197
Views
10
CrossRef citations to date
0
Altmetric
Review

Prenatal diagnosis: update on invasive versus noninvasive fetal diagnostic testing from maternal blood

&
Pages 727-751 | Published online: 09 Jan 2014

References

  • Simpson JL. Incidence and timing of pregnancy losses: relevance to evaluating safety of early prenatal diagnosis. Am. J. Med. Genet.35, 165–173 (1990).
  • Baird PA, Anderson TW, Newcombe HB, Lowry RB. Genetic disorders in children and young adults: a population study. Am. J. Hum. Genet.42, 677–693 (1988).
  • ACOG Committee Opinion No. 383: Evaluation of stillbirths and neonatal deaths. Obstet. Gynecol.110, 963–966 (2007).
  • Wapner R, Thom E, Simpson JL et al. First-trimester screening for trisomies 21 and 18. N. Engl. J. Med.349, 1405–1413 (2003).
  • Sharma G, McCullough LB, Chervenak FA. Ethical considerations of early (first vs. second trimester) risk assessment disclosure for trisomy 21 and patient choice in screening versus diagnostic testing. Am. J. Med. Genet. C Semin. Med. Genet.145, 99–104 (2007).
  • Krantz DA, Hallahan TW, Macri VJ, Macri JN. Genetic sonography after first-trimester Down syndrome screening. Ultrasound Obstet. Gynecol.29(6), 666–670 (2007).
  • Nyberg DA, Souter VL, El-Bastawissi A, Young S, Luthhardt F, Luthy DA. Isolated sonographic markers for detection of fetal Down syndrome in the second trimester of pregnancy. J. Ultrasound Med.20, 1053–1063 (2001).
  • Nyberg DA, Souter VL. Sonographic markers of fetal trisomies: second trimester. J. Ultrasound Med.20, 655–674 (2001).
  • Valenti C, Schutta EJ, Kehaty T. Prenatal diagnosis of Down’s syndrome. Lancet2(7561), 220 (1968).
  • Welch RA, Salem-Elgharib S, Wiktor AE, Van Dyke DL, Blessed WB. Operator experience and sample quality in genetic amniocentesis. Am. J. Obstet. Gynecol.194, 189–191 (2006).
  • Mujezinovic F, Alfirevic Z. Procedure-related complications of amniocentesis and chorionic villous sampling: a systematic review. Obstet. Gynecol.110, 687–694 (2007).
  • Tabor A, Jerne D, Bock JE. Incidence of rhesus immunisation after genetic amniocentesis. Br. Med. J. (Clin. Res. Ed.)293, 533–536 (1986).
  • Eddleman KA, Malone FD, Sullivan L et al. Pregnancy loss rates after midtrimester amniocentesis. Obstet. Gynecol.108(5), 1067–1072 (2006).
  • Odibo AO, Gray DL, Dicke JM, Stamilio DM, Macones GA, Crane JP. Revisiting the fetal loss rate after second-trimester genetic amniocentesis: a single center’s 16-year experience. Obstet. Gynecol.111, 589–595 (2008).
  • Seeds JW. Diagnostic mid trimester amniocentesis: how safe? Am. J. Obstet. Gynecol.191, 607–615 (2004).
  • Jackson LG, Zachary JM, Fowler SE et al. A randomized comparison of transcervical and transabdominal chorionic-villus sampling. The U.S. National Institute of Child Health and Human Development Chorionic-Villus Sampling and Amniocentesis Study Group. N. Engl. J. Med.327, 594–598 (1992).
  • The Canadian Early and Mid-trimester Amniocentesis Trial (CEMAT) Group. Randomised trial to assess safety and fetal outcome of early and midtrimester amniocentesis. Lancet351, 242–247 (1998).
  • Roa BB, Pulliam J, Eng CM, Cheung SW. Evolution of prenatal genetics: from point mutation testing to chromosomal microarray analysis. Expert Rev. Mol. Diagn.5, 883–892 (2005).
  • Malone FD, Canick JA, Ball RH. First-trimester or second-trimester screening, or both, for Down’s syndrome. N. Engl. J. Med.353(19), 2001–2011 (2005).
  • Learman LA, Drey EA, Gates EA, Kang MS, Washington AE, Kuppermann M. Abortion attitudes of pregnant women in prenatal care. Am. J. Obstet. Gynecol.192, 1939–1945; discussion 1945–1947 (2005).
  • Wapner RJ. Invasive prenatal diagnostic techniques. Semin. Perinatol.29, 401–404 (2005).
  • Buscaglia M, Ghisoni L, Bellotti M et al. Percutaneous umbilical blood sampling: indication changes and procedure loss rate in a nine years’ experience. Fetal Diagn. Ther.11, 106–113 (1996).
  • Nicolaides KH. First-trimester screening for chromosomal abnormalities. Semin. Perinatol.29, 190–194 (2005).
  • Neumann E. Nucleated red cells in the blood of newborn infant. Arc. F. Heilk12, 187 (1871).
  • Schmorl G. Pathogisch-anatomische undersuch-ungen uber puerperaleklampsie. Leipzig Vogel (1893).
  • Price JO, Elias S, Wachtel SS et al. Prenatal diagnosis with fetal cells isolated from maternal blood by multiparameter flow cytometry. Am. J. Obstet. Gynecol.165(6 Pt 1), 1731–1737 (1991)
  • Geifman-Holtzman O, Blatman RN, Bianchi DW. Prenatal genetic diagnosis by isolation and analysis of fetal cells circulating in maternal blood. Semin. Perinatol.18, 366–375 (1994).
  • Lapaire O, Holzgreve W, Oosterwijk JC, Brinkhaus R, Bianchi DW. Georg Schmorl on trophoblasts in the maternal circulation. Placenta28, 1–5 (2007).
  • Covone AE, Mutton D, Johnson PM, Adinolfi M. Trophoblast cells in peripheral blood from pregnant women. Lancet2, 841–843 (1984).
  • Mueller UW, Hawes CS, Wright AE et al. Isolation of fetal trophoblast cells from peripheral blood of pregnant women. Lancet336, 197–200 (1990).
  • Camaschella C, Alfarano A, Gottardi E et al. Prenatal diagnosis of fetal hemoglobin Lepore-Boston disease on maternal peripheral blood. Blood75, 2102–2106 (1990).
  • Guetta E, Gordon D, Simchen MJ, Goldman B, Barkai G. Hematopoietic progenitor cells as targets for non-invasive prenatal diagnosis: detection of fetal CD34+ cells and assessment of post-delivery persistence in the maternal circulation. Blood Cells Mol. Dis.30, 13–21 (2003).
  • Alberry MS, Soothill PW. Non-invasive prenatal diagnosis: implications for antenatal diagnosis and management of high-risk pregnancies. Semin. Fetal Neonatal Med.13, 84–90 (2008).
