (2007).
  • van den Boom F, Dussmann H, Uhlenbrock K, Abouhamed M, Bahler M. The myosin IXb motor activity targets the myosin IXb RhoGAP domain as cargo to sites of actin polymerization. Mol. Biol. Cell.18(4), 1507–1518 (2007).
  • Hirose T, Izumi Y, Nagashima Y et al. Involvement of ASIP/PAR-3 in the promotion of epithelial tight junction formation. J. Cell Sci.115(Pt 12), 2485–2495 (2002).
  • Chen X, Macara IG. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat. Cell Biol.7(3), 262–269 (2005).
  • Chen X, Macara IG. Par-3 mediates the inhibition of LIM kinase 2 to regulate cofilin phosphorylation and tight junction assembly. J. Cell Biol.172(5), 671–678 (2006).
  • Wang X, Nie J, Zhou Q et al. Downregulation of Par-3 expression and disruption of Par complex integrity by TGF-β during the process of epithelial to mesenchymal transition in rat proximal epithelial cells. Biochim. Biophys. Acta1782(1), 51–59 (2008).
  • Kawajiri A, Itoh N, Fukata M et al. Identification of a novel β-catenin-interacting protein. Biochem. Biophys. Res. Commun.273(2), 712–717 (2000).
  • Subauste MC, Nalbant P, Adamson ED, Hahn KM. Vinculin controls PTEN protein level by maintaining the interaction of the adherens junction protein β-catenin with the scaffolding protein MAGI-2. J. Biol. Chem.280(7), 5676–56781 (2005).
  • Nechiporuk T, Fernandez TE, Vasioukhin V. Failure of epithelial tube maintenance causes hydrocephalus and renal cysts in Dlg5-/- mice. Dev. Cell13(3), 338–350 (2007).
  • Lynch KW, Weiss A. A CD45 polymorphism associated with multiple sclerosis disrupts an exonic splicing silencer. J. Biol. Chem.276(26), 24341–24347 (2001).
  • Mustelin T, Tautz L, Page R. Structure of the hematopoietic tyrosine phosphatase (HePTP) catalytic domain: structure of a KIM phosphatase with phosphate bound at the active site. J. Mol. Biol.354(1), 150–163 (2005).
  • Tonks NK. Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol.7(11), 833–846 (2006).
  • Chagnon MJ, Uetani N, Tremblay ML. Functional significance of the LAR receptor protein tyrosine phosphatase family in development and diseases. Biochem. Cell Biol.82(6), 664–675 (2004).
  • Bueno OF, De Windt LJ, Lim HW et al. The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vitro. Circ. Res.88(1), 88–96 (2001).
  • Dominguez MG, Hughes VC, Pan L et al. Vascular endothelial tyrosine phosphatase (VE-PTP)-null mice undergo vasculogenesis but die embryonically because of defects in angiogenesis. Proc. Natl Acad. Sci. USA104(9), 3243–3248 (2007).
  • Snyder EM, Nong Y, Almeida CG et al. Regulation of NMDA receptor trafficking by amyloid-β. Nat. Neurosci.8(8), 1051–1058 (2005).
  • Jacobsen M, Schweer D, Ziegler A et al. A point mutation in PTPRC is associated with the development of multiple sclerosis. Nat. Genet.26(4), 495–499 (2000).
  • Fujikawa A, Shirasaka D, Yamamoto S et al. Mice deficient in protein tyrosine phosphatase receptor type Z are resistant to gastric ulcer induction by VacA of Helicobacter pylori. Nat. Genet.33(3), 375–381 (2003).
  • Li L, Dixon JE. Form, function, and regulation of protein tyrosine phosphatases and their involvement in human diseases. Semin. Immunol.12(1), 75–84 (2000).
  • Bottini N, Vang T, Cucca F, Mustelin T. Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin. Immunol.18(4), 207–213 (2006).
  • Vang T, Miletic AV, Arimura Y, Tautz L, Rickert RC, Mustelin T. Protein tyrosine phosphatases in autoimmunity. Annu. Rev. Immunol.26, 29–55 (2008).
  • Vang T, Congia M, Macis MD et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat. Genet.37(12), 1317–1319 (2005).
  • You-Ten KE, Muise ES, Itie A et al. Impaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase-deficient mice. J. Exp. Med.186(5), 683–693 (1997).
  • Zhu W, Mustelin T, David M. Arginine methylation of STAT1 regulates its dephosphorylation by T cell protein tyrosine phosphatase. J. Biol. Chem.277(39), 35787–35790 (2002).
