168
Views
62
CrossRef citations to date
0
Altmetric
Review

Th2 cells as targets for therapeutic intervention in allergic bronchial asthma

Pages 85-100 | Published online: 09 Jan 2014

References

  • Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM. Asthma. From bronchoconstriction to airways inflammation and remodeling. Am. J. Respir. Crit. Care Med.161(5), 1720–1745 (2000).
  • Corrigan CJ, Hartnell A, Kay AB. T lymphocyte activation in acute severe asthma. Lancet1(8595), 1129–1132 (1988).
  • Robinson DS, Hamid Q, Ying S et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med.326(5), 298–304 (1992).
  • Brusselle G, Kips J, Joos G, Bluethmann H, Pauwels R. Allergen-induced airway inflammation and bronchial responsiveness in wild-type and interleukin-4-deficient mice. Am. J. Respir. Cell Mol. Biol.12(3), 254–259 (1995).
  • Coyle AJ, Le Gros G, Bertrand C et al. Interleukin-4 is required for the induction of lung Th2 mucosal immunity. Am. J. Respir. Cell Mol. Biol.13(1), 54–59 (1995).
  • Messi M, Giacchetto I, Nagata K, Lanzavecchia A, Natoli G, Sallusto F. Memory and flexibility of cytokine gene expression as separable properties of human Th1 and Th2 lymphocytes. Nat. Immunol.4(1), 78–86 (2003).
  • Wills-Karp M, Luyimbazi J, Xu X et al. Interleukin-13: central mediator of allergic asthma. Science282(5397), 2258–2261 (1998).
  • Bacharier LB, Jabara H, Geha RS. Molecular mechanisms of immunoglobulin E regulation. Int. Arch. Allergy. Immunol.115(4), 257–269 (1998).
  • Renauld JC. New insights into the role of cytokines in asthma. J. Clin. Pathol.54(8), 577–589 (2001).
  • Steinke JW, Borish L. Th2 cytokines and asthma. Interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir. Res.2(2), 66–70 (2001).
  • Lukacs NW, Strieter RM, Chensue SW, Kunkel SL. Interleukin-4-dependent pulmonary eosinophil infiltration in a murine model of asthma. Am. J. Respir. Cell Mol. Biol.10(5), 526–532 (1994).
  • Zhou CY, Crocker IC, Koenig G, Romero FA, Townley RG. Anti-interleukin-4 inhibits immunoglobulin E production in a murine model of atopic asthma. J. Asthma.34(3), 195–201 (1997).
  • Henderson WR Jr, Chi EY, Maliszewski CR. Soluble IL-4 receptor inhibits airway inflammation following allergen challenge in a mouse model of asthma. J. Immunol.164(2), 1086–1095 (2000).
  • Borish LC, Nelson HS et al. Interleukin-4 receptor in moderate atopic asthma. A Phase I/II randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med.160(6), 1816–1823 (1999).
  • Takatsu K. Interleukin 5 and B cell differentiation. Cytokine Growth Factor Rev.9(1), 25–35 (1998).
  • Rothenberg ME, Hogan SP. The eosinophil. Annu. Rev. Immunol.24, 147–174 (2006).
  • Rosenberg HF, Phipps S, Foster PS. Eosinophil trafficking in allergy and asthma. J. Allergy Clin. Immunol.119(6), 1303–1310 (2007).
  • Dent LA, Strath M, Mellor AL, Sanderson CJ. Eosinophilia in transgenic mice expressing interleukin 5. J. Exp. Med.172(5), 1425–1431 (1990).
  • Lee JJ, McGarry MP, Farmer SC et al. Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. J. Exp. Med.185(12), 2143–2156 (1997).
  • Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J. Exp. Med.183(1), 195–201 (1996).
  • Yoshida T, Ikuta K, Sugaya H et al. Defective B-1 cell development and impaired immunity against Angiostrongylus cantonensis in IL-5R α-deficient mice. Immunity4(5), 483–494 (1996).
  • Hamelmann E, Oshiba A, Loader J et al. Antiinterleukin-5 antibody prevents airway hyperresponsiveness in a murine model of airway sensitization. Am. J. Respir. Crit. Care Med.155(3), 819–825 (1997).
  • Lach-Trifilieff E, McKay RA, Monia BP, Karras JG, Walker C. In vitro and in vivo inhibition of interleukin (IL)-5-mediated eosinopoiesis by murine IL-5Rα antisense oligonucleotide. Am. J. Respir. Cell Mol. Biol.24(2), 116–122 (2001).
  • Tanaka H, Komai M, Nagao K et al. Role of interleukin-5 and eosinophils in allergen-induced airway remodeling in mice. Am. J. Respir. Cell Mol. Biol.31(1), 62–68 (2004).
  • Leckie MJ, ten Brinke A, Khan J et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet356(9248), 2144–2148 (2000).
  • Kips JC, O’Connor BJ, Langley SJ et al. Effect of SCH55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma: a pilot study. Am. J. Respir. Crit. Care Med.167(12), 1655–1659 (2003).
  • Flood-Page PT, Menzies-Gow AN, Kay AB, Robinson DS. Eosinophil’s role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am. J. Respir. Crit. Care Med.167(2), 199–204 (2003).
  • Wegmann M, Göggel R, Sel S et al. Effects of a low-molecular-weight CCR-3 antagonist on chronic experimental asthma. Am. J. Respir. Cell Mol. Biol.36(1), 61–67 (2007).
  • Mora JR, Iwata M, Eksteen B et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science314(5802), 1157–1160 (2006).
  • Shimbara A, Christodoulopoulos P, Soussi-Gounni A et al. IL-9 and its receptor in allergic and nonallergic lung disease: increased expression in asthma. J. Allergy Clin. Immunol.105(1), 108–115 (2000).