  • Saker A, Benachi A, Bonnefont JP et al. Genetic characterisation of circulating fetal cells allows non-invasive prenatal diagnosis of cystic fibrosis. Prenat. Diagn.26, 906–916 (2006).
  • Schroder J, Tiilikainen A, De la Chapelle A. Fetal leukocytes in the maternal circulation after delivery. I. Cytological aspects. Transplantation17, 346–354 (1974).
  • Guetta E, Gordon D, Simchen MJ, Goldman B, Barkai G. Hematopoietic progenitor cells as targets for non-invasive prenatal diagnosis: detection of fetal CD34+ cells and assessment of post-delivery persistence in the maternal circulation. Blood Cells Mol. Dis.30(1), 13–21 (2003).
  • Ciaranfi A, Curchod A, Odartchenko N. [Post-partum survival of fetal lymphocytes in the maternal blood]. Schweiz Med. Wochenschr.107, 134–138 (1977).
  • Hsieh TT, Pao CC, Hor JJ, Kao SM. Presence of fetal cells in maternal circulation after delivery. Hum. Genet.92, 204–205 (1993).
  • Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc. Natl Acad. Sci. USA93, 705–708 (1996).
  • Puszyk WM, Crea F, Old RW. Noninvasive prenatal diagnosis of aneuploidy using cell-free nucleic acids in maternal blood: promises and unanswered questions. Prenat. Diagn.28, 1–6 (2008).
  • Bianchi DW, Flint AF, Pizzimenti MF, Knoll JH, Latt SA. Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc. Natl Acad. Sci. USA87, 3279–3283 (1990).
  • Bianchi DW, Simpson JL, Jackson LG et al. Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of NIFTY I data. National Institute of Child Health and Development Fetal Cell Isolation Study. Prenat. Diagn.22, 609–615 (2002).
  • Mavrou A, Colialexi A, Tsangaris GT et al. Fetal cells in maternal blood: isolation by magnetic cell sorting and confirmation by immunophenotyping and FISH. In vivo12, 195–200 (1998).
  • Loken MR, Shah VO, Dattilio KL, Civin CI. Flow cytometric analysis of human bone marrow. II. Normal B lymphocyte development. Blood70, 1316–1324 (1987).
  • Troeger C, Zhong XY, Burgemeister R et al. Approximately half of the erythroblasts in maternal blood are of fetal origin. Mol. Hum. Reprod.5, 1162–1165 (1999).
  • Slunga-Tallberg A, el-Rifai W, Keinanen M et al. Maternal origin of nucleated erythrocytes in peripheral venous blood of pregnant women. Hum. Genet.96, 53–57 (1995).
  • Savion S, Carp H, Shepshelovich J et al. Use of antibodies against the human antigen of erythroblasts for the detection of nucleated erythrocytes in the maternal circulation. Biol. Neonate71, 126–130 (1997).
  • Wachtel S, Elias S, Price J et al. Fetal cells in the maternal circulation: isolation by multiparameter flow cytometry and confirmation by polymerase chain reaction. Hum. Reprod.6, 1466–1469 (1991).
  • Bianchi DW, Zickwolf GK, Yih MC et al. Erythroid-specific antibodies enhance detection of fetal nucleated erythrocytes in maternal blood. Prenat. Diagn.13, 293–300 (1993).
  • Ganshirt D, Garritsen HS, Holzgreve W. Fetal cells in maternal blood. Curr. Opin. Obstet. Gynecol.7(2), 103–108 (1995). Review
  • Geifman-Holtzman O, Kaufman L, Gonchoroff N, Bernstein I, Holtzman EJ. Prenatal diagnosis of the fetal Rhc genotype from peripheral maternal blood. Obstet. Gynecol.91, 506–510 (1998).
  • Geifman-Holtzman O, Makhlouf F, Kaufman L, Gonchoroff NJ, Holtzman EJ. The clinical utility of fetal cell sorting to determine prenatally fetal E/e or e/e Rh genotype from peripheral maternal blood. Am. J. Obstet. Gynecol.183, 462–468 (2000).
  • Zheng YL, Carter NP, Price CM et al. Prenatal diagnosis from maternal blood: simultaneous immunophenotyping and FISH of fetal nucleated erythrocytes isolated by negative magnetic cell sorting. J. Med. Genet.30, 1051–1056 (1993).
  • Zheng YL, Zhen DK, DeMaria MA et al. Search for the optimal fetal cell antibody: results of immunophenotyping studies using flow cytometry. Hum. Genet.100, 35–42 (1997).
  • Cheung MC, Goldberg JD, Kan YW. Prenatal diagnosis of sickle cell anaemia and thalassaemia by analysis of fetal cells in maternal blood. Nat. Genet.14, 264–268 (1996).
  • Lau ET, Kwok YK, Chui DH, Wong HS, Luo HY, Tang MH. Embryonic and fetal globins are expressed in adult erythroid progenitor cells and in erythroid cell cultures. Prenat. Diagn.21, 529–539 (2001).
  • Hennerbichler S, Kroisel PM, Zierler H et al. Fetal nucleated red blood cells in peripheral blood of pregnant women: detection and determination of location on a slide using laser-scanning cytometry. Prenat. Diagn.23, 710–715 (2003).
  • Hengstschlager M, Bernaschek G. Fetal cells in the peripheral blood of pregnant women express thymidine kinase: a new marker for detection. FEBS Lett.404, 299–302 (1997).
  • Hengstschlager M, Bernaschek G. A new cytofluorometric approach to detect fetal cells in the maternal circulation. J. Med. Genet.34, 789–790 (1997).
  • Von Koskull H, Gahmberg N. Fetal erythroblasts from maternal blood identified with 2,3-bisphosphoglycerate (BPG) and in situ hybridization (ISH) using Y-specific probes. Prenat. Diagn.15, 149–154 (1995).
  • Kitagawa M, Sugiura K, Omi H et al. New technique using galactose-specific lectin for isolation of fetal cells from maternal blood. Prenat. Diagn.22, 17–21 (2002).
  • Sekizawa A, Purwosunu Y, Matsuoka R et al. Recent advances in non-invasive prenatal DNA diagnosis through analysis of maternal blood. J. Obstet. Gynaecol. Res.33, 747–764 (2007).
  • Martel-Petit V, Petit C, Marchand M et al. Use of the Kleihauer test to detect fetal erythroblasts in the maternal circulation. Prenat. Diagn.21, 106–111 (2001).
  • Low TY, Seow TK, Chung MC. Separation of human erythrocyte membrane associated proteins with one-dimensional and two-dimensional gel electrophoresis followed by identification with matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics2, 1229–1239 (2002).
  • Avent ND, Plummer ZE, Madgett TE, Maddocks DG, Soothill PW. Post-genomics studies and their application to non-invasive prenatal diagnosis. Semin. Fetal Neonatal Med.13, 91–98 (2008).
