26
Views
3
CrossRef citations to date
0
Altmetric
Drug Evaluation

Glatiramer acetate for multiple sclerosis: a comprehensive review of mechanisms and clinical efficacy

, , , , &
Pages 285-294 | Published online: 10 Jan 2014

References

  • Teitelbaum D, Meshorer A, Hirshfeld T et al Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide. Eur Immune'. 1, 242–248 (1971).
  • Petry KG, Boulleme AT, Pousset F, Brochet B, Caille JM, Dousset V Experimental allergic encephalomyelitis animal models for analyzing features of multiple sclerosis. Pathol Biol. 48,47–53 (2000).
  • Webb C, Teitelbaum D, Arnon R, Sela M. In vivo and in vitro immunological cross-reactions between basic encephalitogen and synthetic basic polypeptides capable of suppressing experimental allergic encephalomyelitis. Eur. j Immune'. 3, 279–286 (1973).
  • Keith AB, Arnon R, Teitelbaum D, Caspary EA, Wisniewski HM. The effect of Cop-1, a synthetic polypeptide, on chronic relapsing experimental experimental allergic encephalomyelitis in guinea-pigs. j Neural Sci. 42, 267–274 (1979).
  • Teitelbaum D, Webb C, Bree M, Meshorer A, Arnon R, Sela M. Suppression by several synthetic polypeptides of experimental allergic encephalomyelitis induced in guinea-pigs and rabbits with bovine and human basic encephalitogen. Eur Immune]. 3,273–279 (1973).
  • Lisak RP, Zweiman B, Blanchard N, Borke LB. Effect of treatment with copolymer 1(Cop-1) on the in vivo and in vitro manifestations of experimental allergic encephalomyelitis (EAE). I Neural Sci 62, 281–293 (1983).
  • Fridkis-Hareli M, Teitelbaum D, Gurevich E et al Direct binding of myelin basic protein and synthetic polymer co-polymer 1 to class II major histocompatibility complex molecules on living antigen-presenting cells - specificity and promiscuity Proc. Natl Acad. Sci USA 91, 4872–4876 (1994).
  • Fridkis-Hareli M, Aharoni R, Teitelbaum D, Amon R, Sela M, Strominger JL. Binding of random co-polymers of three amino acids to class II MHC molecules. Int. Immune]. 11 (5), 635–641 (1999).
  • Neuhaus 0, Farina C, Wekerle H, Hohlfeld R. Mechanisms of action of glatirameracetate in multiple sclerosis. Neurology 56(6), 702–708 (2001).
  • Chen M, Gran B, Costello K et al. Glatiramer acetate induces a Th2-biased response and crossreactivity with myelin basic protein in patients with MS. NIult.Scler 7,209–219 (2001).
  • Gran B, Tranquill LR, Chen M et al Mechanisms of immunomodulation by glatiramer acetate. Neurology 55 (11), 1704–1714 (2000).
  • Duda PW, Krieger JI, Schmied MC et al Human and murine CD4 T-cell reactivity to a complex antigen: recognition of the synthetic random polypeptide glatiramer acetate. j Immune'. 165, 7300–7307 (2000).
  • Ragheb S, Abramczyk S, Lisak D, Lisak R. Long-term therapy with glatiramer acetate in multiple sclerosis: effect on T-cells. Mult. Stier 7(1), 43–47 (2001).
  • Qin Y, Zhang DQ, Prat A, Pouly S, Ante]. J. Characterization of T-cell lines derived from glatiramer-acetate-treated multiple sclerosis patients. I Neuroimmunal 108(1–2), 201–206 (2000).
  • Prat A, Al-Asmi A, Duquette P, Antel JR Lymphocyte migration and multiple sclerosis: relation with disease and therapy. Ann. Neural. 46,253–256 (1999).
  • Aharoni R, Teitelbaum D, Leitner 0, Meshorer A, Sela M, Amon R. Specific Th2 cells accumulate in the central nervous system of mice protected against experimental autoimmune encephalomyelitis by co-polymer 1. Proc. Natl Acad. Li. USA 97,11472–11477 (2000).
