43
Views
5
CrossRef citations to date
0
Altmetric
Review

Molecular diagnostics and mitochondrial dysfunction: a future perspective

, , &
Pages 531-549 | Published online: 09 Jan 2014

References

  • Schon EA, DiMauro S. Mitochondrial mutations: genotype to phenotype. Novartis Found. Symp.287, 214–225 (2007).
  • Zeviani M, Carelli V. Mitochondrial disorders. Curr. Opin. Neurol.20(5), 564–571 (2007).
  • Jacobs HT. Disorders of mitochondrial protein synthesis. Hum. Mol. Genet.15(12), R293–R301 (2003).
  • DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N. Engl. J. Med.348, 2656–2668 (2003).
  • DiMauro S, Davidson G. Mitochondrial DNA and disease. Ann. Med.37, 222–232 (2005).
  • Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet.6, 389–402 (2005).
  • Thorburn DR. Mitochondrial disorders: prevalence, myths and advances. J. Inherit. Metab. Dis.27, 349–362 (2004).
  • Schaefer AM, McFarland R, Blakely EL et al. Prevalence of mitochondrial DNA disease in adults. Ann. Neurol.63(1), 35–39 (2008).
  • Anderson S, Bankier AT, Barrell BG et al. Sequence and organization of the human mitochondrial genome. Nature290(5806), 457–465 (1981).
  • Coenen MJ, Antonicka H, Ugalde C et al. Mutant mitochondrial elongation factor G1 and combined oxidative phosphorylation deficiency. N. Engl. J. Med.351(20), 2080–2086 (2004).
  • Battersby BJ, Loredo-Osti JC, Shoubridge EA. Nuclear genetic control of mitochondrial DNA segregation. Nat. Genet.33, 183–186 (2003).
  • Bohr VA, Stevnsner T, de Souza-Pinto NC. Mitochondrial DNA repair of oxidative damage in mammalian cells. Gene286, 127–134 (2002).
  • Trifunovic A. Mitochondrial DNA and ageing. Biochim. Biophys. Acta1757(5–6), 611–617 (2006).
  • Rustin P, Rotig A. Inborn errors of complex II: unusual human mitochondrial diseases. Biochim. Biophys. Acta1553, 117–122 (2002).
  • Neumann HP, Bausch B, McWhinney SR et al. Germ-line mutations in nonsyndromic phaeochromocytoma. N. Engl. J. Med.346, 1459–14660 (2002).
  • Visapaa I, Fellman V, Vesa J et al. GRACILE syndrome, a lethal metabolic disorder with iron overload, is caused by a point mutation in BCS1L. Am. J. Hum. Genet.71, 863–876 (2002).
  • de Lonlay P, Valnot I, Barrientos A et al. A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat. Genet.1, 57–60 (2001).
  • Salviati L, Sacconi S, Rasalan MM et al. Cytochrome c oxidase deficiency due to a novel SCO2 mutation mimics Werdnig-Hoffmann disease. Arch. Neurol.59, 862–865 (2002).
  • Cobine PA, Pierrel F, Leary SC et al. The P174L mutation in human Sco1 severely compromises Cox17-dependent metallation but does not impair copper binding. J. Biol. Chem.281(18), 12270–12276 (2006).
  • Antonicka H, Leary SC, Guercin GH et al. Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy. Am. J. Hum. Genet.72, 101–114 (2003).
  • Mootha VK, Lepage P, Miller K et al. Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc. Natl Acad. Sci. USA100(2), 605–610 (2003).
  • Barrientos A, Korr D, Tzagoloff A. Shy1p is necessary for full expression of mitochondrial COX1 in the yeast model of Leigh’s syndrome. EMBO J.21, 43–52 (2002).
  • Pecina P, Houstková H, Hansíková H, Zeman J, Houstek J. Genetic defects of cytochrome c oxidase assembly. Physiol. Res.53(Suppl. 1), S213–S223 (2004).