  • Temann UA, Geba GP, Rankin JA, Flavell RA. Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J. Exp. Med.188(7), 1307–1320 (1998).
  • Cheng G, Arima M, Honda K et al. Anti-interleukin-9 antibody treatment inhibits airway inflammation and hyperreactivity in mouse asthma model. Am. J. Respir. Crit. Care Med.166(3), 409–416 (2002).
  • Gounni AS, Hamid Q, Rahman SM, Hoeck J, Yang J, Shan L. IL-9-mediated induction of eotaxin1/CCL11 in human airway smooth muscle cells. J. Immunol.173(4), 2771–2779 (2004).
  • Townsend JM, Fallon GP, Matthews JD, Smith P, Jolin EH, McKenzie NA. IL-9-deficient mice establish fundamental roles for IL-9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell development. Immunity13(4), 573–583 (2000).
  • O’Byrne P, Boulet LP, Gauvreau G, Leon F, Sari S, White B. A single dose of MEDI-528, a monoclonal antibody against interleukin-9, is well tolerated in mild and moderate asthmatics in the Phase II trial MI-CP-138. Chest132, 478 (2007).
  • Lu LF, Lind EF, Gondek DC et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature442(7106), 997–1002 (2006).
  • Grünig G, Warnock M, Wakil AE et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science282(5397), 2261–2263 (1998).
  • Webb DC, McKenzie AN, Koskinen AM, Yang M, Mattes J, Foster PS. Integrated signals between IL-13, IL-4, and IL-5 regulate airways hyperreactivity. J. Immunol.165(1), 108–113 (2000).
  • Walter DM, McIntire JJ, Berry G et al. Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J. Immunol.167(8), 4668–4675 (2001).
  • Yang G, Volk A, Petley T et al. Anti-IL-13 monoclonal antibody inhibits airway hyperresponsiveness, inflammation and airway remodeling. Cytokine28(6), 224–232 (2004).
  • Wills-Karp M. Interleukin-13 in asthma pathogenesis. Immunol. Rev.202, 175–190 (2004).
  • Lanone S, Zheng T, Zhu Z et al. Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and -12 in IL-13-induced inflammation and remodeling. J. Clin. Invest.110(4), 463–474 (2002).
  • Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two Phase IIa studies. Lancet370(9596), 1422–1431 (2007).
  • Brightling C, Berry M, Amrani Y. Targeting TNF-α: a novel therapeutic approach for asthma. J. Allergy Clin. Immunol.121(1), 5–10 (2008).
  • Matheson JM, Lemus R, Lange RW, Karol MH, Luster MI. Role of tumor necrosis factor in toluene diisocyanate asthma. Am. J. Respir. Cell Mol. Biol.27(4), 396–405 (2002).
  • Howarth PH, Babu KS, Arshad HS et al. Tumour necrosis factor (TNFα) as a novel therapeutic target in symptomatic corticosteroid dependent asthma. Thorax60(12), 1012–1018 (2005).
  • Berry MA, Hargadon B, Shelley M et al. Evidence of a role of tumor necrosis factor α in refractory asthma. N. Engl. J. Med.354(7), 697–708 (2006).
  • Gudmundsdottir H, Wells AD, Turka LA. Dynamics and requirements of T cell clonal expansion in vivo at the single-cell level: effector function is linked to proliferative capacity. J. Immunol.162(9), 5212–5223 (1999).
  • Reiner SL. Development in motion: helper T cells at work. Cell129(1), 33–36 (2007).
  • Grogan JL, Mohrs M, Harmon B, Lacy DA, Sedat JW, Locksley RM. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity14(3), 205–215 (2001).
  • Voehringer D, Shinkai K, Locksley RM. Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity20(3), 267–277 (2004).
  • Nouri-Aria KT, Irani AM, Jacobson MR et al. Basophil recruitment and IL-4 production during human allergen-induced late asthma. J. Allergy Clin. Immunol.108(2), 205–211 (2001).
  • DeKruyff RH, Fang Y, Umetsu DT. Corticosteroids enhance the capacity of macrophages to induce Th2 cytokine synthesis in CD4+ lymphocytes by inhibiting IL-12 production. J. Immunol.160(5), 2231–2237 (1998).
  • Georas SN, Guo J, De Fanis U, Casolaro V. T-helper cell type-2 regulation in allergic disease. Eur. Respir. J.26(6), 1119–1137 (2005).
  • Pulendran B, Smith JL, Caspary G et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl Acad. Sci. USA96(3), 1036–1041 (1999).
  • Maldonado-López R, De Smedt T, Michel P et al. CD8α+ and CD8α- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med.189(3), 587–592 (1999).
  • Wenner CA, Szabo SJ, Murphy KM. Identification of IL-4 promoter elements conferring Th2-restricted expression during T helper cell subset development. J. Immunol.158(2), 765–773 (1997).
  • Macián F, García-Cózar F, Im SH, Horton HF, Byrne MC, Rao A. Transcriptional mechanisms underlying lymphocyte tolerance. Cell109(6), 719–731 (2002).
  • Macian F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol.5(6), 472–484 (2005).
  • Macián F, López-Rodríguez C, Rao A. Partners in transcription: NFAT and AP-1. Oncogene20(19), 2476–2489 (2001).
  • Burke TF, Casolaro V, Georas SN. Characterization of P5, a novel NFAT/AP-1 site in the human IL-4 promoter. Biochem. Biophys. Res. Commun.270(3), 1016–1023 (2000).
  • Burchard EG, Silverman EK, Rosenwasser LJ et al. Association between a sequence variant in the IL-4 gene promoter and FEV(1) in asthma. Am. J. Respir. Crit. Care Med.160(3), 919–922 (1999).
  • van der Pouw Kraan TC, van Veen A, Boeije LC et al. An IL-13 promoter polymorphism associated with increased risk of allergic asthma. Genes Immun.1(1), 61–65 (1999).