  • Teitelbaum D, Aharoni R, Arnon R, Sela M. Specific inhibition of the T-cell response to myelin basic protein by the synthetic co-polymer Cop-1. Proc. Natl Acad. Sc]. USA 85,9724–9728 (1988).
  • Teitelbaum D, Milo R, Arnon R, Sela M. Synthetic co-polymer 1 inhibits humanT-cell lines specific for myelin basic protein. Pmc. Natl Acad. Sc]. USA 89,137–141 (1992).
  • Aharoni R, Teitelbaum D, Arnon R, Sela M. Co-polymer 1 acts against the immunodominant epitope 82–100 of myelin basic protein by T-cell receptor antagonism in addition to major histocompatibility complex blocking. Proc. Natl Acad. Sc]. USA 96(2), 634–639 (1999).
  • Mosmann TR, Sad S. The expanding universe of T-cell subsets: Thl, Th2 and more. Immunal Today17,138–146 (1996).
  • Brenner T, Arnon R, Sela M et al Humoral and cellular immune responses to co-polymer 1 in multiple sclerosis patients treated with Copaxone. I Neuroinimund 115(1–2), 152–160 (2001).
  • Brosnan CF, Litwak M, Neighbour PA et al Immunogenic potentials of co-polymer Tin normal human lymphocytes. Neurology35(12), 1754–1759 (1985).
  • Brosnan CF, Litwak M, Neighbour PA, Bornstein MB. Co-polymer I: effect on normal human lymphocytes. Ann. NY Acad. Sc]. 436,498–499 (1984).
  • Burns J, Krasner LJ, Guerrero E Human cellular immune response to co-polymer I and myelin basic protein. Neurology36(1), 92–94 (1986).
  • Farina C, Then Bergh F, Albrecht H et al Treatment of multiple sclerosis with Copaxone (COP): Elispot assay detects COP-induced interleukin-4 and interferon-gamma response in blood cells. Brain 24\(Pt 4), 705–719 (2001).
  • Neuhaus 0, Farina C, Yassouridis A et al Multiple sclerosis: comparison of co-polymer-1- reactive T-cell lines from treated and untreated subjects reveals cytokine shift from T-helper 1 to T-helper 2 cells. Proc. Natl Acad. Sc]. USA 97(13), 7452–7457 (2000).
  • Miller A, Shapiro S, Gershtein R et al. Treatment of multiple sclerosis with co- polymer-1 (Copaxone): implicating mechanisms of Thl to Th2/Th3 immune-deviation. J. Neuraimmunal 92 (1–2), 113–121 (1998).
  • Prat A, Al-Asmi A, Duquette P, Antel JR Lymphocyte migration and multiple sclerosis: relation with disease course and therapy. Ann. Neural 46(2), 253–256 (1999).
  • Ziemssen T, Kuempfel T, Klinkert W, Neuhaus 0, Hohlfeld R. Glatiramer acetate specific T-cell lines produce brain derived neurotrophic factor after activation upon antigen challenge in vitro: A novel mechanism of action? Neurology58\(Suppl. 3), A326 (2002).
  • Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M. Autoimmune T-cells protect neurons from secondary degeneration after central nervous system axotomy. Nat. Med. 5,49–55 (1999).
  • Hohlfeld R, Kerschensteiner M, Stadelmann C, Lassmann H, Wekerle H. The neuroprotective effect of inflammation: implications for the therapy of multiple sclerosis. J. Neuroimmunal 107(2), 161–166 (2000).
  • Kipnis J, Yoles E, Porat Z et al. T-cell immunity to co-polymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc. Natl Acad. Sc]. USA 97, 7446–7451 (2000).
  • Kerschensteiner M, Gallmeier E, Behrens L et al Activated human T-cells, B-cells and monocytes produce brain-derived neurotrophic factor (BDNF) in vitroand in brain lesions: A neuroprotective role of inflammation?' Exp. Med. 189,865–870 (1999).
  • Abramsky 0, Teitelbaum D, Arnon R. Effect of a synthetic polypeptide (COP 1) on patients with multiple sclerosis and with acute disseminated encephalomeylitis. Preliminary report. J. Neural Sc]. 31(3), 433–438 (1977).