  • Zhang Y, Yang YL, Sun F et al. Clinical and molecular survey in 124 Chinese patients with Leigh or Leigh-like syndrome. J. Inherit. Metab. Dis.30(2), 265 (2007).
  • Hudson G, Amati-Bonneau P, Blakely EL et al. Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain131(Pt 2), 329–337 (2008).
  • Agostino A, Valletta L, Chinnery PF et al. Mutations of ANT1, Twinkle, and POLG1 in sporadic progressive external ophthalmoplegia (PEO). Neurology60, 1354–1356 (2003).
  • Ashley N, Adams S, Slama A et al. Defects in maintenance of mitochondrial DNA are associated with intramitochondrial nucleotide imbalances. Hum. Mol. Genet.16(12), 1400–1411 (2007).
  • Spinazzola A, Zeviani M. Disorders of nuclear-mitochondrial intergenomic communication. Biosci. Rep.27(1–3), 39–51 (2007).
  • Elpeleg O, Miller C, Hershkovitz E et al. Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion. Am. J. Hum. Genet.76, 1081–1086 (2005).
  • Naviaux RK, Nguyen KV. POLG mutations associated with Alpers’ syndrome and mitochondrial DNA depletion. Ann. Neurol.55, 706–712 (2004).
  • Bourdon A, Minai L, Serre V et al. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat. Genet.39(6), 776–780 (2007).
  • Gago MF, Rosas MJ, Guimarães J et al. SANDO: two novel mutations in POLG1 gene. Neuromuscul. Disord.16(8), 507–509 (2006).
  • Hakonen AH, Heiskanen S, Juvonen V et al. Mitochondrial DNA polymerase W748S mutation: a common cause of autosomal recessive ataxia with ancient European origin. Am. J. Hum. Genet.77(3), 430–441 (2005).
  • Winterthun S, Ferrari G, He L et al. Autosomal recessive mitochondrial ataxic syndrome due to mitochondrial polymerase γ mutations. Neurology64, 1204–1208 (2005).
  • Davidzon G, Greene P, Mancuso M et al. Early-onset familial parkinsonism due to POLG mutations. Ann. Neurol.59(5), 859–862 (2006).
  • Harrower T, Stewart JD, Hudson G et al. POLG1 mutations manifesting as autosomal recessive axonal Charcot–Marie–Tooth disease. Arch. Neurol.65(1), 133–136 (2008).
  • Antonicka H, Sasarman F, Kennaway NG, Shoubridge EA. The molecular basis for tissue specificity of the oxidative phosphorylation deficiencies in patients with mutations in the mitochondrial translation factor EFG1. Hum. Mol. Genet.15(11), 1835–1846 (2006).
  • Miller C, Saada A, Shaul N et al. Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation. Ann. Neurol.56(5), 734–738 (2004).
  • Quinzii CM, Hirano M, DiMauro S. CoQ10 deficiency diseases in adults. Mitochondrion7, 122–126 (2007).
  • Quinzii CM, Naini A, Salviati L et al. A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am. J. Hum. Genet.78, 345–349 (2006).
  • Quinzii CM, Kattah AG, Naini A et al. Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurology64, 539–541 (2005).
  • Lopez LC, Schuelke M, Quinzii CM et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am. J. Hum. Genet.79, 1125–1129 (2006).
  • Mollet J, Giurgea I, Schlemmer D et al. Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders. J. Clin. Invest.117, 765–772 (2007).
  • Gempel K, Topaloglu T, Talim B et al. The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain130(Pt 8), 2037–2044 (2007).
  • Battersby BJ, Redpath ME, Shoubridge EA. Mitochondrial DNA segregation in hematopoietic lineages does not depend on MHC presentation of mitochondrially encoded peptides. Hum. Mol. Genet.14(17), 2587–2594 (2005).
  • Alemi M, Prigione A, Wong A et al. Mitochondrial DNA deletions inhibit proteasomal activity and stimulate an autophagic transcript. Free Radic. Biol. Med.42(1), 32–43 (2007).