  • Ogawa K, Kaminuma O, Okudaira H et al. Transcriptional regulation of the IL-5 gene in peripheral T cells of asthmatic patients. Clin. Exp. Immunol.130(3), 475–483 (2002).
  • Dolganov G, Bort S, Lovett M et al. Coexpression of the interleukin-13 and interleukin-4 genes correlates with their physical linkage in the cytokine gene cluster on human chromosome 5q23–5q31. Blood87(8), 3316–3326 (1996).
  • Solymar DC, Agarwal S, Bassing CH, Alt FW, Rao A. A 3´ enhancer in the IL-4 gene regulates cytokine production by Th2 cells and mast cells. Immunity17(1), 41–50 (2002).
  • Peng SL, Gerth AJ, Ranger AM, Glimcher LH. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity14(1), 13–20 (2001).
  • Crabtree GR, Olson EN. NFAT signaling: choreographing the social lives of cells. Cell109, S67–S79 (2002).
  • Fonacier L, Spergel J, Charlesworth EN et al. Report of the Topical Calcineurin Inhibitor Task Force of the American College of Allergy, Asthma and Immunology and the American Academy of Allergy, Asthma and Immunology. J. Allergy Clin. Immunol.115(6), 1249–1253 (2005).
  • Khan LN, Kon OM, Macfarlane AJ et al. Attenuation of the allergen-induced late asthmatic reaction by cyclosporin A is associated with inhibition of bronchial eosinophils, interleukin-5, granulocyte macrophage colony-stimulating factor, and eotaxin. Am. J. Respir. Crit. Care Med.162(4), 1377–1382 (2000).
  • Noguchi H, Matsushita M, Okitsu T et al. A new cell-permeable peptide allows successful allogeneic islet transplantation in mice. Nat. Med.10(3), 305–309 (2004).
  • Foletta VC, Segal DH, Cohen DR. Transcriptional regulation in the immune system: all roads lead to AP-1. J. Leukoc. Biol.63(2), 139–152 (1998).
  • Li B, Tournier C, Davis RJ, Flavell RA. Regulation of IL-4 expression by the transcription factor JunB during T helper cell differentiation. EMBO J.18(2), 420–432 (1999).
  • Hartenstein B, Teurich S, Hess J, Schenkel J, Schorpp-Kistner M, Angel P. Th2 cell-specific cytokine expression and allergen-induced airway inflammation depend on JunB. EMBO J.21(23), 6321–6329 (2002).
  • Vacca A, Felli MP, Farina AR et al. Glucocorticoid receptor-mediated suppression of the interleukin 2 gene expression through impairment of the cooperativity between nuclear factor of activated T cells and AP-1 enhancer elements. J. Exp. Med.175(3), 637–646 (1992).
  • Taha R, Hamid Q, Cameron L, Olivenstein R. T helper type 2 cytokine receptors and associated transcription factors GATA3, c-maf, and signal transducer and activator of transcription factor-6 in induced sputum of atopic asthmatic patients. Chest123(6), 2074–2082 (2003).
  • Erpenbeck VJ, Hohlfeld JM, Discher M et al. Increased messenger RNA expression of c-maf and GATA3 after segmental allergen challenge in allergic asthmatics. Chest123(3), 370S–371S (2003).
  • Hodge MR, Chun HJ, Rengarajan J, Alt A, Lieberson R, Glimcher LH. NF-AT-driven interleukin-4 transcription potentiated by NIP45. Science274(5294), 1903–1905 (1996).
  • Kim JI, Ho IC, Grusby MJ, Glimcher LH. The transcription factor c-maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity10(6), 745–751 (1999).
  • Hausding M, Ho IC, Lehr HA et al. A stage-specific functional role of the leucine zipper transcription factor c-maf in lung Th2 cell differentiation. Eur. J. Immunol.34(12), 3401–3412 (2004).
  • Christodoulopoulos P, Cameron L, Nakamura Y et al. TH2 cytokine-associated transcription factors in atopic and nonatopic asthma: evidence for differential signal transducer and activator of transcription 6 expression. J. Allergy Clin. Immunol.107(4), 586–591 (2001).
  • Georas SN, Cumberland JE, Burke TF, Chen R, Schindler U, Casolaro V. Stat6 inhibits human interleukin-4 promoter activity in T cells. Blood92(12), 4529–4538 (1998).
  • Kurata H, Lee HJ, O’Garra A, Arai N. Ectopic expression of activated Stat6 induces the expression of Th2-specific cytokines and transcription factors in developing Th1 cells. Immunity11(6), 677–688 (1999).
  • Zhu J, Guo L, Watson CJ, Hu-Li J, Paul WE. Stat6 is necessary and sufficient for IL-4’s role in Th2 differentiation and cell expansion. J. Immunol.166(12), 7276–7281 (2001).
  • Zhu J, Guo L, Min B et al. Growth factor independent-1 induced by IL-4 regulates Th2 cell proliferation. Immunity16(5), 733–744 (2002).
  • Takeda K, Tanaka T, Shi W et al. Essential role of Stat6 in IL-4 signalling. Nature380(6575), 627–630 (1996).
  • Shimoda K, van Deursen J, Sangster MY et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature380(6575), 630–633 (1996).
  • Kuperman D, Schofield B, Wills-Karp M, Grusby MJ. Signal transducer and activator of transcription factor 6 (Stat6)-deficient mice are protected from antigen-induced airway hyperresponsiveness and mucus production. J. Exp. Med.187(6), 939–948 (1998).
  • Tomkinson A, Duez C, Lahn M, Gelfand EW. Adoptive transfer of T cells induces airway hyperresponsiveness independently of airway eosinophilia but in a signal transducer and activator of transcription 6-dependent manner. J. Allergy Clin. Immunol.109(5) 810–816, (2002).