  • Slunga-Tallberg A, Knuutila S. Can nucleated erythrocytes found in maternal venous blood be used in the noninvasive prenatal diagnosis of fetal chromosome abnormalities? Eur. J. Hum. Genet.3, 264–270 (1995).
  • Babochkina T, Mergenthaler S, De Napoli G et al. Numerous erythroblasts in maternal blood are impervious to fluorescent in situ hybridization analysis, a feature related to a dense compact nucleus with apoptotic character. Haematologica90, 740–745 (2005).
  • Babochkina T, Mergenthaler S, Dinges TM, Holzgreve W, Hahn S. Direct detection of fetal cells in maternal blood: a reappraisal using a combination of two different Y chromosome-specific FISH probes and a single X chromosome-specific probe. Arch. Gynecol. Obstet.273, 166–169 (2005).
  • Thomas DB, Yoffey JM. Human foetal haemopoiesis. I. The cellular composition of foetal blood. Br. J. Haematol.8, 290–295 (1962).
  • Liou JD, Pao CC, Hor JJ, Kao SM. Fetal cells in the maternal circulation during first trimester in pregnancies. Hum. Genet.92, 309–311 (1993).
  • Hamada H, Arinami T, Kubo T, Hamaguchi H, Iwasaki H. Fetal nucleated cells in maternal peripheral blood: frequency and relationship to gestational age. Hum. Genet.91, 427–432 (1993).
  • Kolvraa S, Christensen B, Lykke-Hansen L, Philip J. The fetal erythroblast is not the optimal target for non-invasive prenatal diagnosis: preliminary results. J. Histochem. Cytochem.53, 331–336 (2005).
  • Krabchi K, Gadji M, Forest JC, Drouin R. Quantification of all fetal nucleated cells in maternal blood in different cases of aneuploidies. Clin. Genet.69, 145–154 (2006).
  • Nelson M, Zarkos K, Popp H, Gibson J. A flow-cytometric equivalent of the Kleihauer test. Vox Sang75, 234–241 (1998).
  • Manotaya S, Elias S, Lewis DE, Simpson JL, Bischoff FZ. Evaluation of a culture system for enrichment of CD34+ hematopoietic progenitor cells present in maternal blood. Fetal Diagn. Ther.17, 90–96 (2002).
  • Coata G, Tilesi F, Fizzotti M et al. Prenatal diagnosis of genetic abnormalities using fetal CD34+ stem cells in maternal circulation and evidence they do not affect diagnosis in later pregnancies. Stem Cells19(6), 534–542 (2001)
  • Prieto Villapun JC, Cifuentes de Castro I, Serrano Rios M. Human chorionic somatommamotropin (HCS) and pregnancy. Its relation with insulin. Reproduccion3, 305–312 (1976).
  • Herzenberg LA, Bianchi DW, Schroder J, Cann HM, Iverson GM. Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proc. Natl Acad. Sci. USA76, 1453–1455 (1979).
  • Ganshirt D, Borjesson-Stoll R, Burschyk M et al. Successful prenatal diagnosis from maternal blood with magnetic-activated cell sorting. Ann. N. Y. Acad. Sci.731, 103–114 (1994).
  • Kilpatrick MW, Tafas T, Evans MI et al. Automated detection of rare fetal cells in maternal blood: eliminating the false-positive XY signals in XX pregnancies. Am. J. Obstet. Gynecol.190, 1571–1578; discussion 1578–1581 (2004).
  • Schroder J, Schroder E, Cann HM. Fetal cells in the maternal blood. Lack of response of fetal cells in maternal blood to mitogens and mixed leukocyte culture. Hum. Genet.38, 91–97 (1977).
  • Tharapel AT, Jaswaney VL, Dockter ME et al. Inability to detect fetal metaphases in flow-sorted lymphocyte cultures based on maternal-fetal HLA differences. Fetal Diagn. Ther.8, 95–101 (1993).
  • Pinkel D, Landegent J, Collins C et al. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc. Natl Acad. Sci. USA85, 9138–9142 (1988).
  • Lichter P, Cremer T, Tang CJ, Watkins PC, Manuelidis L, Ward DC. Rapid detection of human chromosome 21 aberrations by in situ hybridization. Proc. Natl Acad. Sci. USA85, 9664–9668 (1988).
  • Ried T, Landes G, Dackowski W, Klinger K, Ward DC. Multicolor fluorescence in situ hybridization for the simultaneous detection of probe sets for chromosomes 13, 18, 21, X and Y in uncultured amniotic fluid cells. Hum. Mol. Genet.1, 307–313 (1992).
  • Cremer T, Landegent J, Bruckner A et al. Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84. Hum. Genet.74, 346–352 (1986).
  • Zheng YL, Ferguson-Smith MA, Warner JP, Ferguson-Smith ME, Sargent CA, Carter NP. Analysis of chromosome 21 copy number in uncultured amniocytes by fluorescence in situ hybridization using a cosmid contig. Prenat. Diagn.12, 931–943 (1992).
  • Evans MI, Klinger KW, Isada NB et al. Rapid prenatal diagnosis by fluorescent in situ hybridization of chorionic villi: an adjunct to long-term culture and karyotype. Am. J. Obstet. Gynecol.167, 1522–1525 (1992).
  • Elias S, Price J, Dockter M et al. First trimester prenatal diagnosis of trisomy 21 in fetal cells from maternal blood. Lancet340, 1033 (1992).
  • Mavrou A, Kouvidi E, Antsaklis A. Souka A, Kitsiou Tzeli S, Kolialexi A. Identification of nucleated red blood cells in maternal circulation: a second step in screening for fetal aneuploidies and pregnancy complications. Prenat. Diagn.27(2), 150–153 (2007).
  • Sekizawa A, Samura O, Zhen DK, Falco V, Farina A, Bianchi DW. Apoptosis in fetal nucleated erythrocytes circulating in maternal blood. Prenat. Diagn.20, 886–889 (2000).
  • Kolialexi A, Tsangaris GT, Antsaklis A et al. Apoptosis in maternal peripheral blood during pregnancy. Fetal Diagn. Ther.16, 32–37 (2001).
  • Lo YM, Corbetta N, Chamberlain PF et al. Presence of fetal DNA in maternal plasma and serum. Lancet350, 485–487 (1997).
  • Partsalis T, Chan LY, Hurworth M et al. Evidence of circulating donor genetic material in bone allotransplantation. Int. J. Mol. Med.17, 1151–1155 (2006).
  • Bianchi DW, Shuper AP, DeMaria MA, Fougner AC, Klinger KW. Fetal cells in maternal blood: determination of purity and yield by quantitative polymerase chain reaction. Am. J. Obstet. Gynecol.171(4), 922–926 (1994).
  • Lo YM, Lau TK, Chan LY, Leung TN, Chang AM. Quantitative analysis of the bidirectional fetomaternal transfer of nucleated cells and plasma DNA. Clin. Chem.46, 1301–1309 (2000).
