214
Views
32
CrossRef citations to date
0
Altmetric
Review

Human chorionic gonadotropin and associated molecules

Pages 51-73 | Published online: 09 Jan 2014

References

  • Hirose T. Exogenous stimulation of corpus luteum formation in the rabbit: influence of extracts of human placenta, decidua, fetus, hydatid mole, and corpus luteum on the rabbit gonad. J. Jpn. Gynecol. Soc.16, 1055 (1920).
  • Zondek B, Aschheim S. The Zondek-Ascheim Pregnancy Test. Can. Med. Assoc. J.22, 251–253 (1930).
  • Aschheim S, Zondek B. Das Hormon des hypophysenvorderlappens: testobjekt zum Nachweis des hormons. Klin. Wochenschr.6, 248–252 (1927).
  • Wide L, Gemzell CA. An immunological pregnancy test. Acta Endocrinol.35, 261–267 (1960).
  • Rushworth AG, Orr AH, Bagshawe KD. The concentration of HCG in the plasma and spinal fluid of patients with trophoblastic tumours in the central nervous system. Br. J. Cancer22, 253–257 (1968).
  • Lunenfeld B. Eshkol A. Immunology of human chorionic gonadotropin (HCG). Vit. Hor.25, 137–190 (1967).
  • Aono T, Goldstein DP, Taymor ML, Dolch K. A radioimmunoassay method for human pituitary luteinizing hormone (LH) and human chorionic gonadotropic (HCG) using 125I-labeled LH. Am. J. Obstet. Gynecol.98, 996–1001 (1967).
  • Isojima S, Koyama K, Tanaka C, Adachi H. Radioimmunoassay of human urinary chorionic gonadotropin (HCG) and luteinizing hormone (LH). Nippon Naibunpi Gakkai Zasshi43, 1097–1108 (1968).
  • Vaitukaitis JL, Braunstein GD, Ross GT. A radioimmunoassay which specifically measures human chorionic gonadotropin in the presence of human luteinizing hormone. Am. J. Obstet. Gynecol.113, 751–758 (1972).
  • Kohler G, Milstein C, Continuous cultures of fused cells secreting antibody of predefined specificity. Nature256, 495–497 (1975).
  • Maggio ET, Nakamura RM, Biomedical advances: 1. Clinical assays employing enzymes in innovative ways. Ligand Rev.3, 16–24 (1981).
  • Enzyme Immunoassay. Ishikawa E, Kawai T, Miyai K (Eds). Igaku-Shoin, Tokyo, 1–280 (1981).
  • Bidart JM, Ozturk M, Bellet DH et al. Identification of epitopes associated with hCG and βhCG carboxyl-terminus by monoclonal antibodies produced against a synthetic peptide. J. Immunol.134, 457–464 (1985).
  • Hussa RO, Hudson En. A two-site immunometric assay in evaluation of low levels of serum hCG. Am. Clin. Prod. Rev.3, 12–17 (1984).
  • Cole LA. Immunoassay of hCG, its free subunits and metabolites. Clin. Chem.43, 2233–2243 (1997).
  • Kovalevskaya G, Genbacev O, Fisher SJ, Cacere E, O’Connor JF. Trophoblast origin of hCG isoforms: cytotrophoblasts are the primary source of choriocarcinoma-like hCG. Mol. Cell. Endocrinol.194, 147–155 (2002).
  • Cole LA, Dai D, Butler SA, Leslie KK, Kohorn EI. Gestational trophoblastic diseases: 1. Pathophysiology of hyperglycosylated hCG-regulated neoplasia. Gynecol. Oncol.102, 144–149 (2006).
  • Cole LA, Khanlian SA, Riley JM, Butler SA. Hyperglycosylated hCG in gestational implantation and in choriocarcinoma and testicular germ cell malignancy tumorigenesis. J. Reprod. Med.51, 919–915 (2006).
  • Hamade AL, Nakabayashi K, Sato A et al. Transfection of antisense chorionic gonadotropin β gene into choriocarcinoma cells suppresses the cell proliferation and induces apoptosis. J. Clin. Endocrinol.. Metab.90, 4873–4879 (2005).