  • Matsukura S, Stellato C, Plitt JR et al. Activation of eotaxin gene transcription by NF-κB and STAT6 in human airway epithelial cells. J. Immunol.163(12), 6876–6883 (1999).
  • Hoeck J, Woisetschläger M. STAT6 mediates eotaxin-1 expression in IL-4 or TNF-α-induced fibroblasts. J. Immunol.166(7), 4507–4515 (2001).
  • Peng Q, Matsuda T, Hirst SJ. Signaling pathways regulating interleukin-13-stimulated chemokine release from airway smooth muscle. Am. J. Respir. Crit. Care Med.169(5) 596–603 (2004).
  • Rippmann JF, Schnapp A, Weith A, Hobbie S. Gene silencing with STAT6 specific siRNAs blocks eotaxin release in IL-4/TNFα stimulated human epithelial cells. FEBS Lett.579(1), 173–178 (2005).
  • Yokozeki H, Ghoreishi M, Takagawa S et al. Signal transducer and activator of transcription 6 is essential in the induction of contact hypersensitivity. J. Exp. Med.191(6), 995–1004 (2000).
  • McCusker CT, Wang Y, Shan J et al. Inhibition of experimental allergic airways disease by local application of a cell-penetrating dominant-negative STAT-6 peptide. J. Immunol.179(4), 2556–2564 (2007).
  • Zheng W, Flavell RA. The transcription factor GATA3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell89(4), 587–596 (1997).
  • Lee HJ, Takemoto N, Kurata H et al. GATA3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J. Exp. Med.192(1), 105–115 (2000).
  • Zhu J, Min B, Hu-Li J et al. Conditional deletion of Gata3 shows its essential function in Th1-Th2 responses. Nat. Immunol.5(11), 1157–1165 (2004).
  • Sundrud MS, Grill SM, Ni D et al. Genetic reprogramming of primary human T cells reveals functional plasticity in Th cell differentiation. J. Immunol.171(7), 3542–3549 (2003).
  • Ansel KM, Djuretic I, Tanasa B, Rao A. Regulation of Th2 differentiation and Il4 locus accessibility. Annu. Rev. Immunol.24, 607–656 (2006).
  • Nakamura Y, Christodoulopoulos P, Cameron L et al. Upregulation of the transcription factor GATA3 in upper airway mucosa after in vivo and in vitro allergen challenge. J. Allergy Clin. Immunol.105(6), 1146–1152 (2000).
  • Nakamura Y, Ghaffar O, Olivenstein R et al. Gene expression of the GATA3 transcription factor is increased in atopic asthma. J. Allergy Clin. Immunol.103(2), 215–222 (1999).
  • Lee GR, Flavell RA. Transgenic mice which overproduce Th2 cytokines develop spontaneous atopic dermatitis and asthma. Int. Immunol.16(8), 1155–1160 (2004).
  • Finotto S, De Sanctis GT, Lehr HA et al. Treatment of allergic airway inflammation and hyperresponsiveness by antisense-induced local blockade of GATA3 expression. J. Exp. Med.193(11), 1247–1260 (2001).
  • Lee CC, Huang HY, Chiang BL. Lentiviral-mediated GATA3 RNAi decreases allergic airway inflammation and hyperresponsiveness. Mol. Ther.16(1), 60–65 (2008).
  • Sel S, Wegmann M, Dicke T et al. Effective prevention and therapy of experimental allergic asthma using a GATA3-specific DNAzyme. J. Allergy Clin. Immunol.121(4), 910–916 (2008).
  • Hirasawa R, Shimizu R, Takahashi S et al. Essential and instructive roles of GATA factors in eosinophil development. J. Exp. Med.195(11), 1379–1386 (2002).
  • Ting CN, Olson MC, Barton KP, Leiden JM. Transcription factor GATA3 is required for development of the T-cell lineage. Nature384(6608), 474–478 (1996).
  • Butcher EC, Williams M, Youngman K, Rott L, Briskin M. Lymphocyte trafficking and regional immunity. Adv. Immunol.72, 209–253 (1999).
  • Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell76(2), 301–314 (1994).
  • Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity12(2), 121–127 (2000).
  • Sallusto F, Mackay CR, Lanzavecchia A. Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science277(5334), 2005–2007 (1997).
  • Bonecchi R, Bianchi G, Bordignon PP et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1T helper cells (Th1s) and Th2s. J. Exp. Med.187(1), 129–134 (1998).
  • Zingoni A, Soto H, Hedrick JA et al. The chemokine receptor CCR8 is preferentially expressed in Th2 but not Th1 cells. J. Immunol.161(2), 547–551 (1998).
  • Nagata K, Tanaka K, Ogawa K et al. Selective expression of a novel surface molecule by human Th2 cells in vivo. J. Immunol.162(3), 1278–1286 (1999).
  • Heath H, Qin S, Rao P et al. Chemokine receptor usage by human eosinophils. The importance of CCR3 demonstrated using an antagonistic monoclonal antibody. J. Clin. Invest.99(2), 178–184 (1997).
  • Gerard C, Rollins BJ. Chemokines and disease. Nat. Immunol.2(2), 108–115 (2001).
  • Uguccioni M, Mackay CR, Ochensberger et al. High expression of the chemokine receptor CCR3 in human blood basophils. Role in activation by eotaxin, MCP-4, and other chemokines. J. Clin. Invest.100(5), 1137–1143 (1997).
  • Stellato C, Brummet ME, Plitt JR et al. Expression of the C-C chemokine receptor CCR3 in human airway epithelial cells. J. Immunol.166(3), 1457–1461 (2001).
  • Humbles AA, Lu B, Friend DS et al. The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc. Natl Acad. Sci. USA99(3), 1479–1484 (2002).
  • Ma W, Bryce PJ, Humbles AA et al. CCR3 is essential for skin eosinophilia and airway hyperresponsiveness in a murine model of allergic skin inflammation. J. Clin. Invest.109(5), 621–628 (2002).