  • Ogata T, Yoshida R. PTPN11 mutations and genotype-phenotype correlations in Noonan and LEOPARD syndromes. Pediatr. Endocrinol. Rev.2(4), 669–674 (2005).
  • Wang Z, Shen D, Parsons DW et al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science304(5674), 1164–1166 (2004).
  • Wu CW, Kao HL, Li AF, Chi CW, Lin WC. Protein tyrosine-phosphatase expression profiling in gastric cancer tissues. Cancer Lett.242(1), 95–103 (2006).
  • Ostman A, Hellberg C, Bohmer FD. Protein-tyrosine phosphatases and cancer. Nat. Rev. Cancer6(4), 307–320 (2006).
  • MacKeigan JP, Murphy LO, Blenis J. Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat. Cell Biol.7(6), 591–600 (2005).
  • Wasenius VM, Hemmer S, Kettunen E, Knuutila S, Franssila K, Joensuu H. Hepatocyte growth factor receptor, matrix metalloproteinase-11, tissue inhibitor of metalloproteinase-1, and fibronectin are up-regulated in papillary thyroid carcinoma: a cDNA and tissue microarray study. Clin. Cancer Res.9(1), 68–75 (2003).
  • Hofmann WK, de Vos S, Komor M, Hoelzer D, Wachsman W, Koeffler HP. Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow. Blood100(10), 3553–3560 (2002).
  • Yanaihara N, Okamoto A, Matsufuji S. A commonly deleted region in ovarian cancer on chromosome 19p13.3, not including the OAZ1 gene. Int. J. Oncol.23(3), 567–575 (2003).
  • Yap YL, Zhang XW, Smith D, Soong R, Hill J. Molecular gene expression signature patterns for gastric cancer diagnosis. Comput. Biol. Chem.31(4), 275–287 (2007).
  • Lepourcelet M, Tou L, Cai L et al. Insights into developmental mechanisms and cancers in the mammalian intestine derived from serial analysis of gene expression and study of the hepatoma-derived growth factor (HDGF). Development132(2), 415–427 (2005).
  • Miscio G, Tassi V, Coco A et al. The allelic variant of LAR gene promoter -127 bp T→A is associated with reduced risk of obesity and other features related to insulin resistance. J. Mol. Med.82(7), 459–466 (2004).
  • Langberg EC, Gu HF, Nordman S, Efendic S, Ostenson CG. Genetic variation in receptor protein tyrosine phosphatise s is associated with type 2 diabetes in Swedish Caucasians. Eur. J. Endocrinol.157(4), 459–464 (2007).
  • Doney AS, Fischer B, Cecil JE et al. Association of the Pro12Ala and C1431T variants of PPARG and their haplotypes with susceptibility to Type 2 diabetes. Diabetologia47(3), 555–558 (2004).
  • Andrulionyte L, Kuulasmaa T, Chiasson JL, Laakso M. Single nucleotide polymorphisms of the peroxisome proliferator-activated receptor-a gene (PPARA) influence the conversion from impaired glucose tolerance to type 2 diabetes: the STOP-NIDDM trial. Diabetes56(4), 1181–1186 (2007).
  • Sugawara K, Olson TS, Moskaluk CA et al. Linkage to peroxisome proliferator-activated receptor-gamma in SAMP1/YitFc mice and in human Crohn’s disease. Gastroenterology128(2), 351–360 (2005).
  • Pan MG, Rim C, Lu KP, Florio T, Stork PJ. Cloning and expression of two structurally distinct receptor-linked protein-tyrosine phosphatases generated by RNA processing from a single gene. J. Biol. Chem.268(26), 19284–19291 (1993).
  • Walton KM, Martell KJ, Kwak SP, Dixon JE, Largent BL. A novel receptor-type protein tyrosine phosphatase is expressed during neurogenesis in the olfactory neuroepithelium. Neuron11(2), 387–400 (1993).
  • Yan H, Grossman A, Wang H et al. A novel receptor tyrosine phosphatase-σ that is highly expressed in the nervous system. J. Biol. Chem.268(33), 24880–24886 (1993).
  • Stoker AW. Isoforms of a novel cell adhesion molecule-like protein tyrosine phosphatase are implicated in neural development. Mech. Dev.46(3), 201–217 (1994).
  • Wagner J, Boerboom D, Tremblay ML. Molecular cloning and tissue-specific RNA processing of a murine receptor-type protein tyrosine phosphatase. Eur. J. Biochem.226(3), 773–782 (1994).