  • Chan SS, Longley MJ, Copeland WC. Modulation of the W748S mutation in DNA polymerase γ by the E1143G polymorphismin mitochondrial disorders. Hum. Mol. Genet.15(23), 3473–3483 (2006).
  • Graziewicz MA, Longley MJ, Copeland WC. DNA polymerase γ in mitochondrial DNA replication and repair. Chem. Rev.106, 383–405 (2006).
  • Yakubovshaya E, Chen Z, Carrodeguas JA, Kisker C, Bogenhagen DF. Functional human mitochondrial DNA polymerase γ forms a heterotrimer. J. Biol. Chem.281, 374–382 (2006).
  • Longley MJ, Clark S, Yu Wai Man C et al. Mutant POLG2 disrupts DNA polymerase γ subunits and causes progressive external ophthalmoplegia. Am. J. Hum. Genet.78, 1026–1034 (2006).
  • Bonnet C, Kaltimbacher V, Ellouze S et al. Allotopic mRNA localization to the mitochondrial surface rescues respiratory chain defects in fibroblasts harboring mitochondrial DNA mutations affecting complex I or V subunits. Rejuvenation Res.10(2), 127–144 (2007).
  • Horng YC, Cobine PA, Maxfield AB, Carr HS, Winge DR. Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase. J. Biol. Chem.279(34), 35334–35340 (2004).
  • Kirino Y, Suzuki T. Human mitochondrial diseases associated with tRNA wobble modification deficiency. RNA Biol.2(2), 41–44 (2005).
  • Lee EH, Ahn MS, Hwang JS, Ryu KH, Kim SJ, Kim SH. A Korean female patient with thiamine-responsive pyruvate dehydrogenase complex deficiency due to a novel point mutation (Y161C) in thePDHA1 gene. J. Korean Med. Sci.21(5), 800–804 (2006).
  • Carrozzo R, Wittig I, Santorelli FM et al. Subcomplexes of human ATP synthase mark mitochondrial biosynthesis disorders. Ann. Neurol.59(2), 265–275 (2006).
  • Wittig I, Braun HP, Schägger H. Blue native PAGE. Nat. Protoc.1(1), 418–428 (2006).
  • Wittig I, Karas M, Schägger H. High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Mol. Cell. Proteomics6(7), 1215–1225 (2007).
  • Wittig I, Carrozzo R, Santorelli FM, Schägger H. Functional assays in high-resolution clear native gels to quantify mitochondrial complexes in human biopsies and cell lines. Electrophoresis28(21), 3811–3820 (2007).
  • Schägger H, Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J.19(8), 1777–1783 (2000).
  • Schägger H, de Coo R, Bauer MF, Hofmann S, Godinot C, Brandt U. Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J.Biol. Chem.279(35), 36349–36353 (2004).
  • Wittig I, Carrozzo R, Santorelli FM, Schägger H. Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. Biochim. Biophys. Acta1757(9–10), 1066–1072 (2006).
  • Gnaiger E. Oxygen conformance of cellular respiration. A perspective of mitochondrial physiology. Adv. Exp. Med. Biol.543, 39–55 (2003).
  • O’Hara JA, Hou H, Demidenko E, Springett RJ, Khan N, Swartz HM. Simultaneous measurement of rat brain cortex PtO2 using EPR oximetry and a fluorescence fiber-optic sensor during normoxia and hyperoxia. Physiol. Meas.26, 203–213 (2005).
  • Kodibagkar VD, Cui W, Merritt ME, Mason RP. Novel 1H NMR approach to quantitative tissue oximetry using hexamethyldisiloxane. Magn. Reson. Med.55, 743–748 (2006).
  • Presley T, Kuppusamy P, Zweier JL, Ilangovan G. Electron paramagnetic resonance oximetry as a quantitative method to measure cellular respiration: a consideration of oxygen diffusion interference. Biophys. J.91(12), 4623–4631 (2006).
  • Crimi M, Galbiati S, Moroni I et al. A missense mutation in the mitochondrial ND5 gene associated with a Leigh-MELAS overlap syndrome. Neurology60, 1857–1861(2003).