  • Alberry M, Maddocks D, Jones M et al. Free fetal DNA in maternal plasma in anembryonic pregnancies: confirmation that the origin is the trophoblast. Prenat. Diagn.27, 415–418 (2007).
  • Tjoa ML, Cindrova-Davies T, Spasic-Boskovic O, Bianchi DW, Burton GJ. Trophoblastic oxidative stress and the release of cell-free feto-placental DNA. Am. J. Pathol.169, 400–404 (2006).
  • Smid M, Galbiati S, Lojacono A et al. Correlation of fetal DNA levels in maternal plasma with Doppler status in pathological pregnancies. Prenat. Diagn.26, 785–790 (2006).
  • Masuzaki H, Miura K, Yoshiura KI, Yoshimura S, Niikawa N, Ishimaru T. Detection of cell free placental DNA in maternal plasma: direct evidence from three cases of confined placental mosaicism. J. Med. Genet.41, 289–292 (2004).
  • Geifman-Holtzman O, Fay K. Prenatal diagnosis of congenital myotonic dystrophy and counseling of the pregnant mother: case report and literature review. Am. J. Med. Genet.78, 250–253 (1998).
  • Emanuel SL, Pestka S. Amplification of specific gene products from human serum. Genet. Anal. Tech. Appl.10, 144–146 (1993).
  • Houfflin-Debarge V, O’Donnell H, Overton T, Bennett PR, Fisk NM. High sensitivity of fetal DNA in plasma compared with serum and nucleated cells using unnested PCR in maternal blood. Fetal Diagn. Ther.15, 102–107 (2000).
  • Bischoff FZ, Dang DX, Marquez-Do D et al. Detecting fetal DNA from dried maternal blood spots: another step towards broad scale non-invasive prenatal genetic screening and feasible testing. Reprod. Biomed. Online6, 349–351 (2003).
  • Norbury G, Norbury CJ. Non-invasive prenatal diagnosis of single gene disorders: how close are we? Semin. Fetal Neonatal Med.13, 76–83 (2008).
  • Lo YM, Tein MS, Lau TK et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am. J. Hum. Genet.62, 768–775 (1998).
  • Sekizawa A, Kondo T, Iwasaki M et al. Accuracy of fetal gender determination by analysis of DNA in maternal plasma. Clin. Chem.47, 1856–1858 (2001).
  • Kondo T, Sekizawa A, Saito H, Jimbo M, Sugito Y, Okai T. Fate of fetal nucleated erythrocytes circulating in maternal blood: apoptosis is induced by maternal oxygen concentration. Clin. Chem.48, 1618–1620 (2002).
  • Birch L, English CA, O’Donoghue K, Barigye O, Fisk NM, Keer JT. Accurate and robust quantification of circulating fetal and total DNA in maternal plasma from 5 to 41 weeks of gestation. Clin. Chem.51, 312–320 (2005).
  • Farina A, Caramelli E, Concu M et al. Testing normality of fetal DNA concentration in maternal plasma at 10–12 completed weeks’ gestation: a preliminary approach to a new marker for genetic screening. Prenat. Diagn.22, 148–152 (2002).
  • Bianchi DW, Williams JM, Sullivan LM, Hanson FW, Klinger KW, Shuber AP. PCR quantitation of fetal cells in maternal blood in normal and aneuploid pregnancies. Am. J. Hum. Genet.61, 822–829 (1997).
  • Gerovassili A, Nicolaides KH, Thein SL, Rees DC. Cell-free DNA levels in pregnancies at risk of sickle-cell disease and significant ethnic variation. Br. J. Haematol.135, 738–741 (2006).
  • Guibert J, Benachi A, Grebille AG, Ernault P, Zorn JR, Costa JM. Kinetics of SRY gene appearance in maternal serum: detection by real time PCR in early pregnancy after assisted reproductive technique. Hum. Reprod.18, 1733–1736 (2003).
  • Zhong XY, Holzgreve W, Hahn S. Risk free simultaneous prenatal identification of fetal Rhesus D status and sex by multiplex real-time PCR using cell free fetal DNA in maternal plasma. Swiss Med. Wkly131, 70–74 (2001).
  • Rijnders RJ, Van Der Luijt RB, Peters ED et al. Earliest gestational age for fetal sexing in cell-free maternal plasma. Prenat. Diagn.23, 1042–1044 (2003).
  • Rijnders RJ, Christiaens GC, Bossers B, van der Smagt JJ, van der Schoot CE, de Haas M. Clinical applications of cell-free fetal DNA from maternal plasma. Obstet. Gynecol.103, 157–164 (2004).
  • Lo YM, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am. J. Hum. Genet.64, 218–224 (1999).
  • Rijnders RJ, Christiaens GC, Soussan AA, van der Schoot CE. Cell-free fetal DNA is not present in plasma of nonpregnant mothers. Clin. Chem.50, 679–681; author reply 681 (2004).
  • Invernizzi P, Biondi ML, Battezzati PM et al. Presence of fetal DNA in maternal plasma decades after pregnancy. Hum. Genet.110, 587–591 (2002).
  • Ingargiola I, Vaerman JL, Debieve F, Palgen G, Verellen-Dumoulin C, Hubinont C. Free fetal DNA concentration in maternal plasma during normal labour at term. Prenat. Diagn.23, 1077–1082 (2003).
  • Geifman-Holtzman O, Bernstein IM, Berry SM et al. Fetal RhD genotyping in fetal cells flow sorted from maternal blood. Am. J. Obstet. Gynecol.174, 818–822 (1996).
  • Di Naro E, Ghezzi F, Vitucci A et al. Prenatal diagnosis of β-thalassaemia using fetal erythroblasts enriched from maternal blood by a novel gradient. Mol. Hum. Reprod.6, 571–574 (2000).
  • Chiu RW, Lo YM. Application of fetal DNA in maternal plasma for noninvasive prenatal diagnosis. Expert Rev. Mol. Diagn.2, 32–40 (2002).
  • Lo YM. Fetal DNA in maternal plasma/serum: the first 5 years. Pediatr. Res.53, 16–17 (2003).
  • van der Schoot CE, Tax GH, Rijnders RJ, de Haas M, Christiaens GC. Prenatal typing of Rh and Kell blood group system antigens: the edge of a watershed. Transfus. Med. Rev.17, 31–44 (2003).
  • Li Y, Zimmermann B, Rusterholz C, Kang A, Holzgreve W, Hahn S. Size separation of circulatory DNA in maternal plasma permits ready detection of fetal DNA polymorphisms. Clin. Chem.50, 1002–1011 (2004).
  • Chan KC, Zhang J, Hui AB et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin. Chem.50, 88–92 (2004).