  • Zhang WR, Hashimoto N, Ahmad F, Ding W, Goldstein BJ. Molecular cloning and expression of a unique receptor-like protein-tyrosine-phosphatase in the leucocyte-common-antigen-related phosphate family. Biochem. J.302(Pt 1), 39–47 (1994).
  • Sahin M, Dowling JJ, Hockfield S. Seven protein tyrosine phosphatases are differentially expressed in the developing rat brain. J. Comp. Neurol.351(4), 617–631 (1995).
  • Streuli M, Krueger NX, Hall LR, Schlossman SF, Saito H. A new member of the immunoglobulin superfamily that has a cytoplasmic region homologous to the leukocyte common antigen. J. Exp. Med.168(5), 1523–1530 (1988).
  • Krueger NX, Streuli M, Saito H. Structural diversity and evolution of human receptor-like protein tyrosine phosphatases. EMBO J.9(10), 3241–3252 (1990).
  • Mizuno K, Hasegawa K, Katagiri T, Ogimoto M, Ichikawa T, Yakura H. MPTP δ, a putative murine homolog of HPTP δ, is expressed in specialized regions of the brain and in the B-cell lineage. Mol. Cell Biol.13(9), 5513–5523 (1993).
  • Streuli M, Krueger NX, Ariniello PD et al. Expression of the receptor-linked protein tyrosine phosphatase LAR: proteolytic cleavage and shedding of the CAM-like extracellular region. EMBO J.11(3), 897–907 (1992).
  • O’Grady P, Krueger NX, Streuli M, Saito H. Genomic organization of the human LAR protein tyrosine phosphatase gene and alternative splicing in the extracellular fibronectin type-III domains. J. Biol. Chem.269(40), 25193–25199 (1994).
  • Serra-Pages C, Saito H, Streuli M. Mutational analysis of proprotein processing, subunit association, and shedding of the LAR transmembrane protein tyrosine phosphatase. J. Biol. Chem.269(38), 23632–23641 (1994).
  • Zhang JS, Longo FM. LAR tyrosine phosphatase receptor: alternative splicing is preferential to the nervous system, coordinated with cell growth and generates novel isoforms containing extensive CAG repeats. J. Cell Biol.128(3), 415–431 (1995).
  • Rotin D, Goldstein BJ, Fladd CA. Expression of the tyrosine phosphatase LAR-PTP2 is developmentally regulated in lung epithelia. Am. J. Physiol.267(3 Pt 1), L263–L270 (1994).
  • Aricescu AR, McKinnell IW, Halfter W, Stoker AW. Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase σ. Mol. Cell Biol.22(6), 1881–1892 (2002).
  • Sajnani-Perez G, Chilton JK, Aricescu AR, Haj F, Stoker AW. Isoform-specific binding of the tyrosine phosphatase PTPσ to a ligand in developing muscle. Mol. Cell Neurosci.22(1), 37–48 (2003).
  • Alete DE, Weeks ME, Hovanession AG, Hawadle M, Stoker AW. Cell surface nucleolin on developing muscle is a potential ligand for the axonal receptor protein tyrosine phosphatase-σ. FEBS J.273(20), 4668–4681 (2006).
  • Lee S, Faux C, Nixon J et al. Dimerization of ptpσ governs both ligand binding and isoform specificity. Mol. Cell Biol.27(5), 1795–1808 (2007).
  • Neel BG, Tonks NK. Protein tyrosine phosphatases in signal transduction. Curr. Opin. Cell Biol.9(2), 193–204 (1997).
  • Petrone A, Sap J. Emerging issues in receptor protein tyrosine phosphatase function: lifting fog or simply shifting? J. Cell Sci.113(Pt13), 2345–2354 (2000).
  • Johnson KG, Van Vactor D. Receptor protein tyrosine phosphatases in nervous system development. Physiol. Rev.83(1), 1–24 (2003).
  • Wills Z, Bateman J, Korey CA, Comer A, Van Vactor D. The tyrosine kinase Abl and its substrate enabled collaborate with the receptor phosphatase Dlar to control motor axon guidance. Neuron22(2), 301–312 (1999).
  • Serra-Pages C, Medley QG, Tang M, Hart A, Streuli M. Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins. J. Biol. Chem.273(25), 15611–15620 (1998).
  • Serra-Pages C, Kedersha NL, Fazikas L, Medley Q, Debant A, Streuli M. The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein co-localize at focal adhesions. EMBO J.14(12), 2827–2838 (1995).
