379
Views
55
CrossRef citations to date
0
Altmetric
Review

Genetic susceptibility and resistance to influenza infection and disease in humans and mice

&
Pages 515-529 | Published online: 09 Jan 2014

References

  • Tam JS. Influenza A (H5N1) in Hong Kong: an overview. Vaccine20(Suppl. 2), S77–S81 (2002).
  • Peiris JS, de Jong MD, Guan Y. Avian influenza virus (H5N1): a threat to human health. Clin. Microbiol. Rev.20, 243–267 (2007).
  • Shortridge KF, Peiris JS, Guan Y. The next influenza pandemic: lessons from Hong Kong. J. Appl. Microbiol.94(Suppl.), 70S–79S (2003).
  • Sims LD, Ellis TM, Liu KK et al. Avian influenza in Hong Kong 1997–2002. Avian Dis.47(Suppl. 3), 832–838 (2003).
  • Johnson NPAS, Mueller J. Updating the accounts: global mortality in the 1918–1920 “Spanish” influenza pandemic. Bull. Hist. Med.76, 105–115 (2002).
  • Oxford JS. Influenza A pandemics of the 20th Century with special reference to 1918: virology, pathology and epidemiology. Rev. Med. Virol.10, 119–133 (2000).
  • Bridges CB, Lim W, Hu-Primmer J et al. Risk of influenza A (H5N1) infection among poultry workers, Hong Kong, 1997–1998. J. Infect. Dis.185, 1005–1010 (2005).
  • Hinjoy S, Puthavathana P, Laosititaworm Y et al. Low frequency of infection with avian influenza virus (H5N1) among poultry farmers, Thailand, 2004. Emerg. Infect. Dis.14, 499–501 (2008).
  • Bridges CB, Fukuda K, Cox NJ, Singleton JA. Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices. Morbid. Mortal. Weekly Rep.50(RR-4), 1–44 (2001).
  • De Maio A, Torres MB, Reeves RH. Genetic determinants influencing the response to injury, inflammation, and sepsis. Shock23(1), 11–17 (2005).
  • Hill AVS. The genomics and genetics of human infectious disease susceptibility. Ann. Rev. Genomics Hum. Genet.2, 373–400 (2001).
  • Sorensen TIA, Nielsen GG, Andersen PK, Teasdale TW. Genetic and environmental influences on premature death in adult adoptees. N. Engl. J. Med.318, 727–732 (1988).
  • Tuite A, Gros P. The impact of genomics on analysis of host resistance to infectious disease. Microb. Infect.8, 1647–1653 (2006).
  • Dinh PN, Long HT, Tien NT et al. Risk factors for human infection with avian influenza A H5N1, Vietnam, 2004. Emerg. Infect. Dis.12, 1841–1847 (2006).
  • Olsen SJ, Ungchusak K, Sovann L et al. Family clustering of avian influenza A (H5N1). Emerg. Infect. Dis.11, 1799–1801 (2005).
  • Normile D. Indonesia taps village wisdom to fight bird flu. Science315, 30–33 (2007).
  • Pitzer VE, Olsen SJ, Bergstrom CT, Dowell SF, Lipsitch M. Little evidence for genetic susceptibility to influenza A (H5N1) from family clustering data. Emerg. Infect. Dis.13, 1074–1076 (2007).
  • Beigel JH, Farrar J, Han AM et al. Avian influenza A (H5N1) infection in humans. N. Engl. J. Med.353, 1374–1385 (2005).
  • Perdue ML, Swayne DE. Public health risk from avian influenza viruses. Avian Dis.49, 317–327 (2005).
  • Suzuki Y. Sialobiology of influenza: molecular mechanisms of host range variation of influenza viruses. Biol. Pharm. Bull.28, 399–408 (2005).
  • Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y. Avian flu influenza virus receptors in the human airway. Nature440, 435–436 (2006).
  • Rumyantsev SN. Genetic immunity and influenza pandemic. FEMS Immunol. Med. Microbiol.48, 1–10 (2006).
