23
Views
3
CrossRef citations to date
0
Altmetric
Review

Acetyl-l-carnitine as a possible therapy for Alzheimer’s disease

&
Pages 647-654 | Published online: 10 Jan 2014

References

  • Pettegrew RV, Levine J, McClure RJ. Acetyl-L-carnitine physical-chemical, metabolic and therapeutic properties: Relevance for its mode of action in Alzheimer's disease and geriatric depression. Mal Bychiatry5616-5632 (2000) .
  • •Comprehensive review of ALCAR's clinical and physical—chemical properties.
  • Pettegrew JW. Molecular insights into Alzheimer's disease. Ann. NY Acad. Sci. 5685–28 (1989).
  • Pettegrew JVV, Klunk WE, Kanal E, Panchalingarn K, McClure RJ. Changes in brain membrane phospholipid and high-energy phosphate metabolism precede dementia. Neumbial Aging16(6), 973–975 (1995).
  • •Study presenting evidence for changes in brain metabolism before dementia.
  • Masliah E, Ellisman M, Carragher B et al Three-dimensional analysis of the relationship between synaptic pathology and neuropil threads in Alzheimer's disease. Neuropathol Exp. Neural. 51(4), 404–414 (1992).
  • Pettegrew JW, Klunk WE, Panchalingam K, McClure RJ, Stanley JA. Molecular insights into neurodevelopmental and neurodegenerative diseases. Brain Res. Bull. 53(4), 455–469 (2000).
  • Vance DE. Phospholipid metabolism and cell signalling in eucaryotes. In: Biochemistry of lipids, lipopmteins and membranes, Volume 20. Vance DE, Vance JE (Eds). Elsevier, New York, USA, 205–240 (1991).
  • Geddes RV, Panchalingam K, Keller JN, Pettegrew RV. Elevated phosphocholine and phosphatidyl choline following rat entorhinal cortex lesions. Neurobial Aging 18(3), 305–308 (1997).
  • •Evidence for the role of PMEs and PDEs as buiding blocks and degradation products.
  • Kanter JN, Pettegrew JVV, Moossy J, McCartney DG. Alterations of selected enzymes of phospholipid metabolism in Alzheimer's disease brain tissue as compared to non-Alzheimer's disease controls. Neurochem. Res. 18(3), 331–334 (1993).
  • Pettegrew JVV, Panchalingam K, Moossy J et al Correlation of phosphorus-31 magnetic resonance spectroscopy and morphologic findings in Alzheimer's disease. Arch. Neural 45(10), 1093–1096 (1988).
  • Pettegrew JW, Panchalingam K, Klunk WE, McClure RJ, Muenz LR. Alterations of cerebral metabolism in probable Alzheimer's disease: A preliminary study. Neurobial Aging15(1), 117–132 (1994).
  • Pettegrew JVV, Moossy J, Withers G, McKeag D, Panchalingam K. 31P Nuclear magnetic resonance study of the brain in Alzheimer's disease. J. Neuropathol Exp. Neural. 47,235-248 (1988).
  • Nitsch RM, Blusztajn JK, Pittas AG et al Evidence for a membrane defect in Alzheimer's disease brain. Proc. Natl Acad. Sci. USA 89(5), 1671–1675 (1992).
  • Klunk WE, Panchalingam K, McClure RJ, Pettegrew RV. Quantitative 1H and 31P MRS of PCA extracts of postmortem Alzheimer's disease brain. Neurobial Aging 17(3), 349–357 (1996).
  • Klunk WE, Xu CJ, McClure RJ et al Aggregation of13-amyloid peptide is promoted by membrane phospholipid metabolites elevated in Alzheimer's disease brain. J. .Ailirocheriz 69(1), 266–272 (1997).
  • •Possible role of glycerophosphocholine in AD.
  • Pettegrew JVV, Klunk WE, Panchalingam K, McClure RJ, Stanley JA. Magnetic resonance spectroscopic changes in Alzheimer's disease. Ann. NY Acad. Sci 826,282–306 (1997).
  • Mason RP, Shoemaker WI Shajenko L, Chambers TE, Herbette G. Structural changes in Alzheimer's disease brain membrane mediated by alteration in cholesterol. Neumbial Aging13(3), 413–419 (1992).