  • Bornstein MB, Miller AT, Teitelbaum D et al Multiple sclerosis: a trial of synthetic polypetide. Ann. Neuro111,317–319 (1982).
  • Bornstein MB, Miller AT, Slagle S et al. A pilot trial of Cop 1 in exacerbating-remitting multiple sclerosis. N Engl Med. 317,408–414 (1987).
  • Kurztke JE Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33(11), 1444–1452 (1983).
  • Bornstein MB, Miller A, Slagle S et al A placebo-controlled, double-blind, randomized, two-center, pilot trial of Cop 1 in chronic progressive multiple sclerosis. Neurology 41 (4), 533–539 (1991).
  • Johnson IQ, Brooks BR, Cohen JA et al Co-polymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: Results of a Phase III multicenter, double-blind, placebo-controlled trial. Neurology45, 1268–1276 (1995).
  • Cohen JA, Grossman R, Udupa J et al Assessment of the efficacy of co-polymer-1 in the treatment of relapsing-remitting multiple sclerosis by quantitative MRI. Neumlogy45\(Suppl. 4), A418 (1995).
  • Johnson IQ, Brooks BR, Cohen JA et al Extended use of glatiramer acetate (Copaxone) is well-tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability. Neumlogy50, 710–708 (1998).
  • Johnson IQ, Brooks BR, Ford CC et al Sustained clinical benefits of glatiramer acetate in relapsing multiple sclerosis patients observed for 6 years. Mutt. Scler. 6, 255–266 (2000).
  • Johnson IQ, Brooks BR, Ford CC et al Results of the long-term (8 year) prospective, open-label trial of glatiramer acetate for relapsing multiple sclerosis. Neumlogy58\(Suppl. 3), A458 (2002).
  • Wolinsky JS, Narayana PA, Johnson IQ, Wolinsky JS, Narayana PA. Glatiramer acetate extension trial for relapsing multiple sclerosis: MRI and clinical correlates. Multiple Sclerosis Study Group and the MRI Analysis Center. Mult. Scler. 7(1), 33–41 (2001).
  • Benson K, Hartz AJ. A comparison of observational studies and randomized, controlled trials. N Engl. I Med. 342, 1878–1886 (2000).
  • Concato J, Shah N, Horowitz RI. Randomized controlled trials, observational studies and the hierarchy of research designs. N. Engl. Med. 342,1907–1909 (2000).
  • McFarland H, Barkhof F, Antel J, Miller DH. The role of MRI as surrogate outrcome measure in multiple sclerosis. Mult. Scler. 8,40–51 (2002).
  • Comi G, Filippi M, Wolinsky JS et al European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging-measured disease activity and burden in patients with relapsing multiple sclerosis. Ann. Neural 49,290–297 (2001).
  • Stone LA, Frank JA, Albert PS et al The effect of interferon beta on blood-brain barrier disruptions demonstrated by contrast enhanced MRI in relapsing-remitting multiple sclerosis. Ann. Neural 37,611–619 (1995).
  • Filippi M, Rovaris M, Rocca M et al Glatiramer acetate reduces the proportion of new MS lesions evolving into 'black holes.' Neurology57, 731–733 (2001).
  • Van Walderveen MAA, Barkhof F, Hommes OR et al Correlating MRI and clinical disease activity in multiple sclerosis: relevance of hypointense lesions on short TR/short TE (Ti-weighted) spin-echo images. Neurology45, 1684–1690 (1995).
  • Van Walderveen MAA, Barkhof F, Pouwels PJ et al Neuronal damage in T1-hypointense multiple sclerosis lesions demonstrated in vivo using proton magnetic resonance spectroscopy. Ann. Neural. 46,79-87 (1999).
  • Bitsch A, Kuhlman T, Stadelman C et al A longitudinally MRI study of histopathologically defined hypointense multiple sclerosis lesions. Ann. Neural. 49, 793–796 (2001).
  • Truyen L, van Waesberghe JH, van Walderveen MA et al Accumulation of hypointense lesions (black holes) on T1-spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 47,1469–1476 (1996).
  • Rovaris M, Comi G, Rocca MA et al. Short-term brain volume change in relapsing-remitting multiple sclerosis: effect of glatiramer acetate and implications. Brain. 124,1803–1812 (2001).