  • Glaser L, Stevens J, Zamarin D et al. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J. Virol.79, 11533–11536 (2005).
  • Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science312, 404–410 (2006).
  • van Riel D, Munster VJ, de Wit E et al. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am. J. Pathol.171(4), 1215–1223 (2007).
  • van Riel D, Munster VJ, de Wit E, Rimmelzwann GF, Fouchier RA, Osterhaus AD et al. H5N1 virus attachment to lower respiratory tract. Science312, 399 (2006).
  • Toth LA, Rehg JE, Webster RG. Strain differences in sleep and other pathophysiological sequelae of influenza virus infection in naive and immunized mice. J. Neuroimmunol.58, 89–99 (1995).
  • Leung KN, Ada GL. Induction of natural killer cells during murine influenza virus infection. Immunobiology160, 352–366 (1981).
  • Stein-Streilein J, Bennett M, Mann D, Kumar V. Natural killer cells in mouse lung: surface phenotype, target preference, and response to local influenza virus infection. J. Immunol.131, 2699–2704 (1983).
  • Stein-Streilein J, Guffee J. in vivo treatment of mice and hamsters with antibodies to asialo GM1 increases morbidity and mortality to pulmonary influenza infection. J. Immunol.136, 1435–1441 (1986).
  • Wyde PR, Wilson MR, Cate TR. Interferon production by leukocytes infiltrating the lungs of mice during primary influenza virus infection. Infect. Immun.38, 1249–1255 (1982).
  • Allan W, Zsuzsanna T, Cleary A, Doherty PC. Cellular events in the lymph node and lung of mice with influenza. J. Immunol.144, 3980–3986 (1990).
  • Wyde PR, Cate TR. Cellular changes in lungs of mice infected with influenza virus: characterization of the cytotoxic responses. Infect. Immun.22, 423–429 (1978).
  • Thepen T, Hoeben K, Breve J, Kraal G. Alveolar macrophages down-regulate local pulmonary immune responses against intratracheally administered T-cell-dependent, but not T-cell-independent antigens. Immunology76, 60–64 (1992).
  • Thepen T, van Rooijen N, Kraal G. Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. J. Exp. Med.170, 499–509 (1989).
  • Ding M, Lu L, Toth LA. Gene expression in lung and basal forebrain during influenza infection in mice. Genes Brain Behav.7(2), 173–183 (2008).
  • Toth LA, Verhulst SJ. Strain differences in sleep patterns of healthy and influenza-infected inbred mice. Behav. Genet.33, 325–336 (2003).
  • Kash JC, Basler CF, Garcia-Sastre DE et al. Global host immune response: pathogenesis and transcriptional profiling of type A influenza viruses expressing the hemagglutinin and neuraminidase genes from the 1918 pandemic virus. J. Virol.78, 9499–9511 (2004).
  • Kash JC, Tumpey TM, Proll SC et al. Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature443, 578–581 (2006).
  • Chen H, Sharp BM. Content-rich biological network constructed by mining PubMed abstracts. BMC Bioinformatics5, 147–160 (2004).
  • Hayashi S, Jibiki I, Asai Y et al. Analysis of gene expression in human bronchial epithelial cells upon influenza virus infection and regulation by p38 mitogen-activted protein kinase and c-Jun-N-terminal kinase. Respirology13, 203–214 (2008).
  • De Maeyer E, De Maeyer-Guignard J. A gene with quantitative effect on circulating interferon induction – further studies. Ann. NY Acad. Sci.173, 228–238 (1970).
  • Shirahata T, Mori A, Ishikawa H, Goto H. Strain differences of interferon-generating capacity and resistance in toxoplasma-infected mice. Microbiol. Immunol.30, 1307–1316 (1986).
  • Tyring SK, Lefkowitz SS. Strain differences in production of murine interferons. Proc. Soc. Exp. Biol. Med.164, 519–523 (1980).
  • Toth LA. Strain differences in the somnogenic effects of interferon inducers in mice. J. Interferon Cytokine Res.16, 1065–1072 (1996).
