142
Views
7
CrossRef citations to date
0
Altmetric
Theme: Nervous System Neoplasm - Review

Ependymomas: development of immunotherapeutic strategies

, , &
Pages 1089-1098 | Published online: 09 Jan 2014

References

  • Godfraind C, Kaczmarska JM, Kocak M et al. Distinct disease-risk groups in pediatric supratentorial and posterior fossa ependymomas. Acta Neuropathol. 124(2), 247–257 (2012).
  • Johnson RA, Wright KD, Poppleton H et al. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466(7306), 632–636 (2010).
  • Gilbert MR, Ruda R, Soffietti R. Ependymomas in adults. Curr. Neurol. Neurosci. Rep. 10(3), 240–247 (2010).
  • Tihan T, Zhou T, Holmes E, Burger PC, Ozuysal S, Rushing EJ. The prognostic value of histological grading of posterior fossa ependymomas in children: a Children’s Oncology Group study and a review of prognostic factors. Mod. Pathol. 21(2), 165–177 (2008).
  • Horn B, Heideman R, Geyer R et al. A multi-institutional retrospective study of intracranial ependymoma in children: identification of risk factors. J. Pediatr. Hematol. Oncol. 21(3), 203–211 (1999).
  • Robertson PL, Zeltzer PM, Boyett JM et al. Survival and prognostic factors following radiation therapy and chemotherapy for ependymomas in children: a report of the Children’s Cancer Group. J. Neurosurg. 88(4), 695–703 (1998).
  • Merchant TE, Mulhern RK, Krasin MJ et al. Preliminary results from a Phase II trial of conformal radiation therapy and evaluation of radiation-related CNS effects for pediatric patients with localized ependymoma. J. Clin. Oncol. 22(15), 3156–3162 (2004).
  • Merchant TE, Li C, Xiong X, Kun LE, Boop FA, Sanford RA. Conformal radiotherapy after surgery for paediatric ependymoma: a prospective study. Lancet Oncol. 10(3), 258–266 (2009).
  • Merchant TE, Zhu Y, Thompson SJ, Sontag MR, Heideman RL, Kun LE. Preliminary results from a Phase II trail of conformal radiation therapy for pediatric patients with localised low-grade astrocytoma and ependymoma. Int. J. Radiat. Oncol. Biol. Phys. 52(2), 325–332 (2002).
  • Merchant TE, Jenkins JJ, Burger PC et al. Influence of tumor grade on time to progression after irradiation for localized ependymoma in children. Int. J. Radiat. Oncol. Biol. Phys. 53(1), 52–57 (2002).
  • Hukin J, Epstein F, Lefton D, Allen J. Treatment of intracranial ependymoma by surgery alone. Pediatr. Neurosurg. 29(1), 40–45 (1998).
  • Duffner PK, Horowitz ME, Krischer JP et al. Postoperative chemotherapy and delayed radiation in children less than three years of age with malignant brain tumors. N. Engl. J. Med. 328(24), 1725–1731 (1993).
  • Gaynon PS, Ettinger LJ, Baum ES, Siegel SE, Krailo MD, Hammond GD. Carboplatin in childhood brain tumors. A Children’s Cancer Study Group Phase II trial. Cancer 66(12), 2465–2469 (1990).
  • Duffner PK, Krischer JP, Sanford RA et al. Prognostic factors in infants and very young children with intracranial ependymomas. Pediatr. Neurosurg. 28(4), 215–222 (1998).
  • Needle MN, Goldwein JW, Grass J et al. Adjuvant chemotherapy for the treatment of intracranial ependymoma of childhood. Cancer 80(2), 341–347 (1997).
  • Ridley L, Rahman R, Brundler MA et al. Multifactorial analysis of predictors of outcome in pediatric intracranial ependymoma. Neuro Oncol. 10(5), 675–689 (2008).
  • Tabori U, Ma J, Carter M et al. Human telomere reverse transcriptase expression predicts progression and survival in pediatric intracranial ependymoma. J. Clin. Oncol. 24(10), 1522–1528 (2006).
  • Taylor MD, Poppleton H, Fuller C et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell. 8(4), 323–335 (2005).
  • Evans AE, Anderson JR, Lefkowitz-Boudreaux IB, Finlay JL. Adjuvant chemotherapy of childhood posterior fossa ependymoma: cranio-spinal irradiation with or without adjuvant CCNU, vincristine, and prednisone: a Childrens Cancer Group study. Med. Pediatr. Oncol. 27(1), 8–14 (1996).
  • Mason WP, Goldman S, Yates AJ, Boyett J, Li H, Finlay JL. Survival following intensive chemotherapy with bone marrow reconstitution for children with recurrent intracranial ependymoma – a report of the Children’s Cancer Group. J. Neurooncol. 37(2), 135–143 (1998).