  • Butler SA, Ikram MS, Mathieu S, Iles RK, The increase in bladder carcinoma cell population induced by the free β subunit of hCG is a result of an anti-apoptosis effect and not cell proliferation. Brit. J. Cancer82, 1553–1556 (2000).
  • Regelson W. Have we found the “definitive cancer biomarker”? The diagnostic and therapeutic implications of human chorionic gonadotropin-β statement as a key to malignancy. Cancer76, 1299–1301 (1995).
  • Iles RK. Ectopic hCGβ expression by epithelial cancer: malignant behavior metastasis and inhibition of tumor cell apoptosis. Mol. Cell. Endocrinol.260, 264–270 (2007).
  • Butler SA, Staite EM, Iles RK. Reduction of bladder cancer cell growth in response to hCG β CTP37 vaccinated mouse serum. Oncol. Res.14, 93–100 (2003).
  • Iles RK. Human chorionic gonadotrophin and its fragments as markers of prognosis in bladder cancer. Tumor Marker Update7, 161–166 (1995).
  • Bahl OP, Carlsen RB, Bellisario R, Swaminathan N. Human chorionic gonadotrophin: amino acid sequences of the α and β subunits. J. Biol. Chem.250, 5247–5253 (1975).
  • Morgan FJ, Birken S, Canfield RE. The amino acid sequence of human chorionic gonadotropin. The α subunit and the β-subunit. Endocrinology250, 5247–5258 (1975).
  • Kessler MJ, Mise T, Ghai RD, Bahl OP, Structure and location of the O-glycosidic carbohydrate units of human chorionic gonadotropin. J. Biol. Chem.254, 7909–7914 (1979).
  • Kessler MJ, Reddy MS, Shah RH, Bahl OP. Structures of the N-glycosidic carbohydrate units of human chorionic gonadotropin. J. Biol. Chem.254, 7901–7908 (1979).
  • Mizouchi T, Kobata A. Different asparagine-linked sugar chains on the two polypeptide chains of human chorionic gonadotropin. Biochem. Biophys. Res. Commun.97, 772–778 (1980).
  • Lei ZM, Reshef E, Rao CV. The expression of human chorionic gonadotropin/luteinizing hormone receptors in human endometrial and myometrial blood vessels. J. Clin. Endocrinol. Metab.75, 651–659 (1992).
  • Herr F, Baal N, Reisinger K et al. HCG in the regulation of placental angiogenesis. Results of an in vitrostudy. Placenta28(Suppl. A), S85–S93 (2007).
  • Zygmunt M, Herr F, Munstedt K, Lang U, Liang OD. Angiogenesis and vasculogenesis in pregnancy. Euro. J. Obstet. Gynecol. Reprod. Biol.110(Suppl. 1), S10–S18 (2003).
  • Zygmunt M, Herr F, Keller-Schoenwetter S et al. Characterization of human chorionic gonadotropin as a novel angiogenic factor. J. Clin. Endocrinol. Metab.87, 5290–5296 (2002).
  • Shi QJ, Lei ZM, Rao CV, Lin J. Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts. Endocrinology132, 1387–1395 (1993).
  • Rao CV, Lei ZM. The past, present and future of nongonadal LH/hCG actions in reproductive biology and medicine. Mol. Cell. Endocrinol..269, 2–8 (2007).
  • Cole LA, Birken S, Perini F. The structures of the serine-linked sugar chains on human chorionic gonadotropin. Biochem. Biophys. Res. Comm.126, 333–339, (1985).
  • Cole LA. The O-linked oligosaccharides are strikingly different on pregnancy and choriocarcinoma hCG. J. Clin. Endocrinol. Metab.65, 811–813 (1987).
  • Elliott MM, Kardana A, Lustbader JW, Cole LA. Carbohydrate and peptide structure of the α- and β-subunits of human chorionic gonadotropin from normal and aberrant pregnancy and choriocarcinoma. Endocrine7, 15–32 (1997).
  • Amano J, Nishimura R, Mochizuki M, Kobata A. Comparative study of the mucin-type sugar chains of human chorionic gonadotropin present in the urine of patients with trophoblastic diseases and healthy pregnant women. J. Biol. Chem.263, 1157–1165 (1988).