  • Gariglio M, Panico S, Cavallo G, Divaker C, Lengyel P, Landolfo S. Impaired transcription of the poly rI:C- and interferon-activatable 202 gene in mice and cell lines from the C57BL/6 strain. Virology187, 115–123 (1992).
  • Lindenmann J. Resistance of mice to mouse adapted influenza a virus. Virology16, 203 (1962).
  • Pavlovic J, Zurcher T, Haller O et al. Resistance to influenza virus and vesicular stomatitis virus confirmed by expression of human MxA protein. J. Virol.643370–3375 (1990).
  • Staeheli P, Grob R, Meier E, Sutcliffe JG, Haller O. Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation. Mol. Cell Biol.45, 18–23 (1988).
  • Haller O, Staeheli P, Kochs G. Interferon-induced Mx proteins in antiviral host defense. Biochimie89, 812–818 (2007).
  • Vanlaere I, Vanderrijst A, Guenet JL, De Filette M, Libert C. Mx1 causes resistance against influenza A viruses in the Mus spretus-derived inbred mouse strain SPRET/Ei. Cytokine42, 72–70 (2008).
  • Pavlovic J, Haller O, Staeheli P. Human and mouse Mx proteins inhibit different steps of the influenza virus multiplication cycle. J. Virol.66, 2564–2569 (1992).
  • Nakajima E, Morozumi T, Tsukamoto K, Watanabe T, Plastow G, Mitsuhashi T. A naturally occurring variant of porcine Mx1 associated with increased susceptibility to influenza virus in vitro. Biochem. Genet.45, 11–24 (2007).
  • Palm M, Leroy A, Thomas A, Linden A, Desmecht D. Differential anti-influenza activity among allelic variants at the Sus scrofa Mx1 locus. J. Interferon Cytokine Res.27, 147–155 (2007).
  • Seyama T, Ko JH, Ohe M et al. Population research of genetic polymorphism at amino acid position 631 in chicken Mx protein with differential antiviral activity. Biochem. Genet.44, 437–448 (2006).
  • Colina R, Costa-Mattiolo M, Dowling RJO et al. Translational control of the innate immune response through IRF-7. Nature452, 323–328 (2008).
  • Chomik M. Interferon induction by influenza virus: significance of neuraminidase. Arch. Immunol. Ther. Exp.29, 109–114 (1981).
  • Dittmann J, Stertz S, Grimm D et al. Influenza A virus strains differ in sensitivity to the antiviral action of the Mx-GTPase. J. Virol.82(7), 3624–3631 (2008).
  • Garcia-Sastre A. Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative strand RNA viruses. Virology279, 375–384 (2001).
  • Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med.354(6), 610–621 (2006).
  • Rot A, von Andrian UH. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol.22, 891–928 (2004).
  • Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat. Immunol.2(2), 123–128 (2001).
  • Moyron-Quiroz J, Rangel-Moreno J, Carragher DM, Randall TD. The function of local lymphoid tissues in pulmonary immune responses. Adv. Exp. Med. Biol.590, 55–68 (2007).
  • Serra HM, Baena-Cagnani CE, Eberhard Y. Is secondary lymphoid-organ chemokine (SLC/CCL21) much more than a constitutive chemokine? Allergy59(11), 1219–1223 (2004).
  • Mueller SN, Hosiawa-Meager KA, Korniczny BT et al. Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science317, 670–674 (2007).
  • Moyron-Quiroz JE, Rangel-Moreno J, Kusser K et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat. Med.10, 927–934 (2004).
  • Aust G, Sittig D, Becherer L et al. The role of CXCR5 and its ligand CXCL13 in the compartmentalization of lymphocytes in thyroids affected by autoimmune thyroid diseases. Eur. J. Endocrinol.150(2), 225–234 (2004).
  • Hjelmstrom P, Fjell J, Nakagawa T, Sacca R, Cuff CA, Ruddle NH. Lymphoid tissue homing chemokines are expressed in chronic inflammation. Am. J. Pathol.156(4), 1133–1138 (2000).