  • Fouladi M, Stewart CF, Blaney SM et al. Phase I trial of lapatinib in children with refractory CNS malignancies: a Pediatric Brain Tumor Consortium study. J. Clin. Oncol. 28(27), 4221–4227 (2010).
  • Gururangan S, Fangusaro J, Young Poussaint T et al. Lack of efficacy of bevacizumab + irinotecan in cases of pediatric recurrent ependymoma – a Pediatric Brain Tumor Consortium study. Neuro. Oncol. 14(11), 1404–1412 (2012).
  • Pollack IF, Jakacki RI, Butterfield LH, Okada H. Results of a pilot study to evaluate the effects of vaccinations with HLA-A2 restricted glioma antigen-peptides in combination with poly-ICLC for children with newly diagnosed malignant brainstem gliomas, non-brainstem high-grade gliomas, or recurrent unresectable gliomas. Neuro. Oncol. 13(Suppl. 3), iii34–iii40. (2011).
  • Pollack IF, Jakacki RI, Butterfield LH, Okada H. Peptide vaccine therapy for childhood gliomas. J. Neurosurg. 60(Suppl. 1), 113–119 (2012).
  • Yeung JT, Hamilton RL, Okada H, Jakacki RI, Pollack IF. Increased expression of tumor-associated antigens in pediatric and adult ependymomas: implication for vaccine therapy. J. Neurooncol. 111(2), 103–111 (2013).
  • Kantoff PW, Higano CS, Shore ND et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363(5), 411–422 (2010).
  • Rosenberg SA, Sherry RM, Morton KE et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J. Immunol. 175(9), 6169–6176 (2005).
  • Rosenberg SA, Yang JC, Schwartzentruber DJ et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat. Med. 4(3), 321–327 (1998).
  • Slingluff CL Jr, Petroni GR, Yamshchikov GV et al. Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J. Clin. Oncol. 21(21), 4016–4026 (2003).
  • Ardon H, De Vleeschouwer S, Van Calenbergh F et al. Adjuvant dendritic cell-based tumour vaccination for children with malignant brain tumours. Pediatr. Blood Cancer. 54(4), 519–525 (2010).
  • Caruso DA, Orme LM, Neale AM et al. Results of a phase 1 study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children and young adults with brain cancer. Neuro Oncol, 6(3), 236–246 (2004).
  • De Vleeschouwer S, Fieuws S, Rutkowski S et al. Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin. Cancer Res. 14(10), 3098–3104 (2008).
  • Donson AM, Birks DK, Barton VN et al. Immune gene and cell enrichment is associated with a good prognosis in ependymoma. J. Immunol. 183(11), 7428–7440 (2009).
  • Walker PR, Calzascia T, de Tribolet N, Dietrich PY. T-cell immune responses in the brain and their relevance for cerebral malignancies. Brain Res. Brain Res. Rev. 42(2), 97–122 (2003).
  • Okada H, Kohanbash G, Zhu X et al. Immunotherapeutic approaches for glioma. Crit. Rev. Immunol. 29(1), 1–42 (2009).
  • Engelhardt B. Molecular mechanisms involved in T cell migration across the blood-brain barrier. J. Neural Transm. 113(4), 477–485 (2006).
  • Krakowski ML, Owens T. The central nervous system environment controls effector CD4+ T cell cytokine profile in experimental allergic encephalomyelitis. Eur. J. Immunol. 27(11), 2840–2847 (1997).
  • Albert ML, Darnell JC, Bender A, Francisco LM, Bhardwaj N, Darnell RB. Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nat. Med. 4(11), 1321–1324 (1998).
  • Okada H, Lieberman FS, Edington HD et al. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of recurrent glioblastoma: preliminary observations in a patient with a favorable response to therapy. J. Neurooncol. 64(1–2), 13–20 (2003).
  • Okada H, Lieberman FS, Walter KA et al. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas. J. Transl. Med. 5, 67 (2007).
  • Okada H, Pollack IF. Cytokine gene therapy for malignant glioma. Expert Opin. Biol. Ther. 4(10), 1609–1620 (2004).
  • Okada H, Pollack IF, Lieberman F et al. Gene therapy of malignant gliomas: a pilot study of vaccination with irradiated autologous glioma and dendritic cells admixed with IL-4 transduced fibroblasts to elicit an immune response. Hum. Gene. Ther. 12(5), 575–595 (2001).
  • Okada H, Pollack IF, Lotze MT et al. Gene therapy of malignant gliomas: a phase I study of IL-4-HSV-TK gene-modified autologous tumor to elicit an immune response. Hum. Gene. Ther. 11(4), 637–653 (2000).