  • Clausen FB, Krog GR, Rieneck K, Dziegiel MH. Improvement in fetal DNA extraction from maternal plasma. Evaluation of the NucliSens Magnetic Extraction system and the QIAamp DSP Virus Kit in comparison with the QIAamp DNA Blood Mini Kit. Prenat. Diagn.27, 6–10 (2007).
  • Legler TJ, Liu Z, Mavrou A et al. Workshop report on the extraction of foetal DNA from maternal plasma. Prenat. Diagn.27, 824–829 (2007).
  • Dhallan R, Au WC, Mattagajasingh S et al. Methods to increase the percentage of free fetal DNA recovered from the maternal circulation. JAMA291, 1114–1119 (2004).
  • Benachi A, Yamgnane A, Olivi M, Dumez Y, Gautier E, Costa JM. Impact of formaldehyde on the in vitro proportion of fetal DNA in maternal plasma and serum. Clin. Chem.51, 242–244 (2005).
  • Chung GT, Chiu RW, Chan KC, Lau TK, Leung TN, Lo YM. Lack of dramatic enrichment of fetal DNA in maternal plasma by formaldehyde treatment. Clin. Chem.51, 655–658 (2005).
  • Chinnapapagari SK, Holzgreve W, Lapaire O, Zimmermann B, Hahn S. Treatment of maternal blood samples with formaldehyde does not alter the proportion of circulatory fetal nucleic acids (DNA and mRNA) in maternal plasma. Clin. Chem.51, 652–655 (2005).
  • Liu Q, Sommer SS. Detection of extremely rare alleles by bidirectional pyrophosphorolysis-activated polymerization allele-specific amplification (Bi-PAP-A): measurement of mutation load in mammalian tissues. Biotechniques36, 156–166 (2004).
  • Liu Q, Sommer SS. Pyrophosphorolysis-activated polymerization (PAP): application to allele-specific amplification. Biotechniques29(5), 1072–1076 (2000)
  • Liu Q, Nguyen VQ, Li X, Sommer SS. Multiplex dosage pyrophosphorolysis-activated polymerization: application to the detection of heterozygous deletions. Biotechniques40(5), 661–668 (2006).
  • Liu FM, Wang XY, Feng X, Wang W, Ye YX, Chen H. Feasibility study of using fetal DNA in maternal plasma for non-invasive prenatal diagnosis. Acta Obstet. Gynecol. Scand.86(5), 535–541 (2007).
  • Ding C, Chiu RW, Lau TK et al. MS analysis of single-nucleotide differences in circulating nucleic acids: application to noninvasive prenatal diagnosis. Proc. Natl Acad. Sci. USA101, 10762–10767 (2004).
  • Li Y, Wenzel F, Holzgreve W, Hahn S. Genotyping fetal paternally inherited SNPs by MALDI-TOF MS using cell-free fetal DNA in maternal plasma: influence of size fractionation. Electrophoresis27, 3889–3896 (2006).
  • Chim SS, Tong YK, Chiu RW et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc. Natl Acad. Sci. USA102, 14753–14758 (2005).
  • Poon LL, Leung TN, Lau TK, Chow KC, Lo YM. Differential DNA methylation between fetus and mother as a strategy for detecting fetal DNA in maternal plasma. Clin. Chem.48, 35–41 (2002).
  • Chan KC, Ding C, Gerovassili A et al. Hypermethylated RASSF1A in maternal plasma: a universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. Clin. Chem.52, 2211–2218 (2006).
  • Chiu RW, Chim SS, Wong IH et al. Hypermethylation of RASSF1A in human and rhesus placentas. Am. J. Pathol.170, 941–950 (2007).
  • Tong YK, Lo YM. Plasma epigenetic markers for cancer detection and prenatal diagnosis. Front Biosci.11, 2647–2656 (2006).
  • Tong YK, Ding C, Chiu RW et al. Noninvasive prenatal detection of fetal trisomy 18 by epigenetic allelic ratio analysis in maternal plasma: theoretical and empirical considerations. Clin. Chem.52, 2194–2202 (2006).
  • Dokras A, Coffin J, Field L et al. Epigenetic regulation of maspin expression in the human placenta. Mol. Hum. Reprod.12, 611–617 (2006).
  • Dokras A, Gardner LM, Kirschmann DA, Seftor EA, Hendrix MJ. The tumour suppressor gene maspin is differentially regulated in cytotrophoblasts during human placental development. Placenta23, 274–280 (2002).
  • Poon LL, Leung TN, Lau TK, Lo YM. Presence of fetal RNA in maternal plasma. Clin. Chem.46, 1832–1834 (2000).
  • Tsui NB, Ng EK, Lo YM. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin. Chem.48, 1647–1653 (2002).
  • Ng EK, Tsui NB, Lau TK et al. mRNA of placental origin is readily detectable in maternal plasma. Proc. Natl Acad. Sci. USA100, 4748–4753 (2003).
  • Tsui NB, Ng EK, Lo YM. Molecular analysis of circulating RNA in plasma. Methods Mol. Biol.336, 123–134 (2006).
  • Ng EK, Tsui NB, Lam NY et al. Presence of filterable and nonfilterable mRNA in the plasma of cancer patients and healthy individuals. Clin. Chem.48, 1212–1217 (2002).
  • Chiu RW, Lui WB, Cheung MC et al. Time profile of appearance and disappearance of circulating placenta-derived mRNA in maternal plasma. Clin. Chem.52, 313–316 (2006).
  • Ge Q, Liu Q, Bai Y, Wen T, Lu Z. A semi-quantitative microarray method to detect fetal RNAs in maternal plasma. Prenat. Diagn.25, 912–918 (2005).
  • Tsui NB, Chim SS, Chiu RW et al. Systematic micro-array based identification of placental mRNA in maternal plasma: towards non-invasive prenatal gene expression profiling. J. Med. Genet.41, 461–467 (2004).
  • Maron JL, Johnson KL, Slonim D et al. Gene expression analysis in pregnant women and their infants identifies unique fetal biomarkers that circulate in maternal blood. J. Clin. Invest.117, 3007–3019 (2007).
  • Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell Proteomics1, 845–867 (2002).
  • Cho CK, Shan SJ, Windsor EJ, Diamandis EP. Proteomic analysis of human amniotic fluid. Mol. Cell. Proteomics6, 1406–1415 (2007).
  • Bahtiyar MO, Copel JA, Mahoney MJ, Buhimschi IA, Buhimschi CS. Proteomics: a novel methodology to complement prenatal diagnosis of chromosomal abnormalities and inherited human diseases. Am. J. Perinatol.24, 167–181 (2007).
  • Oosterwijk JC. Prenatal diagnosis on fetal cells from maternal blood: approaches and perspectives. Eur. J. Obstet. Gynecol. Reprod. Biol.82, 169–170 (1999).
  • Simpson JL, Elias S. Isolating fetal cells in maternal circulation for prenatal diagnosis. Prenat. Diagn.14, 1229–1242 (1994).