  • Pulido R, Serra-Pages C, Tang M, Streuli M. The LAR/PTPδ/PTPσ subfamily of transmembrane protein-tyrosine-phosphatases: multiple human LAR, PTPδ, and PTPσ isoforms are expressed in a tissue-specific manner and associate with the LAR-interacting protein LIP.1. Proc. Natl Acad. Sci. USA92(25), 11686–11690 (1995).
  • Debant A, Serra-Pages C, Seipel K et al. The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains. Proc. Natl Acad. Sci. USA93(11), 5466–5471 (1996).
  • Kokel M, Borland CZ, DeLong L, Horvitz HR, Stern MJ. clr-1 encodes a receptor tyrosine phosphatase that negatively regulates an FGF receptor signaling pathway in Caenorhabditis elegans. Genes Dev.12(10), 1425–1437 (1998).
  • Faux C, Hawadle M, Nixon J et al. PTPσ binds and dephosphorylates neurotrophin receptors and can suppress NGF-dependent neurite outgrowth from sensory neurons. Biochim. Biophys. Acta1773(11), 1689–1700 (2007).
  • Siu R, Fladd C, Rotin D. N-cadherin is an in vivo substrate for protein tyrosine phosphatase σ (PTPσ) and participates in PTPσ-mediated inhibition of axon growth. Mol. Cell Biol.27(1), 208–219 (2007).
  • Wallace MJ, Batt J, Fladd CA, Henderson JT, Skarnes W, Rotin D. Neuronal defects and posterior pituitary hypoplasia in mice lacking the receptor tyrosine phosphatase PTPσ. Nat. Genet.21(3), 334–338 (1999).
  • Elchebly M, Wagner J, Kennedy TE et al. Neuroendocrine dysplasia in mice lacking protein tyrosine phosphatase σ. Nat. Genet.21(3), 330–333 (1999).
  • Batt J, Asa S, Fladd C, Rotin D. Pituitary, pancreatic and gut neuroendocrine defects in protein tyrosine phosphatase-s-deficient mice. Mol. Endocrinol.16(1), 155–169 (2002).
  • Wagner J, Gordon LA, Heng HH, Tremblay ML, Olsen AS. Physical mapping of receptor type protein tyrosine phosphatase σ (PTPRS) to human chromosome 19p13.3. Genomics38(1), 76–78 (1996).
  • Rioux JD, Silverberg MS, Daly MJ et al. Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am. J. Hum. Genet.66(6), 1863–1870 (2000).
  • The International HapMap Project. Nature426(6968), 789–796 (2003).
  • Altshuler D, Daly M. Guilt beyond a reasonable doubt. Nat. Genet.39(7), 813–815 (2007).
  • Endo N, Rutledge SJ, Opas EE, Vogel R, Rodan GA, Schmidt A. Human protein tyrosine phosphatase-σ: alternative splicing and inhibition by bisphosphonates. J. Bone Miner. Res.11(4), 535–543 (1996).
  • Lajus S, Lang J. Splice variant 3, but not 2 of receptor protein-tyrosine phosphatase σ can mediate stimulation of insulin-secretion by α-latrotoxin. J. Cell Biochem.98(6), 1552–5159 (2006).
  • Seksik P, Sokol H, Lepage P et al. Review article: the role of bacteria in onset and perpetuation of inflammatory bowel disease. Aliment. Pharmacol. Ther.24(Suppl. 3), 11–18 (2006).
  • Gibson PR. Apoptosis or necrosis – colonic epithelial cell survival. Novartis Found. Symp.263, 133–145; discussion 45–50, 211–218 (2004).
  • Fouquet S, Lugo-Martinez VH, Faussat AM et al. Early loss of E-cadherin from cell–cell contacts is involved in the onset of Anoikis in enterocytes. J. Biol. Chem.279(41), 43061–43069 (2004).
  • Lilien J, Balsamo J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of β-catenin. Curr. Opin. Cell Biol.17(5), 459–465 (2005).
  • Daniel JM, Reynolds AB. Tyrosine phosphorylation and cadherin/catenin function. Bioessays19(10), 883–891 (1997).
  • Matsuyoshi N, Hamaguchi M, Taniguchi S, Nagafuchi A, Tsukita S, Takeichi M. Cadherin-mediated cell-cell adhesion is perturbed by v-src tyrosine phosphorylation in metastatic fibroblasts. J. Cell Biol.118(3), 703–714 (1992).
  • Hamaguchi M, Matsuyoshi N, Ohnishi Y, Gotoh B, Takeichi M, Nagai Y. p60v-src causes tyrosine phosphorylation and inactivation of the N-cadherin-catenin cell adhesion system. EMBO J.12(1), 307–314 (1993).