  • Rangel-Moreno J, Hartson L, Navarro C, Gaxiola M, Selman M, Randall TD. Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis. J. Clin. Invest.116(12), 3183–3194 (2006).
  • Cook DN, Beck MA, Coffman TM et al. Requirement of MIP-1α for an inflammatory response to viral infection. Science269, 1583–1585 (1995).
  • Dawson TC, Beck MA, Kuziel WA, Henderson F, Maeda N. Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza virus. Am. J. Pathol.156, 1951–1959 (2000).
  • Dessing MC, van der Sluijs KF, Florquin S, van der Poll T. Monocyte chemoattractant protein 1 contributes to an adequate immune response in influenza pneumonia. Clin. Immunol.125(3), 328–336 (2007).
  • Sladkova T, Kostolansky F. The role of cytokines in the immune response to influenza A virus infection. Acta Virol.50(3), 151–162 (2006).
  • Wareing MD, Lyon AB, Lu B, Gerard C, Sarawar SR. Chemokine expression during development and resolution of a pulmonary leukocyte response to infleunza A virus infection in mice. J. Leukoc. Biol.76, 886–895 (2004).
  • Sonkoly E, Wei T, Janson PC et al. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS ONE2(7), E610 (2007).
  • Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: tiny players in a big field. Immunity26(2), 133–137 (2007).
  • Engels BM, Hutvagner G. Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene25(46), 6163–6169 (2006).
  • Asirvatham AJ, Gregorie CJ, Hu Z, Mahner WJ, Tomasi TB. MicroRNA targets in immune genes and the Dicer/Argonaute and ARE machinery components. Molec. Immunol.45(7), 1995–2006 (2007).
  • Sonkoly E, Stahle M, Pivarcsi A. MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Semin. Cancer Biol.18(2), 131–140 (2007).
  • O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl Acad. Sci. USA104(5), 1604–1609 (2007).
  • Rodriguez A, Vigorito E, Clare S et al. Requirement of bic/microRNA-155 for normal immune function. Science316(5824), 608–611 (2007).
  • Hsu HC, Lu L, Yi N, Van Zant G, Williams RW, Mountz JD. Quantitative trait locus (QTL) mapping in aging systems. Methods Mol. Biol.371, 321–348 (2007).
  • Carthew RW. Gene regulation by microRNAs. Curr. Opin. Genet. Dev.16(2), 203–208 (2006).
  • Tsang J, Zhu J, van Oudenaarden A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol. Cell26(5), 753–767 (2007).
  • Lu B, Rutledge BJ, Gu L et al. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J. Exp. Med.187, 601–608 (1998).
  • Toth LA, Hughes LF. Macrophage participation in influenza-induced sleep enhancement in C57BL/6J mice. Brain Behav. Immun.18, 375–389 (2004).
  • Fincher EF, Johannsen L, Kapás L, Takahashi S, Krueger JM. Microglia digest Staphylococcus aureus into low molecular weight biologically active compounds. Am. J. Physiol.271, R149–R156 (1996).
  • Johannsen L, Rosenthal RS, Martin SA et al. Somnogenic activity of O-acetylated and dimeric muramyl peptides. Infect. Immun.57, 2726–2732 (1989).
  • Asanuma H, Hirokawa K, Uchiyama M et al. Immune responses and protection in different strains of aged mice immunized intranasally with an adjuvant-combined influenza vaccine. Vaccine19, 3981–3989 (2001).
  • Hocart MJ, Mackenzie JS, Stewart GA. The immunoglobulin G subclass responses of mice to influenza A virus: the effect of mouse strain, and the neutralizing abilities of individual protein A-purified subclass antibodies. J. Gen. Virol.70(Pt. 9), 2439–2448 (1989).
  • Yuen KY, Chan PK, Peiris JS et al. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1. Lancet351, 467–471 (1998).
  • Peiris JS, Yu WC, Leung CW et al. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet363, 617–619 (2004).
  • Cheung CY, Poon LL, Lau AS et al. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet360, 1831–1837 (2002).