  • Kobata A, Takeuchi M, Structure pathology and function of the N-linked sugar chains of hCG. Biochim. Biophys. Acta1455, 315–326 (1999).
  • Valmu L, Alfthan H, Hotakainen K, Birken S, Stenman UH. Site-specific glycan analysis of human chorionic gonadotropin β-subunit from malignancies and pregnancy by liquid chromatography – electrospray mass spectromtry. Glycobiology16, 1207–1218 (2006).
  • Cole LA, Butler SA. Hyperglycosylated hCG and its free β-subunit, tumor markers and tumor promoters: a review. J. Reprod. Med.53, 499–510 (2008).
  • Sasaki Y, Ladner DG, Cole LA. Hyperglycosylated hCG the source of pregnancy failures. Fertil. Steril.89, 1871–1786 (2008).
  • Kovalevskaya G, Birken S, Kakuma T et al. Differential expression of human chorionic gonadotropin (hCG) glycosylation isoforms in failing and continuing pregnancies: preliminary characterization of the hyperglycosylated hCG epitope. J. Endocrinol.172, 497–506 (2002).
  • Cole LA, Butler SA, Khanlian SA et al. Hyperglycosylated hCG as a reliable marker of active neoplasia. Gynecol. Oncol.102, 151–159 (2006).
  • Kelly LS, Birken S, Puett D. Determination of hyperglycosylated human chorionic gonadotropin produced by malignant gestational trophoblastic neoplasias and male germ cell tumors using a lectin-based immunoassay and surface plasmon resonance. Mol. Cell. Endocrinol.260, 33–39 (2007).
  • Kovalevskaya G, Genbacev O, Fisher SJ, Caceres E, O’Connor JF. Trophoblast origin of free isoforms: cytotrophoblasts are the primary source of choriocarcinoma-like free. Mol. Cell. Endocrinol.194, 147–155 (2002).
  • Lei ZM, Taylor DD, Gercel-Taylor C, Rao CV. Human chorionic gonadotropin promotes tumorigenesis of choriocarcinoma JAR cells. Troph. Res.13, 147–159 (1999).
  • Handshuh K, Guibourdenche J, Tsatsaris V et al. Human chorionic gonadotropin produced by the invasive trophoblast but not the villous trophoblast promotes cell invasion and is down-regulated by peroxisome proliferator-activated receptor-α. Endocrinology148, 5011–5019 (2007).
  • Nishimura R, Baba S, Hasegawa K et al. Characterization of immunoreactive hCG β-subunit in cultured fluids of the cell lines derived from gynecologic malignant tumors. Nippon Sanka Fujinka Gakkai Zasshi42, 1471–1476 (1990).
  • Marcillac I, Cottu P ,Theodore C, TerrierLacombe MJ, Bellet D, Droz JP. Free hCG β subunit as tumour marker in urothelial cancer. Lancet341, 1354–1355 (1993).
  • Bepler G, Jaques G, Oie HK, GazdaR AF. Human chorionic gonadotropin and related glycoprotein hormones in lung cancer cell lines. Cancer Lett.58, 145–150 (1991).
  • Cole LA. β-core fragment (β-core UGP or UGF). Tumor Marker Update6, 69–75 (1994).
  • Ozturk M, Bellet D, Isselbacher KJ, Wands J. Ectopic β-human chorionic gonadotropin production by a human hepatoma cell line (FOCUS): isolation and immunochemical characterization. Endocrinology120, 559–566 (1987).
  • Rosen SW, Calvert I, Weintraub BD, Tseng JS, Rabson AS. Stimulation of N6O2’-dibutyryl cyclic adenosine 3’:5’-monophosphate of ectopic production of the free β subunit of chorionic gonadotropin by a human brain tumor cell line. Cancer Res.40, 4325–4328 (1980).
  • Ruddon RW, Bryan AH, Hanson CA, Perini F, Ceccorulli LM. Peters Characterization of the intracellular and secreted forms of the glycoprotein hormone chorionic gonadotropin produced by human malignant cells. J. Biol. Chem.256, 5189–5196 (1981).
  • Acevedo HF, Tong JY, Hartsock RJ. Human chorionic gonadotropin-β subunit gene statement in cultured human fetal and cancer cells of different types and origins. Cancer76, 1467–1475 (1995).
