594
Views
86
CrossRef citations to date
0
Altmetric
Reviews

Tissue engineering of the peripheral nervous system

, , , &

References

  • Mills SE. Histology for pathologists. Wolters Kluwer/Lippincott Williams & Wilkins Health; Philadelphia, PA, USA: 2012
  • Geuna S, Raimondo S, Ronchi G, et al. Chapter 3: histology of the peripheral nerve and changes occurring during nerve regeneration. Int Rev Neurobiol 2009;87:27-46
  • Lundborg GR. Nerve injury and repair: regeneration, reconstruction, and cortical remodeling. Elsevier/Churchill Livingstone; Philadelphia, PA, USA: 2004
  • Campbell WW. Evaluation and management of peripheral nerve injury. Clin Neurophysiol 2008;119(9):1951-65
  • Wangensteen KJ, Kalliainen LK. Collagen tube conduits in peripheral nerve repair: a retrospective analysis. Hand (NY) 2010;5(3):273-7
  • Weber RA, Breidenbach WC, Brown RE, et al. A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans. Plast Reconstr Surg 2000;106(5):1036-45; discussion 1046-1038
  • Ramón y Cajal S, May RM. National Institute on Drug Abuse, Addiction Research Center (US). Degeneration & regeneration of the nervous system. Hafner Pub; NY, USA: 1959
  • Vernadakis AJ, Humphreys DB, Mackinnon SE. Distal anterior interosseous nerve in the recurrent motor branch graft for reconstruction of a median nerve neuroma-in-continuity. J Reconstr Microsurg 2004;20(1):7-11
  • Dahlin LB. Techniques of peripheral nerve repair. Scand J Surg 2008:97(4):310-16
  • Robinson LR. Traumatic injury to peripheral nerves. Suppl Clin Neurophysiol 2004;57:173-86
  • Noble J, Munro CA, Prasad VS, Midha R. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma 1998;45(1):116-22
  • Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury 2012;43(5):553-72
  • Rosberg HE, Carlsson KS, Hojgard S, et al. Injury to the human median and ulnar nerves in the forearm – analysis of costs for treatment and rehabilitation of 69 patients in southern Sweden. J Hand Surg Br 2005;30(1):35-9
  • Siemionow M, Brzezicki G. Chapter 8: current techniques and concepts in peripheral nerve repair. Int Rev Neurobiol 2009;87:141-72
  • Pabari A, Yang SY, Seifalian AM, Mosahebi A. Modern surgical management of peripheral nerve gap. J Plast Reconstr Aesthet Surg 2010;63(12):1941-8
  • Ray WZ, Mackinnon SE. Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp Neurol 2010;223(1):77-85
  • Gordon T. The role of neurotrophic factors in nerve regeneration. Neurosurg Focus 2009;26(2):E3
  • Allodi I, Udina E, Navarro X. Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol 2012;98(1):16-37
  • Webber C, Zochodne D. The nerve regenerative microenvironment: early behavior and partnership of axons and Schwann cells. Exp Neurol 2010;223(1):51-9
  • Battiston B, Raimondo S, Tos P, et al. Chapter 11: tissue engineering of peripheral nerves. Int Rev Neurobiol 2009;87:227-49
  • Konofaos P, Ver Halen JP. Nerve repair by means of tubulization: past, present, future. J Reconstr Microsurg 2013;29(3):149-64
  • Ducic I, Fu R, Iorio ML. Innovative treatment of peripheral nerve injuries: combined reconstructive concepts. Ann Plast Surg 2012;68(2):180-7
  • Carriel V, Garzon I, Alaminos M, Campos A. Evaluation of myelin sheath and collagen reorganization pattern in a model of peripheral nerve regeneration using an integrated histochemical approach. Histochem Cell Biol 2011;136(6):709-17
  • Daly WT, Yao L, Abu-rub MT, et al. The effect of intraluminal contact mediated guidance signals on axonal mismatch during peripheral nerve repair. Biomaterials 2012;33(28):6660-71
  • Alaminos M, Del Carmen Sanchez-Quevedo M, Munoz-Avila JI, et al. Construction of a complete rabbit cornea substitute using a fibrin-agarose scaffold. Invest Ophthalmol Vis Sci 2006;47(8):3311-17