  • Yang Y, Loy J, Ryseck RP, Carrasco D, Bravo R. Antigen-induced eosinophilic lung inflammation develops in mice deficient in chemokine eotaxin. Blood92(10), 3912–3923 (1998).
  • Justice JP, Borchers MT, Crosby JR et al. Ablation of eosinophils leads to a reduction of allergen-induced pulmonary pathology. Am. J. Physiol. Lung. Cell Mol. Physiol.284(1), L169–L178 (2003).
  • Erin EM, Williams TJ, Barnes PJ, Hansel TT. Eotaxin receptor (CCR3) antagonism in asthma and allergic disease. Curr. Drug Targets Inflamm. Allergy.1(2), 201–214 (2002).
  • Zhang L, Soares MP, Guan Y et al. Functional expression and characterization of macaque C-C chemokine receptor 3 (CCR3) and generation of potent antagonistic anti-macaque CCR3 monoclonal antibodies. J. Biol. Chem.277(37), 33799–33810 (2002).
  • Wacker DA, Santella JB 3rd, Gardner DS et al. CCR3 antagonists: a potential new therapy for the treatment of asthma. Discovery and structure-activity relationships. Bioorg. Med. Chem. Lett.12(13), 1785–1789 (2002).
  • Gauvreau GM, Boulet LP, Cockcroft DW et al. Antisense therapy against CCR3 and the common β chain attenuates allergen-induced eosinophilic responses. Am. J. Respir. Crit. Care Med.177(9), 952–958 (2008).
  • Forssmann U, Hartung I, Bälder R et al. n-Nonanoyl-CC chemokine ligand 14, a potent CC chemokine ligand 14 analogue that prevents the recruitment of eosinophils in allergic airway inflammation. J. Immunol.173(5), 3456–3466 (2004).
  • Panina-Bordignon P, Papi A, Mariani M et al. The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. J. Clin. Invest.107(11), 1357–1364 (2001).
  • Galli G, Chantry D, Annunziato F et al. Macrophage-derived chemokine production by activated human T cells in vitro and in vivo: preferential association with the production of type 2 cytokines. Eur. J. Immunol.30(1), 204–210 (2000).
  • Imai T, Baba M, Nishimura M, Kakizaki M, Takagi S, Yoshie O. The T cell-directed CC chemokine TARC is a highly specific biological ligand for CC chemokine receptor 4. J. Biol. Chem.272(23), 15036–15042 (1997).
  • Bonecchi R, Sozzani S, Stine JT et al. Divergent effects of interleukin-4 and interferon-γ on macrophage-derived chemokine production: an amplification circuit of polarized T helper 2 responses. Blood92(8), 2668–2671 (1998).
  • Chvatchko Y, Hoogewerf AJ, Meyer A et al. A key role for CC chemokine receptor 4 in lipopolysaccharide-induced endotoxic shock. J. Exp. Med.191(10), 1755–1764 (2000).
  • Schuh JM, Power CA, Proudfoot AE, Kunkel SL, Lukacs NW, Hogaboam CM. Airway hyperresponsiveness, but not airway remodeling, is attenuated during chronic pulmonary allergic responses to Aspergillus in CCR4-/- mice. FASEB J.16(10), 1313–1315 (2002).
  • Gonzalo JA, Pan Y, Lloyd CM et al. Mouse monocyte-derived chemokine is involved in airway hyperreactivity and lung inflammation. J. Immunol.163(1), 403–411 (1999).
  • Lloyd CM, Delaney T, Nguyen T et al. CC chemokine receptor (CCR)3/eotaxin is followed by CCR4/monocyte-derived chemokine in mediating pulmonary T helper lymphocyte type 2 recruitment after serial antigen challenge in vivo. J. Exp. Med.191(2), 265–274 (2000).
  • Kawasaki S, Takizawa H, Yoneyama H et al. Intervention of thymus and activation-regulated chemokine attenuates the development of allergic airway inflammation and hyperresponsiveness in mice. J. Immunol.166(3), 2055–2062 (2001).
  • Yokoyama K, Ishikawa N, Igarashi S et al. Discovery of potent CCR4 antagonists: Synthesis and structure-activity relationship study of 2,4-diaminoquinazolines. Bioorg. Med. Chem.16(14), 7021–7032 (2008).
  • Allen S, Newhouse B, Anderson AS et al. Discovery and SAR of trisubstituted thiazolidinones as CCR4 antagonists. Bioorg. Med. Chem. Lett.14(7), 1619–1624 (2004).
  • Newhouse B, Allen S, Fauber B et al. Racemic and chiral lactams as potent, selective and functionally active CCR4 antagonists. Bioorg. Med. Chem. Lett.14(22), 5537–5542 (2004).
  • Purandare AV, Gao A, Wan H et al. Identification of chemokine receptor CCR4 antagonist. Bioorg. Med. Chem. Lett.15(10), 2669–2672 (2005).
  • Purandare AV, Somerville JE. Antagonists of CCR4 as immunomodulatory agents. Curr. Top. Med. Chem.6(13), 1335–1344 (2006).
  • Napolitano M, Zingoni A, Bernardini G et al. Molecular cloning of TER1, a chemokine receptor-like gene expressed by lymphoid tissues. J. Immunol.157(7), 2759–2763 (1996).
  • Tiffany HL, Lautens LL, Gao JL et al. Identification of CCR8: a human monocyte and thymus receptor for the CC chemokine I-309. J. Exp. Med.186(1), 165–170 (1997).
  • Chensue SW, Lukacs NW, Yang TY et al. Aberrant in vivo T helper type 2 cell response and impaired eosinophil recruitment in CC chemokine receptor 8 knockout mice. J. Exp. Med.193(5), 573–584 (2001).