  • Butler SA, Iles RK. Ectopic human chorionic gonadotrophin β secretion by epithelial tumors and human chorionic gonadotrophin β-induced apoptosis in Karposi’s sarcoma. Is there a connection? Clin. Cancer Res.9, 4666–4673 (2003).
  • Carter WB, Sekharem M, Coppola D. Human chorionic gonadotropin induces apoptosis in breast cancer. Breast Cancer Res. Treatm.100, S243–S244 (2006).
  • Li D, Wen X, Ghali L et al. hCGβ expression by cervical squamous carcinoma – in vivo histological association with tumor invasion and apoptosis. Histopathology53(2), 147–155 (2008).
  • Bellet D, Lazar V, Bleche I, Paradis V, Giovangrandi Y, Paterliru P. Malignant transformation of nontrophoblastic cells in association with the expression of chorionic gonadotropin β genes normally transcribed in trophoblastic cells. Cancer Res.57, 516–523 (1997).
  • Cosgrove DE, Campain JA, Cox GS. Chorionic gonadotropin synthesis by human tumor cell lines: Examination of subunit accumulation steady-state levels of mRNA and gene structure. Biochem. Biophys. Acta1007, 44–54 (1989).
  • Gillott DJ, Iles RK, Chard T. The effects of human chorionic gonadotropin on AIDS related Karposis sarcoma. N. Engl. J. Med.335, 1261–1269 (1996).
  • Delves PJ, Iles RK, Roitt IM, Lund T. Designing a new generation of anti-hCG vaccines for cancer therapy. Mol. Cell. Endocrinol.260, 276–281 (2007).
  • Iversen PL, Mourich DV, Moulton HM. Monoclonal antibodies to two epitopes of β-human chorionic gonadotropin for the treatment of cancer. Curr. Opin. Mol. Ther.5, 156–160 (2003).
  • Moulton HM, Yoshihara PH, Mason DH, Iversen PL, Triozzi PL. Active specific immunotherapy with β-human chorionic gonadotropin peptide vaccine in patients with metastatic colorectal cancer: antibody response is associated with improved survival. Clin. Cancer Res.8, 2044–2051 (2002).
  • Yi H, Rong Y, Yankai Z et al. Improved efficacy of DNA vaccination against breast cancer by boosting with the repeat β-hCG C-terminal peptide carried by mycobacterial heat-shock protein HSP65. Vaccine24, 2575–2584 (2006).
  • Cole LA, Kardana A, Andrade-Gordon P et al. The Heterogeneity of hCG: III. The occurrence, biological and immunological activities of nicked hCG. Endocrinology129, 1559–1567 (1991).
  • Niespodzianski K, Kowalski D, Zagaa A, Kowalska K, Plutecki J. Radioimmunological analysis of the free α subunit of chorionic gonadotropin (α-HCG) in sera of women during normal pregnancy. Prz. Lek.43, 540–5422 (1986).
  • Blithe DL. Carbohydrate composition of the α-subunit of human choriogonadotropin (hCG α) and the free α molecules produced in pregnancy: most free α and some combined hCG α molecules are fucosylated. Endocrinology126, 2788–2799 (1990).
  • Lockett WP. Comparative development and evolution of the placenta in primates Contrib. Primatol.3, 42–234 (1974).
  • Martin RD. Scaling of the mammalian barrier: the maternal energy hypothesis. News Physiol. Sci.4, 149–154 (1996).
  • Cunnane SC, Herbige LS, Crawford MA. The importance of energy and nutrient supply in human brain evolution. Nutr. Health9, 19–35 (1993).
  • Robillard PY, Chaline J, Chaouat G. Preeclampsia/eclampsia and the evolution of the human brain. Curr. Anthropol.44, 130–135 (2003).
  • Gibbons A. Solving the brain’s energy crisis. Science280, 1345–1347 (1998).
  • Fiddes JC, Goodman HM. The cDNA for the β-subunit of human chorionic gonadotropin suggests evolution of a gene by read through into the 3'-untranslated region. Nature286, 684–687 (1980).
  • Bambra CS. Purification and properties of baboon chorionic gonadotrophin. J. Reprod. Fertil.19, 421–430 (1987).