  • Carriel V, Garzon I, Jimenez JM, et al. Epithelial and stromal developmental patterns in a novel substitute of the human skin generated with fibrin-agarose biomaterials. Cells Tissues Organs 2012;196(1):1-12
  • Vacanti CA. History of tissue engineering and a glimpse into its future. Tissue Eng 2006;12(5):1137-42
  • Daly W, Yao L, Zeugolis D, et al. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface 2012;9(67):202-21
  • Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 2011;93(2):204-30
  • Nectow AR, Marra KG, Kaplan DL. Biomaterials for the development of peripheral nerve guidance conduits. Tissue Eng Part B Rev 2012;18(1):40-50
  • Bell JH, Haycock JW. Next generation nerve guides: materials, fabrication, growth factors, and cell delivery. Tissue Eng Part B Rev 2012;18(2):116-28
  • Carriel V, Garrido-Gomez J, Hernandez-Cortes P, et al. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration. J Neural Eng 2013;10(2):026022
  • Haninec P, Mencl L, Kaiser R. End-to-side neurorrhaphy in brachial plexus reconstruction. J Neurosurg 2013;119(3):689-94
  • Haninec P, Kaiser R. The end-to-side neurorrhaphy in axillary nerve reconstruction in patients with brachial plexus palsy. Plast Reconstr Surg 2012;129(5):882e-3e
  • Haninec P, Samal F, Tomas R, et al. Direct repair (nerve grafting), neurotization, and end-to-side neurorrhaphy in the treatment of brachial plexus injury. J Neurosurg 2007;106(3):391-9
  • Haninec P, Kaiser R. Axillary nerve repair by fascicle transfer from the ulnar or median nerve in upper brachial plexus palsy. J Neurosurg 2012;117(3):610-14
  • Tos P, Battiston B, Ciclamini D, et al. Primary repair of crush nerve injuries by means of biological tubulization with muscle-vein-combined grafts. Microsurgery 2012;32(5):358-63
  • Brenner MJ, Hess JR, Myckatyn TM, et al. Repair of motor nerve gaps with sensory nerve inhibits regeneration in rats. Laryngoscope 2006;116(9):1685-92
  • Taras JS, Amin N, Patel N, McCabe LA. Allograft reconstruction for digital nerve loss. J Hand Surg Am 2013;38(10):1965-71
  • Rinker B, Liau JY. A prospective randomized study comparing woven polyglycolic acid and autogenous vein conduits for reconstruction of digital nerve gaps. J Hand Surg Am 2011;36(5):775-81
  • Geuna S, Nicolino S, Raimondo S, et al. Nerve regeneration along bioengineered scaffolds. Microsurgery 2007;27(5):429-38
  • Raimondo S, Nicolino S, Tos P, et al. Schwann cell behavior after nerve repair by means of tissue-engineered muscle-vein combined guides. J Comp Neurol 2005;489(2):249-59
  • Mackinnon SE, Doolabh VB, Novak CB, Trulock EP. Clinical outcome following nerve allograft transplantation. Plast Reconstr Surg 2001;107(6):1419-29
  • Muir D. The potentiation of peripheral nerve sheaths in regeneration and repair. Exp Neurol 2010;223(1):102-11
  • Squintani G, Bonetti B, Paolin A, et al. Nerve regeneration across cryopreserved allografts from cadaveric donors: a novel approach for peripheral nerve reconstruction. J Neurosurg 2013;119(4):907-13
  • Fox IK, Jaramillo A, Hunter DA, et al. Prolonged cold-preservation of nerve allografts. Muscle Nerve 2005;31(1):59-69
  • Ray WZ, Kale SS, Kasukurthi R, et al. Effect of cold nerve allograft preservation on antigen presentation and rejection. J Neurosurg 2011;114(1):256-62
  • Evans PJ, Mackinnon SE, Levi AD, et al. Cold preserved nerve allografts: changes in basement membrane, viability, immunogenicity, and regeneration. Muscle Nerve 1998;21(11):1507-22
  • Oliveira AC, Garzon I, Ionescu AM, et al. Evaluation of small intestine grafts decellularization methods for corneal tissue engineering. PLoS One 2013;8(6):e66538