  • Cacheux V, Milesi-Fluet C, Tachdjian G et al. Detection of 47,XYY trophoblast fetal cells in maternal blood by fluorescence in situ hybridization after using immunomagnetic lymphocyte depletion and flow cytometry sorting. Fetal Diagn. Ther.7, 190–194 (1992).
  • Ganshirt-Ahlert D, Borjesson-Stoll R, Burschyk M et al. Detection of fetal trisomies 21 and 18 from maternal blood using triple gradient and magnetic cell sorting. Am. J. Reprod. Immunol.30, 194–201 (1993).
  • Rozovski U, Jonish-Grossman A, Bar-Shira A, Ochshorn Y, Goldstein M, Yaron Y. Genome-wide expression analysis of cultured trophoblast with trisomy 21 karyotype. Hum. Reprod.22, 2538–2545 (2007).
  • Ohashi Y, Miharu N, Honda H, Samura O, Ohama K. Quantitation of fetal DNA in maternal serum in normal and aneuploid prenancies. Hum. Genet.108, 123–127 (2001).
  • Zimmermann B, El-Sheikhah A, Nicolaides K, Holzgreve W, Hahn S. Optimized real-time quantitative PCR measurement of male fetal DNA in maternal plasma. Clin. Chem.51, 1598–1604 (2005).
  • Lo YM, Tsui NB, Chiu RW et al. Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. Nat. Med.13, 218–223 (2007).
  • Tong YK, Chiu RW, Leung TY et al. Detection of restriction enzyme-digested target DNA by PCR amplification using a stem-loop primer: application to the detection of hypomethylated fetal DNA in maternal plasma. Clin. Chem.53, 1906–1914 (2007).
  • Lo YM, Lun FM, Chan KC et al. Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc. Natl Acad. Sci. USA104, 13116–13121 (2007).
  • Yamada Y, Watanabe H, Miura F et al. A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 21q. Genome Res.14, 247–266 (2004).
  • Schumacher A, Kapranov P, Kaminsky Z et al. Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res.34, 528–542 (2006).
  • Old RW, Crea F, Puszyk W, Hulten MA. Candidate epigenetic biomarkers for non-invasive prenatal diagnosis of Down syndrome. Reprod. Biomed Online15, 227–235 (2007).
  • Fazzari MJ, Greally JM. Epigenomics: beyond CpG islands. Nat. Rev. Genet.5, 446–455 (2004).
  • Chim SS, Jin S, Lee TY et al. Systematic search for placental DNA-methylation markers on chromosome 21: toward a maternal plasma-based epigenetic test for fetal trisomy 21. Clin. Chem. 2008.
  • Dhallan R, Guo X, Emche S et al. A non-invasive test for prenatal diagnosis based on fetal DNA present in maternal blood: a preliminary study. Lancet369, 474–481 (2007).
  • Hahn S, Zhong X, Holzgreve W. Non-invasive prenatal diagnosis of Down’s syndrome. Lancet369, 1997–1998; author reply 1998–1999 (2007).
  • Lo YM, Chiu RW. Non-invasive prenatal diagnosis of Down’s syndrome. Lancet369, author reply 1998–1999 (2007).
  • Hulten MA, Old RW. Non-invasive prenatal diagnosis of Down’s syndrome. Lancet369(9578), 1997 (2007).
  • Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc. Natl Acad. Sci. USA105(42), 16266–16271 (2008).
  • Gross SJ, Ferreira JC, Morrow B et al. Gene expression profile of trisomy 21 placentas: a potential approach for designing noninvasive techniques of prenatal diagnosis. Am. J. Obstet. Gynecol.187(2), 457–462 (2002).
  • Sood R, Zehnder JL, Druzin ML, Brown PO. Gene expression patterns in human placenta. Proc. Natl Acad. Sci. USA103, 5478–5483 (2006).
  • Ng EK, Leung TN, Tsui NB et al. The concentration of circulating corticotropin-releasing hormone mRNA in maternal plasma is increased in preeclampsia. Clin. Chem.49, 727–731 (2003).
  • Go AT, Visser A, Mulders MA, Blankenstein MA, Van Vugt JM, Oudejans CB. Detection of placental transcription factor mRNA in maternal plasma. Clin. Chem.50, 1413–1414 (2004).
  • Lo YM, Lau TK, Zhang J et al. Increased fetal DNA concentrations in the plasma of pregnant women carrying fetuses with trisomy 21. Clin. Chem.45, 1747–1751 (1999).
  • Wataganara T, LeShane ES, Farina A et al. Maternal serum cell-free fetal DNA levels are increased in cases of trisomy 13 but not trisomy 18. Hum. Genet.112, 204–208 (2003).
  • Zhong XY, Burk MR, Troeger C, Jackson LR, Holzgreve W, Hahn S. Fetal DNA in maternal plasma is elevated in pregnancies with aneuploid fetuses. Prenat. Diagn.20, 795–798 (2000).
  • Hromadnikova I, Houbova B, Hridelova D et al. Quantitative analysis of DNA levels in maternal plasma in normal and Down syndrome pregnancies. BMC Pregnancy Childbirth2, 4 (2002).
  • Farina A, Bianchi DW. Fetal cells in maternal blood as a second non-invasive step for fetal Down syndrome screening. Prenat. Diagn.18, 983–984 (1998).
  • Parano E, Falcidia E, Grillo A, Takabayashi H, Trifiletti RR, Pavone P. Fetal nucleated red blood cell counts in peripheral blood of mothers bearing Down syndrome fetus. Neuropediatrics32, 147–149 (2001).
  • Falcidia E, Parano E, Grillo A et al. Fetal cells in maternal blood, a six-fold increase in women who have undergone amniocentesis and carry a fetus with Down syndrome: a multicenter study (1997). Neuropediatrics35, 321–324 (2004).
  • Parano E, Falcidia E, Grillo A et al. Noninvasive prenatal diagnosis of chromosomal aneuploidies by isolation and analysis of fetal cells from maternal blood. Am. J. Med. Genet.101, 262–267 (2001).
  • Simpson JL, Elias S. Isolating fetal cells from maternal blood. Advances in prenatal diagnosis through molecular technology. JAMA270, 2357–2361 (1993).
  • Purwosunu Y, Sekizawa A, Farina A et al. Enrichment of NRBC in maternal blood: a more feasible method for noninvasive prenatal diagnosis. Prenat. Diagn.26, 545–547 (2006).
  • Krabchi K, Gros-Louis F, Yan J et al. Quantification of all fetal nucleated cells in maternal blood between the 18th and 22nd weeks of pregnancy using molecular cytogenetic techniques. Clin. Genet.60, 145–150 (2001).
  • Ariga H, Ohto H, Busch MP et al. Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis. Transfusion41, 1524–1530 (2001).
  • Holzgreve W, Di Naro E, Garvin AM, Troeger C, Hahn S. Prenatal diagnosis using fetal cells enriched from maternal blood. Croat. Med. J.39, 115–120 (1998).