  • Kikuchi T, Akasaki Y, Abe T et al. Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J. Immunother. 27(6), 452–459 (2004).
  • Liau LM, Prins RM, Kiertscher SM et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin. Cancer Res. 11(15), 5515–5525 (2005).
  • Wheeler CJ, Black KL, Liu G et al. Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res. 68(14), 5955–5964 (2008).
  • Yamanaka R, Abe T, Yajima N et al. Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br. J. Cancer 89(7), 1172–1179 (2003).
  • Yamanaka R, Homma J, Yajima N et al. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin. Cancer Res. 11(11), 4160–4167 (2005).
  • Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res. 64(14), 4973–4979 (2004).
  • Okada H, Kalinski P, Ueda R et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 29(3), 330–336 (2011).
  • Okano F, Storkus WJ, Chambers WH, Pollack IF, Okada H. Identification of a novel HLA-A*0201-restricted, cytotoxic T lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor alpha2 chain. Clin. Cancer Res. 8(9), 2851–2855 (2002).
  • Eguchi J, Hatano M, Nishimura F et al. Identification of interleukin-13 receptor alpha2 peptide analogues capable of inducing improved antiglioma CTL responses. Cancer Res. 66(11), 5883–5891 (2006).
  • Hatano M, Eguchi J, Tatsumi T et al. EphA2 as a glioma-associated antigen: a novel target for glioma vaccines. Neoplasia 7(8), 717–722 (2005).
  • Debinski W, Gibo DM. Molecular expression analysis of restrictive receptor for interleukin 13, a brain tumor-associated cancer/testis antigen. Mol. Med. 6(5), 440–449 (2000).
  • Debinski W, Gibo DM, Obiri NI, Kealiher A, Puri RK. Novel anti-brain tumor cytotoxins specific for cancer cells. Nat. Biotechnol. 16(5), 449–453 (1998).
  • Debinski W, Gibo DM, Slagle B, Powers SK, Gillespie GY. Receptor for interleukin 13 is abundantly and specifically over-expressed in patients with glioblastoma multiforme. Int. J. Oncol. 15(3), 481–486 (1999).
  • Dodelet VC, Pasquale EB. Eph receptors and ephrin ligands: embryogenesis to tumorigenesis. Oncogene 19(49), 5614–5619 (2000).
  • Kinch MS, Moore MB, Harpole DH Jr. Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin. Cancer Res. 9(2), 613–618 (2003).
  • Oba SM, Wang YJ, Song JP et al. Genomic structure and loss of heterozygosity of EPHB2 in colorectal cancer. Cancer Lett. 164(1), 97–104 (2001).
  • Liu F, Park PJ, Lai W et al. A genome-wide screen reveals functional gene clusters in the cancer genome and identifies EphA2 as a mitogen in glioblastoma. Cancer Res. 66(22), 10815–10823 (2006).
  • Chakravarti A, Delaney MA, Noll E et al. Prognostic and pathologic significance of quantitative protein expression profiling in human gliomas. Clin. Cancer Res. 7(8), 2387–2395 (2001).
  • Chakravarti A, Noll E, Black PM et al. Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J. Clin. Oncol. 20(4), 1063–1068 (2002).
  • Kogiku M, Ohsawa I, Matsumoto K et al. Prognosis of glioma patients by combined immunostaining for survivin, Ki-67 and epidermal growth factor receptor. J. Clin. Neurosci. 15(11), 1198–1203 (2008).
  • Uematsu M, Ohsawa I, Aokage T et al. Prognostic significance of the immunohistochemical index of survivin in glioma: a comparative study with the MIB-1 index. J. Neurooncol. 72(3), 231–238 (2005).
  • Zhen H-N, Zhang X, Hu P-Z et al. Survivin expression and its relation with proliferation, apoptosis, and angiogenesis in brain gliomas. Cancer 104(12), 2775–2783 (2005).
  • Andersen MH, Pedersen LO, Becker JC, Straten PT. Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res. 61(3), 869–872 (2001).
  • Andersen MH, Pedersen LO, Capeller B, Brocker EB, Becker JC, thor Straten P. Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res. 61(16), 5964–5968 (2001).
  • Wobser M, Keikavoussi P, Kunzmann V, Weininger M, Andersen MH, Becker JC. Complete remission of liver metastasis of pancreatic cancer under vaccination with a HLA-A2 restricted peptide derived from the universal tumor antigen survivin. Cancer Immunol. Immunother. 55(10), 1294–1298 (2005).
  • Zhang JG, Kruse CA, Driggers L et al. Tumor antigen precursor protein profiles of adult and pediatric brain tumors identify potential targets for immunotherapy. J. Neurooncol. 88(1), 65–76 (2008).