  • Volberg T, Zick Y, Dror R et al. The effect of tyrosine-specific protein phosphorylation on the assembly of adherens-type junctions. EMBO J.11(5), 1733–1742 (1992).
  • Brady-Kalnay SM, Mourton T, Nixon JP et al. Dynamic interaction of PTPmu with multiple cadherins in vitro. J. Cell Biol.141(1), 287–296 (1998).
  • Aicher B, Lerch MM, Muller T, Schilling J, Ullrich A. Cellular redistribution of protein tyrosine phosphatases LAR and PTPσ by inducible proteolytic processing. J. Cell Biol.138(3), 681–696 (1997).
  • Rioux JD, Daly MJ, Silverberg MS et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat. Genet.29(2), 223–228 (2001).
  • Kurz T, Hoffjan S, Hayes MG et al. Fine mapping and positional candidate studies on chromosome 5p13 identify multiple asthma susceptibility loci. J. Allergy Clin. Immunol.118(2), 396–402 (2006).
  • Beckly JB, Hancock L, Geremia A et al. Two-stage candidate gene study of chromosome 3p demonstrates an association between nonsynonymous variants in the MST1R gene and Crohn’s disease. Inflamm. Bowel Dis. (2008).
  • De Jager PL, Franchimont D, Waliszewska A et al. The role of the Toll receptor pathway in susceptibility to inflammatory bowel diseases. Genes Immun.8(5), 387–397 (2007).
  • Ferreira AC, Almeida S, Tavares M et al. NOD2/CARD15 and TNFA, but not IL1B and IL1RN, are associated with Crohn’s disease. Inflamm. Bowel Dis.11(4), 331–339 (2005).
  • Karban AS, Okazaki T, Panhuysen CI et al. Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum. Mol. Genet.13(1), 35–45 (2004).
  • Gewirtz AT, Vijay-Kumar M, Brant SR, Duerr RH, Nicolae DL, Cho JH. Dominant-negative TLR5 polymorphism reduces adaptive immune response to flagellin and negatively associates with Crohn’s disease. Am. J. Physiol. Gastrointest. Liver Physiol.290(6), G1157–G1163 (2006).
  • Hume GE, Fowler EV, Lincoln D et al. Angiotensinogen and transforming growth factor β1: novel genes in the pathogenesis of Crohn’s disease. J. Med. Genet.43(10), E51 (2006).
  • De Iudicibus S, Stocco G, Martelossi S et al. Association of BclI polymorphism of the glucocorticoid receptor gene locus with response to glucocorticoids in inflammatory bowel disease. Gut56(9), 1319–1320 (2007).
  • Oliver J, Marquez A, Gomez-Garcia M et al. Association of the macrophage migration inhibitory factor gene polymorphisms with inflammatory bowel disease. Gut56(1), 150–151 (2007).
  • McGovern DP, Hysi P, Ahmad T et al. Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum. Mol. Genet.14(10), 1245–1250 (2005).
  • McGovern DP, Butler H, Ahmad T et al. TUCAN (CARD8) genetic variants and inflammatory bowel disease. Gastroenterology131(4), 1190–1196 (2006).
  • Futami S, Aoyama N, Honsako Y et al. HLA-DRB1*1502 allele, subtype of DR15, is associated with susceptibility to ulcerative colitis and its progression. Dig. Dis. Sci.40(4), 814–818 (1995).
  • Mochida A, Kinouchi Y, Negoro K et al. Butyrophilin-like 2 gene is associated with ulcerative colitis in the Japanese under strong linkage disequilibrium with HLA-DRB1*1502. Tissue Antigens70(2), 128–135 (2007).
  • Arisawa T, Tahara T, Shibata T et al. The influence of polymorphisms of interleukin-17a and interleukin-17f genes on the susceptibility to ulcerative colitis. J. Clin. Immunol.28(1), 44–49 (2008).
  • Peng Z, Hu P, Cui Y, Li C. [Interleukin (IL)-1β, IL-1 receptor antagonist and IL-4 gene polymorphisms in ulcerative colitis in the Chinese]. Zhonghua Nei Ke Za Zhi41(4), 248–251 (2002).
  • Klein W, Tromm A, Griga T et al. A polymorphism in the IL11 gene is associated with ulcerative colitis. Genes Immun.3(8), 494–496 (2002).
  • Obana N, Takahashi S, Kinouchi Y et al. Ulcerative colitis is associated with a promoter polymorphism of lipopolysaccharide receptor gene, CD14. Scand. J. Gastroenterol.37(6), 699–704 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.