61
Views
13
CrossRef citations to date
0
Altmetric
Editorial

Autism spectrum disorder-associated biomarkers for case evaluation and management by clinical geneticists

&
Pages 671-674 | Published online: 09 Jan 2014

References

  • Austin D. An epidemiological analysis of the ‘autism as mercury poisoning’ hypothesis. Int. J. Risk Saf. Med.20(3), 135–142 (2008).
  • White JF. Intestinal pathophysiology in autism. Exp. Biol. Med. (Maywood)228(6), 639–649 (2003).
  • Sweeten TL, Bowyer SL, Posey DJ et al. Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders. Pediatrics112(5), e420 (2003).
  • Bolte S, Poustka F. The relation between general cognitive level and adaptive behavior domains in individuals with autism with and without co-morbid mental retardation. Child Psychiat. Hum. Dev.33(2), 165–172 (2002).
  • Autism and Developmental Disabilities Monitoring Network Surveillance Year 2002 Principal Investigators; Centers for Disease Control and Prevention. Prevalence of autism spectrum disorders – autism and developmental disabilities monitoring network, 14 sites, United States, 2002. MMWR. Surveill. Summ.56(1), 12–28 (2007).
  • Schaefer GB, Mendelsohn NJ. The Professional Practice and Guidelines Committee. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders. Genet. Med.10(4), 301–305 (2008).
  • Geier DA, Geier MR. A prospective study of mercury toxicity biomarkers in autistic spectrum disorders. J. Toxicol. Environ. Health A70(20), 1723–1730 (2007).
  • Geier DA, Geier MR. A prospective assessment of porphyrins in autistic disorders: a potential marker for heavy metal exposure. Neurotox. Res.10(1), 57–64 (2006).
  • Nataf R, Skorupka C, Amet L, Lam A, Springbett A, Lathe R. Porphyrinuria in childhood autistic disorder: implications for environmental toxicity. Toxicol. Appl. Pharmacol.214(2), 99–108 (2006).
  • Nataf R, Skorupka C, Lam A, Springbett A, Lathe R. Porphyrinuria in childhood autistic disorder is not associated with urinary creatinine deficiency. Pediatr. Int.50(2), 528–532 (2008).
  • Austin DW, Shandley K. An investigation of porphyrinuria in Australian children with autism J. Toxicol. Environ. Health A71(20), 1349–1351 (2008).
  • Geier DA, Kern JK, Garver CR et al. Biomarkers of environmental toxicity and susceptibility in autism. J. Neurol. Sci. DOI:10.1016/j.jns.2008.08.021 (2008) (Epub ahead of print).
  • Sajdel-Sulkowska EM, Lipinski B, Windom H, Audhya T, McGinnis W. Oxidative stress in autism: elevated cerebellar 3-nitrotyrosine levels. Am. J. Biochem. Biotechnol.4(2), 73–84 (2008).
  • Desoto MC, Hitlan RT. Blood levels of mercury are related to diagnosis of autism: a reanalysis of an important data set. J. Child. Neurol.22(11), 1308–1311 (2007).
  • Adams JB, Romdalvik J, Ramanujam VM, Legator MS. Mercury, lead, and zinc in baby teeth of children with autism versus controls. J. Toxicol. Environ. Health A70(12), 1046–1051 (2007).
  • Geier DA, Geier MR. A case series of children with apparent mercury toxic encephalopathies manifesting with clinical symptoms of regressive autistic disorders. J. Toxicol. Environ. Health A70(10), 837–851 (2007).
  • Adams JB, Romdalvik J, Levine KE, Hu LW. Mercury in first-cut baby hair of children with autism versus typically developing children. Toxicol. Environ. Chem. DOI:10.1080/02772240701699294 (2008) (In Press).
  • Domingo JL. Prevention by chelating agents of metal-induced developmental toxicity. Reprod. Toxicol.9(2), 105–113 (1995).
  • Geier DA, Geier MR. A clinical trial of combined anti-androgen and anti-heavy metal therapy in autistic disorders. Neuro. Endocrinol. Lett. (6), 833–838 (2006).
  • Kern JK, Jones AM. Evidence of toxicity, oxidative stress, and neuronal insult in autism. J. Toxicol. Environ. Health B Crit. Rev.9(6), 485–499 (2006).
  • Finkelstein JD. The metabolism of homocysteine: pathways and regulation. Eur. J. Pediatr.157(Suppl. 2), S40–S44 (1998).