  • de Jong MD, Simmons CP, Thanh TT et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nature Med.12, 1203–1207 (2006).
  • Fritz RS, Hayden FG, Calfee DP et al. Nasal cytokine and chemokine responses in experimental influenza A virus infection: results of a placebo-controlled trial of intravenous zanamivir treatment. J. Infect. Dis.180, 586–593 (1999).
  • Hayden FG, Fritz RS, Lobo MC, Alvord WG, Strober W, Straus SE. Local and systemic cytokine responses during experimental human influenza A virus infection: relation to symptom formation and host defense. J. Clin. Invest.101, 643–649 (1998).
  • Kaiser L, Fritz RS, Straus SE, Gubareva L, Hayden FG. Symptom pathogenesis during acute influenza: interluekin-6 and other cytokine responses. J. Med. Virol.64, 262–268 (2001).
  • Albright FA, Orlando P, Pavia AT, Jackson GG, Albright LAC. Evidence for a heritable predisposition to death due to influenza. J. Infect. Dis.197, 1–7 (2008).
  • Gottfredsson M, Jonsson S, Kristjansson M et al. Lessons from the past: familial aggregation analysis of fatal pandemic influenza (Spanish flu) in Iceland in 1918. Proc. Natl Acad. Sci. USA105, 1303–1308 (2008).
  • Douglas SD. Down syndrome: immunologic and epidemiologic associations – engimas remain. J. Pediatr.147, 723–725 (2005).
  • Gerdes AM, Horder M, Bonnevie-Nielsen V. Increased IFN-α-induced sensitivity but reduced reactivity of 2´.5´-oligoadenylate synthase (2,5AS) in trisomy 21 blood lymphocytes. Clin. Exp. Immunol.93, 93–96 (1993).
  • Gerdes AM, Horder M, Petersen PH, Bonnevie-Nielsen V. Effect of increased gene dosage expression on the α-interferon receptors in Down’s syndrome. Biochim. Biophys. Acta1181, 135–140 (1993).
  • Nurmi T, Huffunen K, Lassila O et al. Natural killer cell function in trisomy-21 (Down’s syndrome). Clin. Exp. Immunol.47, 735–741 (1982).
  • Horisberger MA. Interferons, Mx genes, and resistance to influenza viruses. Am. J. Respir. Crit. Care Med.152(4 Pt 2), S67–S71 (1995).
  • Fontana S, Moratto D, Mangal S et al. Functional defects of dendritic cells in patients with CD40 deficiencies. Blood102, 4099–4106 (2003).
  • Levin S, Hahn T. Interferon deficiency syndrome. Clin. Exp. Immunol.60, 267–273 (1985).
  • Akira S. Toll-like receptor signaling. J. Biol. Chem.278(40), 38105–38108 (2003).
  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature388(6640), 394–397 (1997).
  • Schroder NW, Schumann RR. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect. Dis.5(3), 156–164 (2005).
  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature413(6857), 732–738 (2001).
  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa S. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science303(5663), 1529–1531 (2004).
  • Osterlund P, Weckman V, Siren J et al. Gene expression and antiviral activity of α/β interferons and interleukin-29 in virus-infected human myeloid dendritic cells. J. Virol.79, 9608–9617 (2005).
  • Guillot L, Le Goffic R, Bloch S et al. Involvement of Toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J. Biol. Chem.280(7), 5571–5580 (2005).
  • Ichiyama T, Morishima T, Isumi H, Matsufuji H, Matsubara T, Furukawa S. Analysis of cytokine levels and NF-κB activation in peripheral blood mononuclear cells in influenza virus-associated encephalopathy. Cytokine27, 31–37 (2004).
  • Nunoi H, Mercado T, Mizukami T et al. Apoptosis under hypercytokinemia is a possible pathogenesis in influenza-associated encephalopathy. Pediatr. Int.47, 175–179 (2005).
  • Hidaka F, Matsuo S, Muta T, Takeshiga K, Mizukami T, Nunoi H. A missense mutation of the Toll-like receptor 3 gene in a patient with influenza-associated encephalopathy. Clin. Immunol.119, 188–194 (2006).