  • Bishop B, Lloyd CM. CC chemokine ligand 1 promotes recruitment of eosinophils but not Th2 cells during the development of allergic airways disease. J. Immunol.170(9), 4810–4817 (2003).
  • Ghosh S, Elder A, Guo J et al. Design, synthesis, and progress toward optimization of potent small molecule antagonists of CC chemokine receptor 8 (CCR8). J. Med. Chem.49(9), 2669–2672 (2006).
  • Fox JM, Najarro P, Smith GL, Struyf S, Proost P, Pease JE. Structure/function relationships of CCR8 agonists and antagonists. Amino-terminal extension of CCL1 by a single amino acid generates a partial agonist. J. Biol. Chem.281(48), 36652–36661 (2006).
  • Marro ML, Daniels DA, Andrew DP, Chapman TD, Gearing KL. In vitro selection of RNA aptamers that block CCL1 chemokine function. Biochem. Biophys. Res. Commun.349(1), 270–276 (2006).
  • Gosset P, Bureau F, Angeli V et al. Prostaglandin D2 affects the maturation of human monocyte-derived dendritic cells: consequence on the polarization of naive Th cells. J. Immunol.170(10), 4943–4952 (2003).
  • Hirai H, Tanaka K, Yoshie O et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J. Exp. Med.193(2), 255–261 (2001).
  • Böhm E, Sturm GJ, Weiglhofer I et al. 11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. J. Biol. Chem.279(9), 7663–7670 (2004).
  • Satoh T, Moroi R, Aritake K et al. Prostaglandin D2 plays an essential role in chronic allergic inflammation of the skin via CRTH2 receptor. J. Immunol.177(4), 2621–2629 (2006).
  • Sugimoto H, Shichijo M, Iino T et al. An orally bioavailable small molecule antagonist of CRTH2, ramatroban (BAY u3405), inhibits prostaglandin D2-induced eosinophil migration in vitro. J. Pharmacol. Exp. Ther.305(1), 347–352 (2003).
  • Uller L, Mathiesen JM, Alenmyr L et al. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation. Respir. Res.8, 16 (2007).
  • Grabstein KH, Eisenman J, Shanebeck K et al. Cloning of a T cell growth factor that interacts with the β chain of the interleukin-2 receptor. Science264(5161), 965–968 (1994).
  • Mori A, Suko M, Kaminuma O et al. IL-15 promotes cytokine production of human T helper cells. J. Immunol.156(7), 2400–2405 (1996).
  • Bulfone-Paus S, Ungureanu D, Pohl T et al. Interleukin-15 protects from lethal apoptosis in vivo. Nat. Med.3(10), 1124–1128 (1997).
  • Hoontrakoon R, Chu HW, Gardai SJ et al. Interleukin-15 inhibits spontaneous apoptosis in human eosinophils via autocrine production of granulocyte macrophage-colony stimulating factor and nuclear factor-κB activation. Am. J. Respir. Cell Mol. Biol.26(4), 404–412 (2002).
  • Niedbala W, Wei X, Liew FY. IL-15 induces type 1 and type 2 CD4+ and CD8+ T cells proliferation but is unable to drive cytokine production in the absence of TCR activation or IL-12 / IL-4 stimulation in vitro. Eur. J. Immunol.32(2), 341–347 (2002).
  • Rückert R, Herz U, Paus R et al. IL-15-IgG2b fusion protein accelerates and enhances a Th2 but not a Th1 immune response in vivo, while IL-2-IgG2b fusion protein inhibits both. Eur. J. Immunol.28(10), 3312–3320 (1998).
  • Rückert R, Brandt K, Braun A et al. Blocking IL-15 prevents the induction of allergen-specific T cells and allergic inflammation in vivo. J. Immunol.174(9), 5507–5515 (2005).
  • Komai-Koma M, McKay A, Thomson L et al. Immuno-regulatory cytokines in asthma: IL-15 and IL-13 in induced sputum. Clin. Exp. Allergy.31(9), 1441–1448 (2001).
  • Lee J, Ho WH, Maruoka M et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J. Biol. Chem.276(2), 1660–1664 (2001).
  • Fort MM, Cheung J, Yen D et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity15(6), 985–995 (2001).
  • Angkasekwinai P, Park H, Wang YH et al. Interleukin 25 promotes the initiation of proallergic type 2 responses. J. Exp. Med.204(7), 1509–1517 (2007).
  • Ballantyne SJ, Barlow JL, Jolin HE et al. Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J. Allergy Clin. Immunol.120(6), 1324–1331 (2007).
  • Nurieva R, Yang XO, Martinez G et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature448(7152), 480–483 (2007).
  • Parrish-Novak J, Dillon SR, Nelson A et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature408(6808), 57–63 (2000).
  • Fina D, Fantini MC, Pallone F, Monteleone G. Role of interleukin-21 in inflammation and allergy. Inflamm. Allergy Drug Targets.6(1), 63–68 (2007).
  • Pesce J, Kaviratne M, Ramalingam TR et al. The IL-21 receptor augments Th2 effector function and alternative macrophage activation. J. Clin. Invest.116(7), 2044–2055 (2006).
  • Schmitz J, Owyang A, Oldham E et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity23(5), 479–490 (2005).
  • Hayakawa H, Hayakawa M, Kume A, Tominaga S. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J. Biol. Chem.282(36), 26369–26380 (2007).
  • Allakhverdi Z, Smith DE, Comeau MR, Delespesse G. Cutting edge: the ST2 ligand IL-33 potently activates and drives maturation of human mast cells. J. Immunol.179(4), 2051–2054 (2007).
  • Suzukawa M, Koketsu R, Iikura M et al. Interleukin-33 enhances adhesion, CD11b expression and survival in human eosinophils. Lab. Invest.88(11), 1245–1253 (2008).