  • Nisula BC, Wehmann RE. Distribution, metabolism, and excretion of human chorionic gonadotropin and its subunits in man. In: Chorionic Gonadotropin. Segal SJ (Ed.). Plenum Press, NY, USA, 199–212 (1980).
  • Maston GA, Ruvolo M. Chorionic gonadotropin has a recent origin within primates and an evolutionary history of selection Mol. Biol. Evol.19, 320–334 (2002).
  • Diebel ND, Bogdsanove EM. Analysis of luteinizing hormone and follicle-stimulating hormone release kinetics during a dynamic secretory event, the postpartum preovulatory surge in the rat, based on quantitative changes in stored and circulating luteinizing hormone and follicle-stimulating hormone and metabolic clearance data for these hormones Endocrinology103, 665–673 (1978).
  • Butler SA, Khanlian SA, Cole LA. Detection of early pregnancy forms of hCG by home pregnancy test devices. Clin. Chem.47, 2131–2136 (2001).
  • Cole LA, Khanlian SA, Sutton JM, Davies S, Stephens N. Hyperglycosylated hCG (invasive trophoblast antigen, ITA) a key antigen for early pregnancy detection. Clin. Biochem.36, 647–655 (2003).
  • Cole LA, Sutton JM, Higgins TN, Cembrowski GS. Between-method variation in hCG test results. Clin. Chem.50, 874–882 (2004).
  • Cole LA, Shahabi S, Butler S et al. Utility of commonly used commercial hCG immunoassays in the diagnosis and management of trophoblastic diseases. Clin. Chem.47, 308–315 (2001).
  • Mitchell H, Seckl MJ. Discrepancies between commercially available immunoassays in the detection of tumour-derived hCG. Mol. Cell. Endocrinol.260–262, 310–313 (2007).
  • Storring PL, Gaines-Das RE, Bangham DR. International reference preparation of human chorionic gonadotrophin for immunoassay: potency estimates in various bioassay and protein binding assay systems; and international reference preparations of the α and β subunits of human chorionic gonadotropin for immunoassay. J. Endocrinol.84, 295–310 (1980).
  • Higgins TN, Hanna AN, Hofer TL, Cembrowski GS. Measurement of inaccuracy and imprecision of hCG methods using dilutions of the WHO 4th IS-hCG standard and apregnant patient’s serum. Clin. Biochem.37, 152–154 (2004).
  • Sutton JM, Proportion of charge variants very different in urine from serum. Clin. Chem. Acta341, 199–203 (2004).
  • Birken S, Berger P, Bidart J-M et al. Preparation and characterization of new WHO reference reagent for human chorionic gonadotropin and metabolites, Clin. Chem.49, 144–154 (2003).
  • Knight AK, Bingemann T, Cole L, Cunningham-Rundles C. Frequent false positive β human chorionic gonadotropin in immunoglobulin A deficiency. Clin. Exp. Immunol.141, 333–337 (2005).
  • Cole LA, Phantom hCG and phantom choriocarcinoma. Gynecol. Oncol.71, 325–329 (1998).
  • Rotmensch S, Cole LA. False diagnosis and needless therapy of presumed malignant disease in women with false-positive human chorionic gonadotropin concentrations. Lancet355, 712–715 (2000).
  • Hussa RO, Rinke ML, Schweitzer PG. Discordant human chorionic gonadotropin results: causes and solutions. Obstet. Gyncol.65, 211–219 (1985).
  • Garrett PE, Kutz SR, Hurd JK. False positive results for choriogonadotropin in serum. Clin. Chem.29, 1871–1873 (1983).
  • Olsen TG, Hubert PR, Nycum LR. Falsely elevated human chorionic gonadotropin leading to unnecessary therapy. Obstet. Gynecol.98, 843–845 (2001).
  • Cole LA, Khanlian SA. Easy fix for clinical laboratories for the false positive defect with the Abbott AxSym total β-hCG test. Clin. Biochem.37, 344–349 (2004).
  • Cole LA, Khanlian SA, Giddings A et al. Butler SA, Muller CY, Hammond C, Kohorn EI. Gestational trophoblastic diseases: 4. Presentation with persistent low positive human chorionic gonadotropin. Gynecol. Oncol.102, 164–171 (2006).