  • Hurwitz ES, Schonberger LB, Nelson DB, Holman RC. Guillain–Barre syndrome and the 1978–1979 influenza vaccine. N. Engl. J. Med.304, 1557–1561 (1981).
  • Tang YW, Li H, We H, Shyr Y, Edwards KM. Host single-nucleotide polymorphisms and altered responses to inactivated influenza vaccine. J. Infect. Dis.196, 1021–1025 (2007).
  • Gelder CM, Lambkin R, Hart KW et al. Associations between human leukocyte antigens and nonresponsiveness to influenza vaccine. J. Infect. Dis.185, 114–117 (2002).
  • Gomi K, Tokue Y, Kobayashi T et al. Mannose-binding lectin gene polymorphism is a modulating factor in repeated respiratory infections. Chest126(1), 95–99 (2004).
  • Turner DM, Williams DM, Sankaran D, Lazarus M, Sinnott PJ, Hutchinson IV. An investigation of polymorphism in the interleukin-10 gene promoter. Eur. J. Immunogenet.24(1), 1–8 (1997).
  • Stanilova SA, Miteva LD, Karakolev ZT, Stefanov CS. Interleukin-10–1082 promoter polymorphism in association with cytokine production and sepsis susceptibility. Intensive Care Med.32(2), 260–266 (2006).
  • Gallagher PM, Lowe G, Fitzgerald T et al. Association of IL-10 polymorphism with severity of illness in community acquired pneumonia. Thorax58(2), 154–156 (2003).
  • Van Loveren H, Van Amsterdam JG, Vandebriel RJ et al. Vaccine-induced antibody responses as parameters of the influence of endogenous and environmental factors. Environ. Health Perspect.109(8), 757–764 (2001).
  • Lambkin R, Novelli P, Oxford J, Gelder C. Human genetics and responses to influenza vaccination. Am. J. Pharmacogenomics4, 293–298 (2004).
  • Fazekas de St.Groth S, Webster RG. Disquisitions of original antigenic sin: I. Evidence in man. J. Exp. Med.124, 331–345 (1966).
  • Fazekas de St.Groth B, Webster RG. Disquisition on original antigenic sin: II. Proof in lower creatures. J. Exp. Med.124, 347–361 (1966).
  • McElhaney JE, Meneilly GS, Lechelt KE, Beattie BL, Bleackley RC. Antibody response to whole-virus and split-virus influenza vaccines in successful ageing. Vaccine11, 1055–1060 (1993).
  • Webster RG. Original antigenic sin in ferrets: the response to sequential infection with influenza viruses. J. Immunol.97, 177–183 (1966).
  • Powers DC, Beishe RB. Effect of age on cytotoxic T lymphocyte memory as well as serum and local antibody responses elicited by inactivated influenza virus vaccine. J. Infect. Dis.167, 584–592 (1993).
  • Krakauer T, Russo C. Serum cytokine levels and antibody response to influenza vaccine in the elderly. Immunopharmacol. Immunotoxicol.23, 35–41 (2001).
  • Candore G, Balisteri CR, Listi F et al. Immunogenetics, gender, and longevity. Ann. NY Acad. Sci.1089, 516–537 (2006).
  • Mitchell BD, Hsueh WC, King TM et al. Heritability of life span in the Old Order Amish. Am. J. Med. Genet.102, 346–352 (2001).
  • Mocchegiani E, Costarelli L, Giacconi R et al. Nutrient–gene interaction in ageing and successful ageing: a single nutrient (zinc) and some target genes related to inflammatory/immune response. Mech. Ageing Dev.127, 517–525 (2006).
  • Franceschi C, Bonafe M, Valensin S et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. NY Acad. Sci.908, 244–254 (2000).
  • Troen BR. The biology of aging. Mt Sinai. J. Med.70(1), 3–22 (2003).
  • Vasto S, Candore G, Balistreri CR et al. Inflammatory networks in ageing, age-related diseases and longevity. Mech. Ageing Dev.128, 83–91 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.