  • Al-Mufti R, Hambley H, Farzaneh F, Nicolaides KH. Investigation of maternal blood enriched for fetal cells: role in screening and diagnosis of fetal trisomies. Am. J. Med. Genet.85, 66–75 (1999).
  • Tsangaris GT, Karamessinis P, Kolialexi A et al. Proteomic analysis of amniotic fluid in pregnancies with Down syndrome. Proteomics6, 4410–4419 (2006).
  • Wang TH, Chang YL, Peng HH et al. Rapid detection of fetal aneuploidy using proteomics approaches on amniotic fluid supernatant. Prenat. Diagn.25, 559–566 (2005).
  • Busch A, Michel S, Hoppe C, Driesch D, Claussen U, von Eggeling F. Proteome analysis of maternal serum samples for trisomy 21 pregnancies using ProteinChip arrays and bioinformatics. J. Histochem. Cytochem.53, 341–343 (2005).
  • Nagalla SR, Canick JA, Jacob T et al. Proteomic analysis of maternal serum in down syndrome: identification of novel protein biomarkers. J. Proteome Res.6, 1245–1257 (2007).
  • Geifman-Holtzman O, Grotegut CA, Gaughan JP. Diagnostic accuracy of noninvasive fetal Rh genotyping from maternal blood – a meta-analysis. Am. J. Obstet. Gynecol.195, 1163–1173 (2006).
  • Geifman-Holtzman O, Grotegut C, Gaughan J, HOltzman E, Floro C, Hernandez E. Noninvasive fetal RhCE genotyping from maternal blood. BJOG. May 22 (2008) (Epub ahead of print).
  • Lo YM, Bowell PJ, Selinger M et al. Prenatal determination of fetal RhD status by analysis of peripheral blood of rhesus negative mothers. Lancet341, 1147–1148 (1993).
  • Lo YM, Noakes L, Bowell PJ, Fleming KA, Wainscoat JS. Detection of fetal RhD sequence from peripheral blood of sensitized RhD-negative pregnant women. Br. J. Haematol.87, 658–660 (1994).
  • Lo YM, Bowell PJ, Selinger M et al. Prenatal determination of fetal rhesus D status by DNA amplification of peripheral blood of rhesus-negative mothers. Ann. NY Acad. Sci.731, 229–236 (1994).
  • Sekizawa A, Watanabe A, Kimura T, Saito HYanahara T, Sato T. Prenatal diagnosis of the fetal RhD blood type using a single fetal nucleated erythrocyte from maternal blood. Obstet. Gynecol.87(4), 501–505 (1996).
  • Hamlington J, Cunningham J, Mason G, Mueller R, Miller D. Prenatal detection of rhesus D genotype. Lancet349, 540 (1997).
  • Al-Mufti R, Howard C, Overton T et al. Detection of fetal messenger ribonucleic acid in maternal blood to determine fetal RhD status as a strategy for noninvasive prenatal diagnosis. Am. J. Obstet. Gynecol.179(1), 210–214 (1998).
  • Faas BH, Beuling EA, Christiaens GC, von dem Borne AE, van der Schoot CE. Detection of fetal RHD-specific sequences in maternal plasma. Lancet352(9135), 1196 (1998).
  • Lo YM, Hjelm NM, Fidler C et al. Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma. N. Engl. J. Med.339, 1734–1738 (1998).
  • Toth T, Papp C, Toth-Pal E, Nagy B, Papp Z. Fetal RhD genotyping by analysis of maternal blood. A case report. J. Reprod. Med.43, 219–222 (1998).
  • Bischoff FZ, Nguyen DD, Marquez-Do D, Moise KJ, Jr., Simpson JL, Elias S. Noninvasive determination of fetal RhD status using fetal DNA in maternal serum and PCR. J. Soc. Gynecol. Investig.6, 64–69 (1999).
  • Cunningham J, Yates Z, Hamlington J, Mason G, Mueller R, Miller D. Non-invasive RNA-based determination of fetal Rhesus D type: a prospective study based on 96 pregnancies. Br. J. Obstet. Gynaecol.106, 1023–1028 (1999).
  • Sekizawa A, Samura O, Zhen DK, Falco V, Bianchi DW. Fetal cell recycling: diagnosis of gender and RhD genotype in the same fetal cell retrieved from maternal blood. Am. J. Obstet. Gynecol.181, 1237–1242 (1999).
  • Zhang J, Fidler C, Murphy MF et al. Determination of fetal RhD status by maternal plasma DNA analysis. Ann. NY Acad. Sci.906, 153–155 (2000).
  • Zhong XY, Holzgreve W, Hahn S. Detection of fetal Rhesus D and sex using fetal DNA from maternal plasma by multiplex polymerase chain reaction. BJOG107, 766–769 (2000).
  • Nelson M, Eagle C, Langshaw M, Popp H, Kronenberg H. Genotyping fetal DNA by non-invasive means: extraction from maternal plasma. Vox Sang80, 112–116 (2001).
  • Costa JM, Giovangrandi Y, Ernault P et al. Fetal RHD genotyping in maternal serum during the first trimester of pregnancy. Br. J. Haematol.119, 255–260 (2002).
  • Finning KM, Martin PG, Soothill PW, Avent ND. Prediction of fetal D status from maternal plasma: introduction of a new noninvasive fetal RHD genotyping service. Transfusion42, 1079–1085 (2002).
  • Legler TJ, Lynen R, Maas JH et al. Prediction of fetal Rh D and Rh CcEe phenotype from maternal plasma with real-time polymerase chain reaction. Transfus. Apher Sci.27, 217–223 (2002).
  • Johnson L, McCracken SA, Morris JM, Woodland NB, Flower RL. Variation in the reliability of RHD antenatal genotyping using the polymerase chain reaction and targeting multiple exons of the RHD gene. Vox Sang85, 222–223 (2003).
  • Randen I, Hauge R, Kjeldsen-Kragh J, Fagerhol. MK. Prenatal genotyping of RHD and SRY using maternal blood. Vox Sang85, 300–306 (2003).
  • Siva SC, Johnson SI, McCracken SA, Morris JM. Evaluation of the clinical usefulness of isolation of fetal DNA from the maternal circulation. Aust. NZ J. Obstet. Gynaecol.43, 10–15 (2003).
  • Turner MJ, Martin CM, O’Leary JJ. Detection of fetal Rhesus D gene in whole blood of women booking for routine antenatal care. Eur. J. Obstet. Gynecol. Reprod. Biol.108, 29–32 (2003).
  • Harper TC, Finning KM, Martin P, Moise KJ Jr. Use of maternal plasma for noninvasive determination of fetal RhD status. Am. J. Obstet. Gynecol.191, 1730–1732 (2004).