  • Okada H, Low KL, Kohanbash G, McDonald HA, Hamilton RL, Pollack IF. Expression of glioma-associated antigens in pediatric brain stem and non-brain stem gliomas. J. Neurooncol. 88(3), 245–250 (2008).
  • Zhang JG, Equchi J, Kruse CA et al. Antigenic profiles of human glioma cells; Implications for patient CTL targeting of tumor associated antigens with allogeneic tumor cell-based vaccine or other immune-cell based therapies. Neuro-oncol. 8, 431 (2007).
  • Yajima N, Yamanaka R, Mine T et al. Immunologic evaluation of personalized peptide vaccination for patients with advanced malignant glioma. Clin. Cancer Res. 11(16), 5900–5911 (2005).
  • Giezeman-Smits KM, Okada H, Brissette-Storkus CS et al. Cytokine gene therapy of gliomas: induction of reactive CD4+ T cells by interleukin-4-transfected 9L gliosarcoma is essential for protective immunity. Cancer Res. 60(9), 2449–2457 (2000).
  • Matsui S, Ahlers JD, Vortmeyer AO et al. A model for CD8+ CTL tumor immunosurveillance and regulation of tumor escape by CD4 T cells through an effect on quality of CTL. J. Immunol. 163(1), 184–193 (1999).
  • Adams M, Navabi H, Croston D et al. The rationale for combined chemo/immunotherapy using a Toll-like receptor 3 (TLR3) agonist and tumour-derived exosomes in advanced ovarian cancer. Vaccine 23(17–18), 2374–2378 (2005).
  • Salem ML, El-Naggar SA, Kadima A, Gillanders WE, Cole DJ. The adjuvant effects of the toll-like receptor 3 ligand polyinosinic-cytidylic acid poly (I:C) on antigen-specific CD8+ T cell responses are partially dependent on NK cells with the induction of a beneficial cytokine milieu. Vaccine 24(24), 5119–5132 (2006).
  • Schulz O, Diebold SS, Chen M et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433(7028), 887–892 (2005).
  • Zhu X, Nishimura F, Sasaki K et al. Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J. Transl. Med. 5, 10 (2007).
  • Sasaki K, Zhu X, Vasquez C et al. Preferential expression of very late antigen-4 on type 1 CTL cells plays a critical role in trafficking into central nervous system tumors. Cancer Res. 67(13), 6451–6458 (2007).
  • Butowski N, Lamborn KR, Lee BL et al. A North American brain tumor consortium phase II study of poly-ICLC for adult patients with recurrent anaplastic gliomas. J. Neurooncol. 91(2), 183–189 (2009).
  • Salazar AM, Levy HB, Ondra S et al. Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery 38(6), 1096–1103, discussion 1103–1094 (1996).
  • Butowski N, Chang SM, Junck L et al. A phase II clinical trial of poly-ICLC with radiation for adult patients with newly diagnosed supratentorial glioblastoma: a North American Brain Tumor Consortium (NABTC01-05). J. Neurooncol. 91(2), 175–182 (2009).
  • Okada H, Butterfield LH, Hamilton RL et al. A bi-institutional pilot study of peptide-based vaccines in combination with poly ICLC in patients with WHO grade 2 low-grade glioma. Neuro-oncol. 14(Suppl. 6), vi45 (2012).
  • Okada H, Pollack IF. Do we need novel radiologic response criteria for brain tumor immunotherapy? Expert Rev. Neurother. 11(5), 619–622 (2011).
  • Prins RM, Craft N, Bruhn KW et al. The TLR-7 agonist, imiquimod, enhances dendritic cell survival and promotes tumor antigen-specific T cell priming: relation to central nervous system antitumor immunity. J. Immunol. 176(1), 157–164 (2006).
  • Prins RM, Soto H, Konkankit V et al. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin. Cancer Res. 17(6), 1603–1615 (2011).
  • Hanna D, Hatami A, Powell J et al. A prospective randomized trial comparing the efficacy and adverse effects of four recognized treatments of molluscum contagiosum in children. Pediatr. Dermatol. 23(6), 574–579 (2006).
  • Majewski S, Pniewski T, Malejczyk M, Jablonska S. Imiquimod is highly effective for extensive, hyperproliferative condyloma in children. Pediatr. Dermatol. 20(5), 440–442 (2003).
  • Vrabec M, Van Cauter S, Himmelreich U et al. MR perfusion and diffusion imaging in the follow-up of recurrent glioblastoma treated with dendritic cell immunotherapy: a pilot study. Neuroradiology 53(10), 721–731 (2011).
  • Hodi FS, O’Day SJ, McDermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363(8), 711–723 (2010).
  • Brahmer JR, Drake CG, Wollner I et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28(19), 3167–3175 (2010).
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12(4), 252–264 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.