  • Danielson SR, Carelli V, Tan G, Martinuzzi A, Schapira AH, Savontaus ML. Isolation of transcriptomal changes attributable to LHON mutations and the cybridization process. Brain128, 1026–1037 (2005).
  • vander Westhuizen FH, van den Heuvel LP, Smeets R, Veltman JA, Pfundt R, van Kessel AG. Human mitochondrial complex I deficiency: investigating transcriptional responses by microarray. Neuropediatrics34(1), 14–22 (2003).
  • Kirby DM, Salemi R, Sugiana C et al.NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency. J. Clin. Invest.114(6), 837–845 (2004).
  • Subramanian A, Tamayo P, Mootha VK et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA102(43), 15545–15550 (2005).
  • Wagner BK, Kitami T, Gilbert TJ et al. Large-scale chemical dissection of mitochondrial function. Nat. Biotechnol.26(3), 343–351 (2008).
  • Prokisch H, Andreoli C, Ahting U et al. MitoP2: the mitochondrial proteome database – now including mouse data. Nucleic Acids Res.34(Database Issue), D705–D711 (2006).
  • Mootha VK, Bunkenborg J, Olsen JV et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell115(5), 629–640 (2003).
  • Taylor SW, Fahy E, Zhang B et al. Characterization of the human heart mitochondrial proteome. Nat. Biotechnol.21, 281–286 (2003).
  • Calvo S, Jain M, Xie X et al. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat. Genet.38(5), 576–582 (2006).
  • Spinazzola A, Viscomi C, Fernandez-Vizarra E et al. MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat. Genet.38(5), 570–575 (2006).
  • Carelli V, La Morgia C, Iommarini L et al. Mitochondrial optic neuropathies: how two genomes may kill the same cell type? Biosci. Rep.27(1–3), 173–184 (2007).
  • Siciliano G, Tessa A, Petrini S et al. Autosomal dominant external ophthalmoplegia and bipolar affective disorder associated with a mutation in the ANT1 gene. Neuromuscul. Disord.13(2), 162–165 (2003).
  • Cao Z, Wanagat J, McKiernan SH, Aiken JM. Mitochondrial DNA deletion mutations are concomitant with ragged red regions of individual, aged muscle fibers: analysis by laser-capture microdissection. Nucleic Acids Res.29(21), 4502–4508 (2001).
  • Kaufman BA, Durisic N, Mativetsky JM et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol. Biol. Cell.18(9), 3225–3236 (2007).
  • Jeppesen TD, Schwartz M, Frederiksen AL, Wibrand F, Olsen DB, Vissing J. Muscle phenotype and mutation load in 51 persons with the 3243A>G mitochondrial DNA mutation. Arch. Neurol.63(12), 1701–1706 (2006).
  • Debray FG, Mitchell GA, Allard P, Robinson BH, Hanley JA, Lambert M. Diagnostic accuracy of blood lactate-to-pyruvate molar ratio in the differential diagnosis of congenital lactic acidosis. Clin. Chem.53(5), 916–921 (2007).
  • Morava E, Hogeveen M, De Vries M, Ruitenbeek W, de Boode WP, Smeitink J. Normal serum alanine concentration differentiates transient neonatal lactic acidemia from an inborn error of energy metabolism. Biol. Neonate90(3), 207–209 (2006).
  • Naini A, Kaufmann P, Shanske S, Engelstad K, De Vivo DC, Schon EA. Hypocitrullinemia in patients with MELAS: an insight into the “MELAS paradox”. J. Neurol. Sci.229–230, 187–193 (2005).
  • Barshop BA. Metabolomic approaches to mitochondrial disease: correlation of urine organic acids. Mitochondrion4(5–6), 521–527 (2004).
  • Wortmann S, Rodenburg RJ, Huizing M et al. Association of 3-methylglutaconic aciduria with sensori-neural deafness, encephalopathy, and Leigh-like syndrome (MEGDEL association) in four patients with a disorder of the oxidative phosphorylation. Mol. Genet. Metab.88(1), 47–52 (2006).