  • Soumelis V, Reche PA, Kanzler H et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol.3(7), 673–680 (2002).
  • Ying S, O’Connor B, Ratoff J et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J. Immunol.181(4), 2790–2798 (2008).
  • Zhou B, Comeau MR, De Smedt T et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat. Immunol.6(10), 1047–1053 (2005).
  • Al-Shami A, Spolski R, Kelly J, Keane-Myers A, Leonard WJ. A role for TSLP in the development of inflammation in an asthma model. J. Exp. Med.202(6), 829–839 (2005).
  • Shi L, Leu SW, Xu F et al. Local blockade of TSLP receptor alleviated allergic disease by regulating airway dendritic cells. Clin. Immunol.129(2), 202–210 (2008).
  • Li M, Messaddeq N, Teletin M, Pasquali JL, Metzger D, Chambon P. Retinoid X receptor ablation in adult mouse keratinocytes generates an atopic dermatitis triggered by thymic stromal lymphopoietin. Proc. Natl Acad. Sci. USA102(41), 14795–14800 (2005).
  • Stout RD, Bottomly K. Antigen-specific activation of effector macrophages by IFN-γ producing (TH1) T cell clones. Failure of IL-4-producing (TH2) T cell clones to activate effector function in macrophages. J. Immunol.142(3), 760–765 (1989).
  • Snapper CM, Paul WE. Interferon-γ and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science236(4804), 944–947 (1987).
  • Maggi E, Parronchi P, Manetti R et al. Reciprocal regulatory effects of IFN-γ and IL-4 on the in vitro development of human Th1 and Th2 clones. J. Immunol.148(7), 2142–2147 (1992).
  • Parronchi P, De Carli M, Manetti R et al. IL-4 and IFN (α and γ) exert opposite regulatory effects on the development of cytolytic potential by Th1 or Th2 human T cell clones. J. Immunol.149(9), 2977–2983 (1992).
  • Li XM, Chopra RK, Chou TY, Schofield BH, Wills-Karp M, Huang SK. Mucosal IFN-γ gene transfer inhibits pulmonary allergic responses in mice. J. Immunol.157(8), 3216–3219 (1996).
  • Lack G, Bradley KL, Hamelmann E et al. Nebulized IFN-γ inhibits the development of secondary allergic responses in mice. J. Immunol.157(4), 1432–1439 (1996).
  • Lack G, Renz H, Saloga J et al. Nebulized but not parenteral IFN-γ decreases IgE production and normalizes airways function in a murine model of allergen sensitization. J. Immunol.152(5), 2546–2554 (1994).
  • Meissner N, Kochs S, Coutelle J et al. Modified T-cell activation pattern during specific immunotherapy (SIT) in cat-allergic patients. Clin. Exp. Allergy.29(5), 618–625 (1999).
  • O’Brien RM, Xu H, Rolland JM, Byron KA, Thomas WR. Allergen-specific production of interferon-γ by peripheral blood mononuclear cells and CD8 T cells in allergic disease and following immunotherapy. Clin. Exp. Allergy.30(3), 333–340 (2000).
  • Boguniewicz M, Schneider LC, Milgrom H et al. Treatment of steroid-dependent asthma with recombinant interferon-γ. Clin. Exp. Allergy.23(9), 785–790 (1993).
  • Boguniewicz M, Martin RJ, Martin D et al. The effects of nebulized recombinant interferon-γ in asthmatic airways. J. Allergy Clin. Immunol.95(1), 133–135 (1995).
  • Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol.3(2), 133–146 (2003).
  • Gavett SH, O’Hearn DJ, Li X, Huang SK, Finkelman FD, Wills-Karp M. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice. J. Exp. Med.182(5), 1527–1536 (1995).
  • Kips JC, Brusselle GJ, Joos GF et al. Interleukin-12 inhibits antigen-induced airway hyperresponsiveness in mice. Am. J. Respir. Crit. Care Med.153(2), 535–539 (1996).
  • Rempel JD, Wang M, HayGlass KT. In vivo IL-12 administration induces profound but transient commitment to T helper cell type 1-associated patterns of cytokine and antibody production. J. Immunol.159(3), 1490–1496 (1997).
  • Naseer T, Minshall EM, Leung DY et al. Expression of IL-12 and IL-13 mRNA in asthma and their modulation in response to steroid therapy. Am. J. Respir. Crit. Care Med.155(3), 845–851 (1997).
  • Bryan SA, O’Connor BJ, Matti S et al. Effects of recombinant human interleukin-12 on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet356(9248), 2149–2153 (2000).
  • Okamura H, Tsutsi H, Komatsu T et al. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature378(6552), 88–91 (1995).
  • Barbulescu K, Becker C, Schlaak JF, Schmitt E, Meyer zum Büschenfelde KH, Neurath MF. IL-12 and IL-18 differentially regulate the transcriptional activity of the human IFN-γ promoter in primary CD4+ T lymphocytes. J. Immunol.160(8), 3642–3647 (1998).
  • Pflanz S, Timans JC, Cheung J et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity16(6), 779–790 (2002).
  • Hofstra CL, Van Ark I, Hofman G, Kool M, Nijkamp FP, Van Oosterhout AJ. Prevention of Th2-like cell responses by coadministration of IL-12 and IL-18 is associated with inhibition of antigen-induced airway hyperresponsiveness, eosinophilia, and serum IgE levels. J. Immunol.161(9), 5054–5060 (1998).
  • Kodama T, Matsuyama T, Kuribayashi K et al. IL-18 deficiency selectively enhances allergen-induced eosinophilia in mice. J. Allergy Clin. Immunol.105(1), 45–53 (2000).
  • Wild JS, Sigounas A, Sur N et al. IFN-γ-inducing factor (IL-18) increases allergic sensitization, serum IgE, Th2 cytokines, and airway eosinophilia in a mouse model of allergic asthma. J. Immunol.164(5), 2701–2710 (2000).