  • Mahley RW. Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology. Science240(4852), 622–630 (1988).
  • Patrick GN, Zukerberg L, Nikolic M et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402(6762), 615–622 (1999).
  • PettegrewJW Panchalingam K, Hamilton RL, McClure RJ. Brain membrane phospholipid alterations in Alzheimer's disease. Neurochem. Res. 26(7), 771–782 (2001).
  • •Alteration of phospholipids in AD.
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature 387 (6633), 569–572 (1997).
  • •Role of rafts in cell membranes.
  • Harder T, Simons K. Caveolae, DIGs and the dynamics of sphingolipid—cholesterol microdomains. Current Opin. Cell Biol. 9(4), 534–542 (1997).
  • Merrill AHJ, Morgan ET, Nikolova- Karakashian M, Stewart J. Sphingomyelin hydrolysis and regulation of the expression of the gene for cytochrome P450. Biochem. Soc. Trans. 27(4), 383–387 (1999).
  • Gross RW. High plasmalogen and arachidonic acid content of canine myocardial sarcolemma: a fast atom bombardment mass spectroscopic and gas chromatography—mass spectroscopic characterization. Biochemistry 23(1), 158–165 (1984).
  • Diagne A, Fauvel J, Record M, Chap H, Douste-Blazy L. Studies on ether phospholipids II. Comparative composition of various tissues from human, rat and guinea-pig. Biochim. Biophys. Acta 793(2), 221–231 (1984).
  • Lohner K. Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem. Phys. Lipids 81(2), 167–184 (1996).
  • Glaser PE, Gross RW. Plasmenylethanolamine facilitates rapid membrane fusion: a stopped-flow kinetic investigation correlating the propensity of a major plasma membrane constituent to adopt an HIT phase with its ability to promote membrane fusion. Biochemistry 33(19), 5805–5812 (1994).
  • Farooqui AA, Rapoport SI, Horrocks LA. Membrane phospholipid alterations in Alzheimer's disease: deficiency of ethanolamine plasmalogens. Neurochem. Res. 22(4), 523–527 (1997).
  • Schu PV, Takegawa K, Fry MJ et al. Phosphatidylinositol 3-kinase encoded by yeast VP534 gene essential for protein sorting. Science 260 (5104), 88–91 (1993).
  • Qiao L, Nan F, Kunkel M et al 3-Deoxy- D-myo-inositol 1-phosphate, 1-phosphonate and ether lipid analogues as inhibitors of phosphatidylinosito1-3-kinase signaling and cancer cell growth. J. Merl Chem. 41(18), 3303–3306 (1998).
  • Merrill AHJ, Schroeder JJ. Lipid modulation of cell function. Ann. Rev Nutr. 13,539–559 (1993).
  • Turini ME, Holub BJ. The cleavage of plasmenylethanolamine by phospholipase A2 appears to be mediated by the low affinity binding site of the TxA2/PGH2 receptor in U46619-stimulated human platelets. Biochim. Biophys. Acta 1213(1), 21–26 (1994).
  • Gross MM. Identification of plasmalogen as the major phospholipid constituent of cardiac sarcoplasmic reticulum. Biochemistry 24 (7), 1662–1668 (1985) .
  • Paltauf E Ether lipids in biomembranes. Chem. Phys. Lipids 74 (2), 101–139 (1994) .
  • Yavin E, Gatt S. Oxygen-dependent cleavage of the vinyl-ether linkage of plasmologens. 1. Cleavage by rat-brain supernatant. Eur. Biochem. 25(3), 431–436 (1972).
  • Reiss D, Beyer K, Engelmann B. Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochem. 323(Pt. 3), 807–814 (1997).
  • Engelmann B, Brautigam C, Thiery J. Plasmalogen phospholipids as potential protectors against lipid peroxidation of low density lipoproteins. Biochem. Biophys. Res. Commun. 204(3), 1235–1242 (1994).
  • Farooqui AA, Yang HC, Horrocks LA. Plasmalogens, phospholipases A2 and signal transduction. Brain Res. Brain Res. Rev 21(2), 152–161 (1995).
  • Holub BJ. Metabolism and function of myo-inositol and inositol phospholipids. Ann. Rev. Nutr. 6,563–597(1986).