  • Finning K, Martin P, Daniels G. A clinical service in the UK to predict fetal Rh (Rhesus) D blood group using free fetal DNA in maternal plasma. Ann. NY Acad. Sci.1022, 119–123 (2004).
  • Rouillac-Le Sciellour C, Puillandre P, Gillot R et al. Large-scale pre-diagnosis study of fetal RHD genotyping by PCR on plasma DNA from RhD-negative pregnant women. Mol. Diagn.8, 23–31 (2004).
  • Clausen FB, Krog GR, Rieneck K et al. Reliable test for prenatal prediction of fetal RhD type using maternal plasma from RhD negative women. Prenat. Diagn.25, 1040–1044 (2005).
  • Cotter AM, Martin CM, O’Leary JJ, Daly SF. Increased fetal RhD gene in the maternal circulation in early pregnancy is associated with an increased risk of pre-eclampsia. BJOG112, 584–587 (2005).
  • Gautier E, Benachi A, Giovangrandi Y et al. Fetal RhD genotyping by maternal serum analysis: a two-year experience. Am. J. Obstet. Gynecol.192, 666–669 (2005).
  • Gonzalez-Gonzalez C, Garcia-Hoyos M, Trujillo-Tiebas MJ et al. Application of fetal DNA detection in maternal plasma: a prenatal diagnosis unit experience. J. Histochem. Cytochem.53, 307–314 (2005).
  • Hromadnikova I, Vechetova L, Vesela K et al. Non-invasive fetal RHD exon 7 and exon 10 genotyping using real-time PCR testing of fetal DNA in maternal plasma. Fetal Diagn. Ther.20, 275–280 (2005).
  • Hromadnikova I, Vechetova L, Vesela K, Benesova B, Doucha J, Vlk R. Non-invasive fetal RHD and RHCE genotyping using real-time PCR testing of maternal plasma in RhD-negative pregnancies. J. Histochem. Cytochem.53, 301–305 (2005).
  • Hromadnikova I, Vesela K, Benesova B et al. Non-invasive fetal RHD and RHCE genotyping from maternal plasma in alloimmunized pregnancies. Prenat. Diagn.25, 1079–1083 (2005).
  • Brojer E, Zupanska B, Guz K, Orzinska A, Kalinska A. Noninvasive determination of fetal RHD status by examination of cell-free DNA in maternal plasma. Transfusion45, 1473–1480 (2005).
  • Finning K, Martin P, Summers J, Daniels G. Fetal genotyping for the K (Kell) and Rh C, c, and E blood groups on cell-free fetal DNA in maternal plasma. Transfusion47, 2126–2133 (2007).
  • Lazaros L, Hatzi E, Bouba I, Paraskevaidis E, Georgiou I. Non-invasive prenatal detection of paternal origin hb lepore in a male fetus at the 7th week of gestation. Fetal Diagn. Ther.21, 506–509 (2006).
  • Saito H, Sekizawa A, Morimoto T, Suzuki M, Yanaihara T. Prenatal DNA diagnosis of a single-gene disorder from maternal plasma. Lancet356, 1170 (2000).
  • Li Y, Holzgreve W, Page-Christiaens GC, Gille JJ, Hahn S. Improved prenatal detection of a fetal point mutation for achondroplasia by the use of size-fractionated circulatory DNA in maternal plasma--case report. Prenat. Diagn.24, 896–898 (2004).
  • Li Y, Page-Christiaens GC, Gille JJ, Holzgreve W, Hahn S. Non-invasive prenatal detection of achondroplasia in size-fractionated cell-free DNA by MALDI-TOF MS assay. Prenat. Diagn.27, 11–17 (2007).
  • Chiu RW, Lau TK, Leung TN, Chow KC, Chui DH, Lo YM. Prenatal exclusion of β thalassaemia major by examination of maternal plasma. Lancet360, 998–1000 (2002).
  • Li Y, Di Naro E, Vitucci A, Zimmermann B, Holzgreve W, Hahn S. Detection of paternally inherited fetal point mutations for β-thalassemia using size-fractionated cell-free DNA in maternal plasma. JAMA293, 843–849 (2005).
  • Kolialexi A, Vrettou C, Traeger-Synodinos J et al. Noninvasive prenatal diagnosis of β-thalassaemia using individual fetal erythroblasts isolated from maternal blood after enrichment. Prenat. Diagn.27, 1228–1232 (2007).
  • Fucharoen G, Tungwiwat W, Ratanasiri T, Sanchaisuriya K, Fucharoen S. Prenatal detection of fetal hemoglobin E gene from maternal plasma. Prenat. Diagn.23, 393–396 (2003).
  • Tungwiwat W, Fucharoen G, Fucharoen S, Ratanasiri T, Sanchaisuriya K, Sae-Ung N. Application of maternal plasma DNA analysis for noninvasive prenatal diagnosis of Hb E-β-thalassemia. Transl. Res.150, 319–325 (2007).
  • Tsang JC, Charoenkwan P, Chow KC et al. Mass spectrometry-based detection of hemoglobin E mutation by allele-specific base extension reaction. Clin. Chem.53, 2205–2209 (2007).
  • Lau ET, Kwok YK, Luo HY et al. Simple non-invasive prenatal detection of Hb Bart’s disease by analysis of fetal erythrocytes in maternal blood. Prenat. Diagn.25, 123–128 (2005).
  • Amicucci P, Gennarelli M, Novelli G, Dallapiccola B. Prenatal diagnosis of myotonic dystrophy using fetal DNA obtained from maternal plasma. Clin. Chem.46, 301–302 (2000).
  • Chiu RW, Lau TK, Cheung PT, Gong ZQ, Leung TN, Lo YM. Noninvasive prenatal exclusion of congenital adrenal hyperplasia by maternal plasma analysis: a feasibility study. Clin. Chem.48, 778–780 (2002).
  • Bartha JL, Finning K, Soothill PW. Fetal sex determination from maternal blood at 6 weeks of gestation when at risk for 21-hydroxylase deficiency. Obstet. Gynecol.101, 1135–1136 (2003).
  • Gonzalez-Gonzalez MC, Garcia-Hoyos M, Trujillo MJ et al. Prenatal detection of a cystic fibrosis mutation in fetal DNA from maternal plasma. Prenat. Diagn.22, 946–948 (2002).
  • Chan V, Lau K, Yip B, Sin SY, Cheung MC, Kan YW. Diagnosis of spinal muscular atrophy from fetal normoblasts in maternal blood. Lancet352, 1196–1198 (1998).
  • Beroud C, Karliova A, Bonnefont JP et al. Prenatal diagnosis of spinal muscular atrophy by genetic analysis of circulating fetal cells. Lancet361(9362), 1013–1014 (2003).
  • Watanabe A, Sekizawa A, Taguchi A et al. Prenatal diagnosis of ornithine transcarbamylase deficiency by using a single nucleated erythrocyte from maternal blood. Hum. Genet.102, 611–615 (1998).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.