  • Kumano K, Nakao A, Nakajima H et al. Interleukin-18 enhances antigen-induced eosinophil recruitment into the mouse airways. Am. J. Respir. Crit. Care Med.160(3) 873–878 (1999).
  • Matsubara S, Takeda K, Kodama T et al. IL-2 and IL-18 attenuation of airway hyperresponsiveness requires STAT4, IFN-γ, and natural killer cells. Am. J. Respir. Cell Mol. Biol.36(3) 324–332 (2007).
  • Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H. Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine Growth Factor Rev.12(1), 53–72 (2001).
  • Wills-Karp M, Santeliz J, Karp CL. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat. Rev. Immunol.1(1), 69–75 (2001).
  • Basu S, Fenton MJ. Toll-like receptors: function and roles in lung disease. Am. J. Physiol. Lung Cell. Mol. Physiol.286(5), L887–L892 (2004).
  • Kline JN, Waldschmidt TJ, Businga TR et al. Modulation of airway inflammation by CpG oligodeoxynucleotides in a murine model of asthma. J. Immunol.160(6) 2555–2559 (1998).
  • Sel S, Wegmann M, Sel S et al. Immunomodulatory effects of viral TLR ligands on experimental asthma depend on the additive effects of IL-12 and IL-10. J. Immunol.178(12), 7805–7813 (2007).
  • Akdis CA, Blaser K, Akdis M. Apoptosis in tissue inflammation and allergic disease. Curr. Opin. Immunol.16(6), 717–723 (2004).
  • Kemper C, Chan AC, Green JM, Brett KA, Murphy KM, Atkinson JP. Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature421(6921), 388–392 (2003).
  • Akbari O, Freeman GJ, Meyer EH et al. Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat. Med.8(9), 1024–1032 (2002).
  • Grünig G, Corry DB, Leach MW, Seymour BW, Kurup VP, Rennick DM. Interleukin-10 is a natural suppressor of cytokine production and inflammation in a murine model of allergic bronchopulmonary aspergillosis. J. Exp. Med.185(6), 1089–1099 (1997).
  • Fu CL, Chuang YH, Chau LY, Chiang BL. Effects of adenovirus-expressing IL-10 in alleviating airway inflammation in asthma. J. Gene Med.8(12), 1393–1399 (2006).
  • Alcorn JF, Rinaldi LM, Jaffe EF et al. Transforming growth factor-β1 suppresses airway hyperresponsiveness in allergic airway disease. Am. J. Respir. Crit. Care Med.176(10), 974–982 (2007).
  • Fattouh R, Midence NG, Arias K et al. Transforming growth factor-β regulates house dust mite-induced allergic airway inflammation but not airway remodeling. Am. J. Respir. Crit. Care Med.177(6), 593–603 (2008).
  • Scherf W, Burdach S, Hansen G. Reduced expression of transforming growth factor β 1 exacerbates pathology in an experimental asthma model. Eur. J. Immunol.35(1), 198–206 (2005).
  • Shevach EM, Davidson TS, Huter EN, Dipaolo RA, Andersson J. Role of TGF-β in the induction of Foxp3 expression and T regulatory cell function. J. Clin. Immunol. (2008) (Epub ahead of print).
  • Boxall C, Holgate ST, Davies DE. The contribution of transforming growth factor-β and epidermal growth factor signalling to airway remodeling in chronic asthma. Eur. Respir. J.27(1), 208–229 (2006).
  • Mangan PR, Harrington LE, O’Quinn DB et al. Transforming growth factor-β induces development of the Th17 lineage. Nature441(7090), 231–234 (2006).
  • Platts-Mills T, Vaughan J, Squillace S, Woodfolk J, Sporik R. Sensitisation, asthma, and a modified Th2 response in children exposed to cat allergen: a population-based cross-sectional study. Lancet357(9258), 752–756 (2001).
  • Taylor A, Verhagen J, Blaser K, Akdis M, Akdis CA. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-β: the role of T regulatory cells. Immunology117(4), 433–442 (2006).
  • Larché M. Regulatory T cells in allergy and asthma. Chest132(3), 1007–1014 (2007).
  • Ling EM, Smith T, Nguyen XD et al. Relation of CD4+CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Lancet363(9409), 608–615 (2004).
  • Grindebacke H, Wing K, Andersson AC, Suri-Payer E, Rak S, Rudin A. Defective suppression of Th2 cytokines by CD4CD25 regulatory T cells in birch allergics during birch pollen season. Clin. Exp. Allergy34(9), 1364–1372 (2004).
  • Bellinghausen I, Klostermann B, Knop J, Saloga J. Human CD4+CD25+ T cells derived from the majority of atopic donors are able to suppress TH1 and TH2 cytokine production. J. Allergy Clin. Immunol.111(4), 862–868 (2003).
  • Larché M, Akdis CA, Valenta R. Immunological mechanisms of allergen-specific immunotherapy. Nat. Rev. Immunol.6(10), 761–771 (2006).
  • Harrington LE, Hatton RD, Mangan PR et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1and 2 lineages. Nat. Immunol.6(11), 1123–1132 (2005).
  • Park H, Li Z, Yang XO et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol.6(11), 1133–1141 (2005).
  • Chung Y, Yang X, Chang SH, Ma L, Tian Q, Dong C. Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes. Cell Res.16(11), 902–907 (2006).
  • Hellings PW, Kasran A, Liu Z et al. Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am. J. Respir. Cell Mol. Biol.28(1), 42–50 (2003).
  • Foley SC, Hamid Q. Images in allergy and immunology: neutrophils in asthma. J. Allergy Clin. Immunol.119(5), 1282–1286 (2007).
  • Strunk RC, Bloomberg GR. Omalizumab for asthma. N. Engl. J. Med.354(25), 2689–2695 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.