  • Rudick RA, Fisher E, Lee JC, Simon J, Jacobs LD. Use of brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting multiple sclerosis. Neurology53, 1698–1704 (1999).
  • Molyneux PD, Kappos L, Polman C et al The effect of interferon beta-lb treatment on MRI measures of cerebral atrophy in secondary progressive multiple sclerosis. European study group on interferon beta-lb in secondary progressive multiple sclerosis. Brain 123,2256–2263 (2000).
  • Interim results of CORAL study. Teva Pharmaceutical Industries Ltd. Released September 14, (2001).
  • Khan OA, Tselis AC, Kamholz J, Garbem J, Lewis RA, Lisak RP. A prospective open-label treatment trial to compare the effect of IFN-beta-la (Avonex), IFN-beta- lb (Betaseron) and glatiramer acetate (Copaxone) on the relapse rate in relapsing-remitting multiple sclerosis. Eur. J. Neural. 8, 141–148 (2001).
  • Khan OA, Tselis AC, Kamholz JA, Garbem JY, Lewis RA, Lisak RP. A prospective, open-label treatment trial to compare the effect of IFN beta-1a (Avonex), IFN beta-lb (Betaseron) and glatiramer acetate (Copaxone) on the Relapse rate in relapsing-remitting multiple sclerosis: results after 18 months of therapy. Mult. Scler. 7,349-353 (2001).
  • Haas J, Firzlaff M, Schmidt M. Comparison of new immunomodulatory treatments in the early stages of MS. Mult. Scler. 7\(Suppl. 1), S15 (2001).
  • Teitelbaum D, Arnon R, Sela M. Immunomodulation of experimental autoimmune encephalomyelitis by oral administration of co-polymer 1. Proc. Natl Acad. Sc]. USA 96, 3842–3847 (1999).
  • Teitelbaum D, Aharoni R, Arnon R, Sela M. Oral and sc. administration of glatiramer acetate (COP 1) have similar effects in chronic relapsing EAE. Mult. Scler. 7\(Suppl. 1), P-164 (2001).
  • de Seze J, Edan G, Labalette M, Dessaint JP et al Effect of glatiramer acetate (Copaxone) given orally in human patients: interleukin-10 production during a Phase 1 trial. Ann. Neural 47, 686 (2000).
  • Miller A. Clinical Features. Handbook of Multiple Sclerosis. Third edition. Cook SD (Ed.). Marcel Dekker, Inc.
  • Kantarci 0, Weinshenker B. Prognostic factors in Multiple Sclerosis. Handbook of Multiple Sclerosis. Third edition. Cook SD (Ed.). Marcel Dekker, Inc.
  • Wolinsky JS. Primary Progressive MS: clinical and MRI characteristics at entry into the PROMiSe trial. Neurology 56 (Suppl. 3), 8, S47.001 (2001).
  • Milo R, Panitch H. Additive effects of co- polymer-1 and interferon beta-lb on the immune response to myelin basic protein. Neuroimmunal 61(2), 185–193 (1995).
  • Brod SA, Lindsey JVV, Wolinsky JS. Combination therapy with glatiramer acetate (copolymer-1) and a Type I interferon (TFN-alpha) does not improve experimental autoimmune encephalomyelitis. Ann. Aiwa'. 47(1), 127–131 (2000).
  • Lublin F, Cutter G, Elfont R et al. A trial to assess the safety of combining therapy with interferon beta-1A and glatiramer acetate in patients with relapsing MS. Neurology 56\(Suppl. 3), 8, S20.002, A148 (2001).
  • Lublin F, Baier M, Cutter G et al Results of the extension of a trial to assess the longer term safety of combining interferon beta-1a and glatiramer acetate. Neurology58, A85 (2002)
  • Carter AR, Chen C, Schwartz PM, Segal RA. Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure. Num Li 22,1316–1327 (2002).
  • Plunet W, Kwon BK, Tetzlaff W. Promoting axonal itEe[ieration in the central nervous systemby enhancing the cell body response to amtomy. Neuf°. Li Res 68\(Suppl. 3), 1–6 (2002). Affiliations

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.