  • Klunk WE, Panchalingam K, McClure RJ, Stanley JA, Pettegrew JW. Metabolic alterations in postmortem Alzheimer's disease brain are exaggerated by Apo-E4. Neumbial Aging 19 (6), 511–515 (1998) .
  • Pettegrew JVV, Panchalingam K, Levine J et al. Chronic myo-inositol increases rat brain phosphatidylethanolamine plasmalogen. Biol. Psychiatry 49(5), 444–453 (2001).
  • Schlame M, Rua D, Greenberg ML. The biosynthesis and functional role of cardiolipin. PlOg. Lipicl Res. 39(3), 257–288 (2000).
  • Lehninger AL, Nelson DL, Cox MM. Principles of Biochemistry 2ncl ed. Worth Publishers, New York, USA (1993).
  • Jope RS, Song L, Powers RE. Cholinergic activation of phosphoinositide signaling is impaired in Alzheimer's disease brain. Neumbial Aging18(1), 111–120 (1997).
  • Fowler CJ. The role of the phosphoinositide signaling system in the pathgenesis of sporadic Alzheimer's disease: a hypothesis. Brain Res. Rev 25,373–380 (1997).
  • Robinson NC. Functional binding of cardiolipin to cytochrome c oxidase. Bioenerg. Biomembr 25(2), 153–163 (1993).
  • Kish S, Bergeron C, Rajput A et al. Brain cytochrome oxidase in Alzheimer's disease. Neurochem. 59,776–779 (1992).
  • Chauhan A, Ray I, Chauhan VPS. Interaction of amyloid beta-protein with anionic phospholipids: Possible involvement of Lys28 and C-terminus aliphatic amino acids. Neumchem. Res. 25,423-429 (2000).
  • Pettegrew JVV, Panchalingam K, Withers G, McKeag D, Strychor S. Changes in brain energy and phospholipid metabolism during development and aging in the Fischer 344 rat. J. Neuropathol Exp. Neural. 49(3), 237–249 (1990).
  • Vance JE, Campenot RB, Vance DE. The synthesis and transport of lipids for axonal growth and nerve regeneration. Biochim. Biophys. Acta 148684–96 (2000).
  • Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279(5350), 519–526 (1998).
  • Spagnoli A, Lucca U, Menasce G et al Long-term acetyl-L-carnitine treatment in Alzheimer's disease. Neurology 41 (11), 1726–1732 (1991).
  • Pettegrew JVV, Klunk WE, Panchalingam K, Kanter JN, McClure RJ. Clinical and neurochemical effects of acetyl-L-carnitine in Alzheimer's disease. Neumbial Aging 16(1), 1–4 (1995).
  • •NMR study provides evidence for neurochemical changes with ALCAR treatment in AD.
  • Thal LI Carta A, Clarke WR et al A 1-year multicenter placebo-controlled study of acetyl-L-carnitine in patients with Alzheimer's disease. Neumlogy47(3), 705–711 (1996).
  • Brooks JO, Yesavage JA, Carta A, Bravi D. Acetyl L-carnitine slows decline in younger patients with Alzheimer's disease: a reanalysis of a double-blind, placebo-controlled study using the trilinear approach. Int a1 ychogeriatrics10(2), 193–203 (1998). Analysis of the clinical trial to study the effects of ALCAR.
  • Moghul S, Wilkinson D. Use of acetykholinesterase inhibitors in Alzheimer's disease. Expert Rev Neurotherapeutics 1(1), 61–69 (2001).
  • Waldemar G. Donepezil in the treatment of patients with Alzheimer's disease. Expert Rev. Neurotherapeutics 1(1), 11–19 (2001).
  • van Cool WA. Efficacy of donepezil in Alzheimer's disease: fact or artifact? Neurology52(1), 218–219 (1999).
  • Bayer T Commentary: Another piece of the Alzheimer's jigsaw. BE Med. j 318(7184), 639 (1999).
  • Farlow MR, Lahiri DK, Poirier J et al Treatment outcome of tacrine therapy depends on apolipoprotein genotype and gender of the subjects with Alzheimer's disease. Neumlogy 50 (3), 669–677 (1998).