  • Geier DA, Geier MR. A clinical and laboratory evaluation of methionine cycle-transsulfuration and androgen pathway markers in children with autistic disorders. Horm. Res.66(4), 182–188 (2006).
  • Geier DA, Kern JK, Garver CR, Adams JB, Audhya T, Geier MR. A prospective study of transsulfuration biomarkers in autistic disorders. Neurochem. Res. DOI:10.1007/s11064-008-9782-x (2008) (Epub ahead of print).
  • James SJ, Melnyk S, Jernigan S et al. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am. J. Med. Genet. B Neuropsychiatr. Genet.141B(8), 947–956 (2006).
  • James SJ, Cutler P, Melnyk S et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am. J. Clin. Nutr.80(6), 1611–1617 (2004).
  • Pasca SP, Dronca E, Kaucsár T et al. One carbon metabolism disturbances and the C677T MTHFR gene polymorphism in children with autism spectrum disorders. J. Cell. Mol. Med. DOI: 10.1111/j.1582-4934. 2008. 00463.x (2008) (In Press).
  • Mousain-Bosc M, Roche M, Polge A, Pradal-Prat D, Rapin J, Bali JP. Improvement of neurobehavioral disorders in children supplemented with magnesium-vitamin B6. II. Pervasive developmental disorder-autism. Magnes. Res.19(1), 53–62 (2006).
  • Yorbik O, Sayal A, Akay C, Akbiyik DI, Sohmen T. Investigation of antioxidant enzymes in children with autistic disorder. Prostaglandins Leukot. Essent. Fatty Acids67(5), 341–343 (2002).
  • Chauhan A, Chauhan V, Brown WT, Cohen I. Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin--the antioxidant proteins. Life Sci.75(21), 2539–2549 (2004).
  • Zoroglu SS, Armutcu F, Ozen S et al. Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism. Eur. Arch. Psychiatry Clin. Neurosci.254(3), 143–147 (2004).
  • Sogut S, Zoroglu SS, Ozyurt H et al. Changes in nitric oxide levels and antioxidant enzyme activities may have a role in the pathophysiological mechanisms involved in autism. Clin. Chim. Acta331(1–2), 111–117 (2003).
  • Boso M, Emanuele E, Minoretti P et al. Alternations of circulating endogenous secretory RAGE and S100A9 levels indicating dysfunction of the AGE–RAGE axis in autism. Neurosci. Lett.410(3), 169–173 (2006).
  • Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol.57(1), 67–81 (2005).
  • Bradstreet JJ, Smith S, Granpeesheh D, El-Dahr JM, Rossignol D. Spironolactone might be a desirable immunologic and hormonal intervention in autism spectrum disorders. Med. Hypotheses68(5), 979–987 (2007).
  • Baron-Cohen S, Knickmeyer RC, Belmonte MK. Sex differences in the brain: implications for explaining autism. Science310(5749), 819–823 (2005).
  • Knickmeyer R, Baron-Cohen S, Fane BA et al. Androgens and autistic traits: a study of individuals with congenital adrenal hyperplasia. Horm. Behav.50(1), 148–153 (2006).
  • Knickmeyer RC, Wheelwright S, Hoekstra R, Baron-Cohen S. Age of menarche in females with autism spectrum conditions. Dev. Med. Child. Neurol.48(12), 1007–1008 (2006).
  • Ingudomnukul E, Baron-Cohen S, Wheelwright S, Knickmeyer R. Elevated rates of testosterone-related disorders in women with autism spectrum conditions. Horm. Behav.51(5), 597–604 (2007).
  • Geier DA, Geier MR. A prospective assessment of androgen levels in patients with autistic spectrum disorders: biochemical underpinnings and suggested therapies. Neuro. Endocrinol. Lett.28(5), 565–573 (2007).
  • Filipek PA, Juranek J, Nguyen MT, Cummings C, Gargus JJ. Relative carnitine deficiency in autism. J. Autism Dev. Disorder34(6), 615–623 (2004).
  • Poling JS, Frye RE, Shoffner J, Zimmerman AW. Developmental regression and mitochondrial dysfunction in a child with autism. J. Child Neurol.21(2), 170–172 (2006).
  • Oliveira G, Diogo L, Grazina M et al. Mitochondrial dysfunction in autism spectrum disorders: a population-based study. Dev. Med. Child Neurol.47(3), 185–189 (2005).
  • Boris M, Goldblatt A, Galanko J, James SJ. Association of MTHFR gene variants with autism. J. Am. Phys. Surg.9(4), 106–108 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.