  • Carayannopoulos MO, Grenache DG, Gronowski AM. Total β-human chorionic gonadotropin measured in urine by an automated method. Clin. Chem.48, 1796–1797 (2002).
  • Halldorsdottir A, Carayannopoulos MO, Scrivner M, Gronowski AM. Method evaluation for total β-hCG using urine and the ADVIA Centaur. Clin. Chem.49, 1421–1422 (2003).
  • Ajubi NE, Nijholt N, Wolthuis A. Quantitative automated human chorionic gonadotropin measurement in urine using the Modular Analytics E170 module (Roche). Clin. Chem. Lab. Med.43, 68–70 (2005).
  • Flam F, Hambraeus-Jonzon K, Hansson L, Kjaeldgaard A. Hydatidiform mole with non-metastatic pulmonary complication and false low level of hCG, Euro. J. Obstet. Gynecol. Reprod. Biol.77, 235–237 (1998).
  • Cole LA, Khanlian SA, Sutton JM, Davies S, Rayburn WF. Accuracy of home pregnancy tests at the time of missed menses. Am. J. Obstet. Gynecol.190, 100–105 (2004).
  • Cole LA, Hyperglycosylated hCG. Placenta,28, 977–986 (2007).
  • Cole LA, Ladner DG, Byrn FW. The normal variabilities of the menstrual cycle. Fertil. Steril. DOI: 10.1016/j.fertnstert.2007.11.073 (2008) (Epub ahead of print).
  • Wilcox AJ, Baird DD, Dunson D, McChesney R, Weinberg CR. Natural limits of pregnancy testing in relation to the expected menstrual period. J. Am. Med. Assoc.286, 1759–1761 (2001).
  • Wilcox AJ, Baird DD, Weinberg CR. Time of implantation of the conceptus and loss of pregnancy. N. Engl. J. Med.340, 1796–1799 (1999).
  • Lockwood CJ. Prediction of pregnancy loss. Lancet355, 1292–1294 (2000).
  • Cartwrigth P, DiPietro D. Ectopic pregnancy: changes in serum human chorionic gonadotropin concentration. Obstet. Gynecol.63, 76–80 (1984).
  • Pittaway D, Reisch R, Colston A. Doubling times of human chorionic gonadotropin increase in early viable intrauterine pregnancies. Am. J. Obstet. Gynecol.152, 299–302 (1985).
  • Kadar N, Caldwell B, Romero R. A method of screening for ectopic pregnancy and its indications. Obstet. Gynecol.58, 162–166 (1981).
  • Braunstein G, Karwo W, Gentry W et al. First-trimester chorionic gonadotropin measurements as an aid in the diagnosis of early pregnancy disorders. Am. J. Obstet. Gynecol.131, 25–32 (1978).
  • Kadar N, Devore G, Romer Ro. Discriminatory HCG zone: its use in the sonographic evaluation for ectopic pregnancy. Obstet. Gynecol.58, 156–161 (1981).
  • Batzer F, Schlaff S, Goldfarb A, Corson S. Serial β-subunit human chorionic gonadotropin doubling time as a prognosticator of pregnancy outcome in an infertile population. Fertil. Steril.35, 307–312 (1981).
  • Cacciatore B, Stenman UH, Ylostalo P. Early screening for ectopic pregnancy in high-risk symptom-free women. Lancet.343, 517–518 (1994).
  • Brafman B, Coleman B, Ramchandani P et al. Emergency department screening for ectopic pregnancy: a prospective U.S. study. Radiology190, 797–802 (1994).
  • Liu HC, Davies O, Berkeley A, Graf M, Rosenwaks Z. Late luteal estradiol patterns are a better prognosticator of pregnancy outcome than serial β-human chorionic gonadotropin concentrations. Fertil. Steril.56, 421–426 (1991).
  • Cowan BD. Ectopic Pregnancy. Curr. Opin. Obstet. Gynecol.5, 328–332 (1993).
  • Davies S, Byrn F, Cole LA. Testing for early pregnancy viability and complications. Clin. Lab. Med.23, 257–264 (2003).