  • Yano S, Li L, Le TP et al. Infantile mitochondrial DNA depletion syndrome associated with methylmalonic aciduria and 3-methylcrotonyl-CoA and propionyl-CoA carboxylase deficiencies in two unrelated patients: a new phenotype of mtDNA depletion syndrome. J. Inherit. Metab. Dis.26(5), 481–488 (2003).
  • Ostergaard E, Christensen E, Kristensen E, et al. Deficiency of the α subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion. Am. J. Hum. Genet.81(2), 383–387 (2007).
  • Ostergaard E, Hansen FJ, Sorensen N et al. Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. Brain130(3), 853–861 (2007).
  • Hirano M, Nishigaki Y, Mart R. MNGIE: a disease of two genomes. Neurologist10, 8–17 (2004).
  • Marti R, Spinazzola A, Tadesse S, Nishino I, Nishigaki Y, Hirano M. Definitive diagnosis of mitochondrial neurogastrointestinal encephalomyopathy by biochemical assays. Clin. Chem.50, 120–124 (2004).
  • Valentino ML, Martí R, Tadesse S et al. Thymidine and deoxyuridine accumulate in tissues of patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). FEBS Lett.581(18), 3410–3414 (2007).
  • Siciliano G, Volpi L, Piazza S, Ricci G, Mancuso M, Murri L. Functional diagnostics in mitochondrial diseases. Biosci. Rep.27(1–3), 53–67 (2007).
  • Jeppesen TD, Olsen D, Vissing J. Cycle ergometry is not a sensitive diagnostic test for mitochondrial myopathy. J. Neurol.250, 293–299 (2003).
  • Taivassalo T, Gardner JL, Taylor RW et al. Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain129(Pt 12), 3391–3401 (2006).
  • Collman JP, Devaraj NK, Decréau RA et al. A cytochrome C oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux. Science315(5818), 1565–1568 (2007).
  • Cao Z, Lindsay JG, Isaacs NW. Mitochondrial peroxiredoxins. Subcell. Biochem.44, 295–315 (2007).
  • Meulemans A, Gerlo E, Seneca S et al. The aerobic forearm exercise test, a non-invasive tool to screen for mitochondrial disorders. Acta Neurol. Belg.107(3), 78–83 (2007).
  • Hanisch F, Müller T, Muser A, Deschauer M, Zierz S. Lactate increase and oxygen desaturation in mitochondrial disorders – evaluation of two diagnostic screening protocols. J. Neurol.253(4), 417–423 (2006).
  • Tarnopolsky M, Stevens L, MacDonald JR et al. Diagnostic utility of a modified forearm ischemic exercise test and technical issues relevant to exercise testing. Muscle Nerve27(3), 359–366 (2003).
  • Möller HE, Kurlemann G, Pützler M, Wiedermann D, Hilbich T, Fiedler B. Magnetic resonance spectroscopy in patients with MELAS. J. Neurol. Sci.229–230, 131–139 (2005).
  • Dinopoulos A, Cecil KM, Schapiro MB et al. Brain MRI and proton MRS findings in infants and children with respiratory chain defects. Neuropediatrics36(5), 290–301 (2005).
  • Bianchi MC, Sgandurra G, Tosetti M, Battini R, Cioni G. Brain magnetic resonance in the diagnostic evaluation of mitochondrial encephalopathies. Biosci. Rep.27(1–3), 69–85 (2007).
  • Bianchi MC, Tosetti M, Battini R et al. Proton MR spectroscopy of mitochondrial diseases: analysis of brain metabolic abnormalities and their possible diagnostic relevance. AJNR Am. J. Neuroradiol.24(10), 1958–1966 (2003).
  • Barker PB. Fundamentals of MR spectroscopy. In: Clinical MR Neuroimaging. Gillard J, Waldman A, Barker PB (Eds). Cambridge University Press, Cambridge, UK 7–26 (2005).