  • Arduini A, Rossi M, Mancinelli G et al Effect of L-carnitine and acetyl-L-carnitine on the human erythrocyte membrane stability and deformability. Life Sci. 47 (26), 2395–2400 (1990).
  • Lassmann H, Fischer P, Jellinger K. Synaptic pathology of Alzheimer's disease. Ann. NY Acad. Sci. 69,559–564 (1993).
  • Liu X, Erikson C, Brun A. Cortical synaptic changes and gliosis in normal aging, Alzheimer's disease and frontal lobe degeneration. Dementia 7(3), 128–134 (1996).
  • Wakabayashi K, Honer WG, Masliah E. Synapse alterations in the hippocampal-entorhinal formation in Alzheimer's disease with and without Lewy body disease. Brain Res. 667(1), 24–32 (1994).
  • Yao PJ, Coleman PD. Reduced O- glycosylated clathrin assembly protein AP180: implication for synaptic vesicle recycling dysfunction in Alzheimer's disease. Aiurasci. Lett. 252(1), 33–36 (1998).
  • Davidsson P, Blennow K. Neurochemical dissection of synaptic pathology in Alzheimer's disease. Int. PTchogeriatrics 10(1), 11–23 (1998).
  • Sunderland T, Molchan SE, Zubenko GS. Biological markers in Alzheimer's disease. In: Bychwharmacology: The Fourth Generation of ogrtss. Bloom M, Kupfer DJ (Eds). Raven Press, New York, USA, 1389–1399 (1995).
  • Rapoport SI. Anatomic and functional brain imaging in Alzheimer's disease. In: Bychwharmacology: The Fourth Generation of ProjThrs. Bloom PE, Kupfer DJ (Eds). Raven Press, New York, USA, 1401–1415 (1995).
  • Kish SJ. Brain energy metabolizing enzymes in Alzheimer's disease: alpha-ketoglutarate dehydrogenase complex and cytochrome oxidase. Ann. NY Acad. Sci. 826,218–228 (1997).
  • Gorini A, D'Angelo A, Villa RE Action of L- acetylcamitine on different cerebral mitochondrial populations from cerebral cortex. N-wochern Res. 23(12), 1485–1491 (1998).
  • Rapoport SI, Hatanpaa K, Brady DR, Chandrasekaran K. Brain energy metabolism, cognitive function and downregulated oxidative phosphorylation in Alzheimer's disease. Neurodegeneration 5(4), 473–476 (1996).
  • Chandrasekaran K, Hatanpaa K, Brady DR, Rapoport SI. Evidence for physiological downregulation of brain oxidative phosphorylation in Alzheimer's disease. Exp. Neural. 142(1), 80–88 (1996).
  • Marcus DL, de LM, Goldman J et al Altered glucose metabolism in microvessels from patients with Alzheimer's disease. Ann. Neural. 26(1), 91–94 (1989).
  • Mann DB, Davis K. Experimental therapeutics. In: Psychopharmacology: The Fourth Generation of Progress. Bloom PE, Kupfer DJ (Eds). Raven Press, New York, USA, 1417–1426 (1995).
  • Virmani MA, Caso V, Spadoni A et al The action of acetyl-L-carnitine on the neurotoxicity evoked by amyloid fragments and peroxide on primary rat cortical neurones. Ann. NY Acad. Sci 939,162–178 (2001).
  • De Simone R, Ramacci MT, Aloe L. Effect of acetyl-L-camitine on forebrain cholinergic neurons of developing rats. int. Dev. Neurosci. 9(1), 39–46 (1991).
  • Taglialatela G, Angelucci L, Ramacci MT et al. Stimulation of nerve growth factor receptors in PC12 by acetyl-L-carnitine. Biochem Pharmacol 44(3), 577–585 (1992).
  • McClure RJ, Panchalingam K, Stanley JA, Pettegrew JVV Comparison of the conformation of amyloid beta(1-28) peptide fragment with its Lys28 N-acetyl derivative. SOC NeLIMSCi. AbStf: 23,1883 (1997).
  • Pettegrew JW, Levine J, Gershon S et al 31 P-MRS study of acetyl-L-camitine treatment in geriatric depression: preliminary results. Bipolar Dismrlers 4(1), 61–66 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.