  • Cole LA, Kardana A, Seifer DB, Bohler HC. Urine hCG β-subunit core fragment, a sensitive test for ectopic pregnancy. J. Clin. Endocrinol. Metab.78, 497–499 (1995).
  • O’Connor JF, Ellish N, Kakuma T, Schlatterer J, Kovalevskaya G. Differential urinary gonadotrophin profiles in early pregnancy and early pregnancy loss. Prenat. Diagn.18, 1232–1240 (1998).
  • Sutton-Riley JM, Khanlian SA, Byrn FW, Cole LA. A single serum test for measuring early pregnancy outcome with high predictive value. Clin. Biochem.39, 682–687 (2006).
  • Newberger DS. Down syndrome: prenatal risk assessment and diagnosis. Am. Fam. Physician62, 837–838 (2000).
  • Chard T, Lowings C, Kitau MJ. α-fetoprotein and chorionic gonadotropin levels in relation to Down’s syndrome. Lancet.29, 750–751 (1984).
  • Bogart MH, Pandian MR, Jones OW. Abnormal maternal serum chorionic gonadotropin levels in pregnancies with fetal chromosome abnormalities. Prenat. Diagn.7, 623–630 (1987).
  • Wald NJ, Cuckle HS, Densem JW et al. Maternal serum unconjugated oestriol as an antenatal screening test for Down’s syndrome. Br. J. Obstet. Gynaecol.95, 334–341 (1988).
  • Wald NJ, Densem JW, Muttukvishna S, Knight PG. Prenatal screening for Down syndrome using inhibin A as a serum marker. Prenat. Diagn.16, 143–153 (1996).
  • Cole LA, Shahabi S, Oz UA, Bahado-Singh RO, Mahoney MJ. Hyperglycosylated hCG (invasive trophoblast antigen) immunoassay: a new basis for gestational down syndrome screening. Clin. Chem.45, 2109–2119 (1999).
  • Macri JN, Kasturi RV, Krantz DA et al. Maternal serum Down syndrome screening: free β protein is a more effective marker than human chorionic gonadotrophin. Am. J. Obstet. Gynecol.163, 1248–1253 (1990).
  • Nicolaides KH, Azar G, Byrne D, Mansur C, Marks K. Fetal nuchal translucency: ultrasound screening for chromosomal defects in the first trimester of pregnancy. Br. Med. J.304, 867–889 (1992).
  • Palomaki GE, Knight GJ, Roberson MM et al. Invasive trophoblast antigen (hyperglycosylated human chorionic gonadotropin) in second-trimester maternal urine as a marker for Down syndrome: preliminary results of an observational study on fresh samples. Clin. Chem.50, 182–189 (2003).
  • Muller CY. The quagmire of hCG and hCG testing in gynecologic oncology. Gynecol. Oncol. DOI: 10.1016/j.ygyno.2008.09.030 (2008) (Epub ahead of print).
  • Cole LA, Khanlian SA, Muller CY, Giddings A, Kohorn EI, Berkowitz R. Gestational trophoblastic diseases: 3. Human chorionic gonadotropin free β-subunit a reliable marker of placental site trophoblastic tumors. Gynecol. Oncol.102, 159–163 (2006).
  • Cole LA, Khanlian SA, Muller CY. Blood test for placental site trophoblastic tumor (PSTT) and for non-trophoblastic malignancy for evaluating patients with low positive hCG Results. J. Reprod. Med.53, 457–464 (2008).
  • Policastro PF, Daniels-McQueen S, Carle G, Boime I. A map of the hCG β-LH β gene cluster. J. Biol. Chem.13, 5907–5916 (1986).
  • Cole LA, Khanlian SA, Muller CY. Normal production of human chorionic gonadotropin in perimenopausal and menopausal women and following oophorectomy. Int. J. Gynecol. Cancer (2008) (Epub ahead of print).
  • Cole LA, Khanlian SA, Muller CY. Detection of hCG peri- or post-menopause an unnecessary source of alarm. Am. J. Obstet. Gynecol.198, 275–279 (2008).
  • Cole LA, Sasaki Y, Muller CY. Normal production of hCG in menopause: a medical management dilemma. N. Engl. J. Med.356, 1184–1186 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.