  • Kaufmann P, Shungu DC, Sano MC et al. Cerebral lactic acidosis correlates with neurological impairment in MELAS. Neurology62(8), 1297–1302 (2004).
  • Chuang CS, Lo MC, Lee KW, Liu CS. Magnetic resonance spectroscopy study in basal ganglia of patients with myoclonic epilepsy with ragged-red fibers. Neurol. India55(4), 385–387 (2007).
  • Kornblum C, Schroder R, Muller K et al. Creatine has no beneficial effect on skeletal muscle energy metabolism in patients with single mitochondrial DNA deletions: a placebo-controlled, double-blind 31P-MRS crossover study. Eur. J. Neurol.12, 300–309 (2005).
  • Tarnopolsky MA, RaHa S. Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med. Sci. Sports Exerc.37, 2086–2093 (2005).
  • Gough N, Szuromi P, Yeston J. Chemical detectives. Science311(5767), 1565 (2006).
  • Cooks RG, Ouyang Z, Takats Z, Wiseman JM. Detection technologies. Ambient mass spectrometry. Science311(5767), 1566–1570 (2006).
  • Wightman RM. Detection technologies. Probing cellular chemistry in biological systems with microelectrodes. Science311(5767), 1570–1574 (2006).
  • Shekhawat G, Tark SH, Dravid VP. MOSFET-embedded microcantilevers for measuring deflection in biomolecular sensors. Science311(5767), 1592–1595 (2006).
  • Thorpe MJ, Moll KD, Jones RJ, Safdi B, Ye J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science311(5767), 1595–1599 (2006).
  • Yu J, Xiao J, Ren X, Lao K, Xie XS. Probing gene expression in live cells, one protein molecule at a time. Science311(5767), 1600–1603 (2006).
  • Beck M. New therapeutic options for lysosomal storage disorders: enzyme replacement, small molecules and gene therapy. Hum. Genet.121(1), 1–22 (2007).
  • Filosto M, Mancuso M. Mitochondrial diseases: a nosological update. Acta Neurol. Scand.115(4), 211–221 (2007).
  • Bénit P, Chretien D, Kadhom N et al. Large-scale deletion and point mutations of the nuclear NDUFV1 and NDUFS1 genes in mitochondrial complex I deficiency. Am. J. Hum. Genet.68(6), 1344–1352 (2001).
  • Loeffen J, Elpeleg O, Smeitink J et al. Mutations in the complex I NDUFS2 gene of patients with cardiomyopathy and encephalomyopathy. Ann. Neurol.49(2), 195–201 (2001).
  • Bénit P, Slama A, Cartault F et al. Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome. J. Med. Genet.41(1), 14–17 (2004).
  • Van Maldergem L, Trijbels F, DiMauro S et al. Coenzyme Q-responsive Leigh’s encephalopathy in two sisters. Ann. Neurol.52, 750–754 (2002).
  • Triepels RH, van den Heuvel LP, Loeffen JL et al. Leigh syndrome associated with a mutation in the NDUFS7 (PSST) nuclear encoded subunit of complex I. Ann. Neurol.45(6), 787–790 (1999).
  • Loeffen J, Smeitink J, Triepels R et al. The first nuclear-encoded complex I mutation in a patient with Leigh syndrome. Am. J. Hum. Genet.63(6), 1598–1608 (1998).
  • Schuelke M, Smeitink J, Mariman E et al. Mutant NDUFV1 subunit of mitochondrial complex I causes leukodystrophy and myoclonic epilepsy. Nat. Genet.21(3), 260–261 (1999).
  • Benit P, Beugnot R, Chretien D et al. Mutant NDUFV2 subunit of mitochondrial complex I causes early onset hypertrophic cardiomyopathy and encephalopathy. Hum. Mutat.21, 582–586, (2003).
  • Bourgeron T, Rustin P, Chretien D et al. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat. Genet.11(2), 144–149 (1995).
  • Baysal BE, Ferrell RE, Willett-Brozick JE et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science287, 848–851 (2000).
  • Niemann S, Muller U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat. Genet.26, 268–270 (2000).
  • Astuti D, Latif F, Dallol A et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am. J. Hum. Genet.69, 49–54 (2001).
  • Gimm O, Armanios M, Dziema H, Neumann HP, Eng C. Somatic and occult germ-line mutations in SDHD, a mitochondrial complex II gene, in nonfamilial pheochromocytoma. Cancer Res.60, 6822–6825 (2000).
  • Niemann S, Muller U, Engelhardt D, Lohse P. Autosomal dominant malignant and catecholamine-producing paraganglioma caused by a splice donor site mutation in SDHC. Hum. Genet.113, 92–94 (2003).
  • Zhu Z, Yao J, Johns T et al. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat. Genet.20(4), 337–343 (1998).
  • Tiranti V, Hoertnagel K, Carrozzo R et al. Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am. J. Hum. Genet.63(6), 1609–1621 (1998).
  • Papadopoulou LC, Sue CM, Davidson MM et al. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat. Genet.23(3), 333–337 (1999).
  • Valnot I, von Kleist-Retzow JC, Barrientos A et al. A mutation in the human heme A:farnesyltransferase gene (COX10) causes cytochrome c oxidase deficiency. Hum. Mol. Genet.9(8), 1245–1249 (2000a).
  • Valnot I, Osmond S, Gigarel N et al. Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am. J. Hum. Genet.67(5), 1104–1109 (2000b).
  • Tiranti V, D’Adamo P, Briem E et al. Ethylmalonic encephalopathy is caused by mutations in ETHE1, a gene encoding a mitochondrial matrix protein. Am. J. Hum. Genet.74(2), 239–252 (2004).
  • De Meirleir L, Seneca S, Lissens W et al. Respiratory chain complex V deficiency due to a mutation in the assembly gene ATP12. J. Med. Genet.41(2), 120–124 (2004).
  • Nishino I, Spinazzola A, Hirano M. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science283(5402), 689–692 (1999).
  • Kaukonen J, Juselius JK, Tiranti V et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science289(5480), 782–785 (2000).
  • Spelbrink JN, Li FY, Tiranti V et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat. Genet.28(3), 223–231 (2001).
  • Van Goethem G, Dermaut B, Löfgren A, Martin JJ, Van Broeckhoven C. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat. Genet.28(3), 211–212 (2001).
  • Chinnery PF, Zeviani M. 155th ENMC workshop: polymerase γ and disorders of mitochondrial DNA synthesis, 21–23 September 2007, Naarden, The Netherlands. Neuromuscul. Disord.18(3), 259–267 (2008).
  • Saada A, Shaag A, Mandel H, Nevo Y, Eriksson S, Elpeleg O. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat. Genet.29(3), 342–344 (2001).
  • Carrozzo R, Dionisi-Vici C, Steuerwald U et al. SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain130(Pt 3), 862–874 (2007).
  • Lagier-Tourenne C, Tazir M, López LC, et al. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am. J. Hum. Genet.82(3), 661–672 (2008).
  • Brandner K, Mick DU, Frazier AE, Taylor RD, Meisinger C, Rehling P. Taz1, an outer mitochondrial membrane protein, affects stability and assembly of inner membrane protein complexes: implications for Barth Syndrome. Mol. Biol. Cell16(11), 5202–5214 (2005).
  • Bykhovskaya Y, Casas K, Mengesha E, Inbal A, Fischel-Ghodsian N. Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am. J. Hum. Genet.74(6), 1303–1308 (2005).
  • Delettre C, Lenaers G, Griffoin JM et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet.26(2), 207–210 (2000).
  • Zhao C, Takita J, Tanaka Y et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1β. Cell105(5), 587–597 (2001).
  • Züchner S, Mersiyanova IV, Muglia M et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth neuropathy type 2A. Nat. Genet.36(5), 449–451 (2004).
  • Reid E, Kloos M, Ashley-Koch A et al. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet.71(5), 1189–1194 (2002).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.