  • Somers P, De Somer F, Cornelissen M, et al. Decellularization of heart valve matrices: search for the ideal balance. Artif Cells Blood Substit Immobil Biotechnol 2012;40(1-2):151-62
  • Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials 2006;27(19):3675-83
  • Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials 2011;32(12):3233-43
  • Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 2011;13:27-53
  • Whitlock EL, Tuffaha SH, Luciano JP, et al. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve 2009;39(6):787-99
  • Neubauer D, Graham JB, Muir D. Chondroitinase treatment increases the effective length of acellular nerve grafts. Exp Neurol 2007;207(1):163-70
  • Giger RJ, Hollis ER 2nd, Tuszynski MH. Guidance molecules in axon regeneration. Cold Spring Harb Perspect Biol 2010;2(7):a001867
  • Karabekmez FE, Duymaz A, Moran SL. Early clinical outcomes with the use of decellularized nerve allograft for repair of sensory defects within the hand. Hand (NY) 2009;4(3):245-9
  • Szynkaruk M, Kemp SW, Wood MD, et al. Experimental and clinical evidence for use of decellularized nerve allografts in peripheral nerve gap reconstruction. Tissue Eng Part B Rev 2013;19(1):83-96
  • Cho MS, Rinker BD, Weber RV, et al. Functional outcome following nerve repair in the upper extremity using processed nerve allograft. J Hand Surg Am 2012;37(11):2340-9
  • Brooks DN, Weber RV, Chao JD, et al. Processed nerve allografts for peripheral nerve reconstruction: a multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery 2012;32(1):1-14
  • Siemionow M, Bozkurt M, Zor F. Regeneration and repair of peripheral nerves with different biomaterials: review. Microsurgery 2010;30(7):574-88
  • Lundborg G, Longo FM, Varon S. Nerve regeneration model and trophic factors in vivo. Brain Res 1982;232(1):157-61
  • Lundborg G, Rosen B, Dahlin L, et al. Tubular repair of the median or ulnar nerve in the human forearm: a 5-year follow-up. J Hand Surg Br 2004;29(2):100-7
  • Lundborg G, Rosen B, Dahlin L, et al. Tubular versus conventional repair of median and ulnar nerves in the human forearm: early results from a prospective, randomized, clinical study. J Hand Surg Am 1997;22(1):99-106
  • Belkas JS, Shoichet MS, Midha R. Peripheral nerve regeneration through guidance tubes. Neurol Res 2004;26(2):151-60
  • Bryan DJ, Litchfield CR, Manchio JV, et al. Spatiotemporal expression profiling of proteins in rat sciatic nerve regeneration using reverse phase protein arrays. Proteome Sci 2012;10(1):9
  • Kemp SW, Syed S, Walsh W, et al. Collagen nerve conduits promote enhanced axonal regeneration, Schwann cell association, and neovascularization compared to silicone conduits. Tissue Eng Part A 2009;15(8):1975-88
  • Cao J, Sun C, Zhao H, et al. The use of laminin modified linear ordered collagen scaffolds loaded with laminin-binding ciliary neurotrophic factor for sciatic nerve regeneration in rats. Biomaterials 2011;32(16):3939-48
  • Declercq HA, Desmet T, Berneel EE, et al. Synergistic effect of surface modification and scaffold design of bioplotted 3-D poly-epsilon-caprolactone scaffolds in osteogenic tissue engineering. Acta Biomater 2013;9(8):7699-708
  • Declercq HA, Desmet T, Dubruel P, Cornelissen MJ. The Role of Scaffold Architecture and Composition on the Bone Formation by Adipose-Derived Stem Cells. Tissue Eng Part A 2014;20(1-2):434-44
  • Berneel E, Desmet T, Declercq H, et al. Double protein-coated poly-epsilon-caprolactone scaffolds: successful 2D to 3D transfer. J Biomed Mater Res A 2012;100(7):1783-91
  • Jiang X, Lim SH, Mao HQ, Chew SY. Current applications and future perspectives of artificial nerve conduits. Exp Neurol 2010;223(1):86-101
  • Schlosshauer B, Dreesmann L, Schaller HE, Sinis N. Synthetic nerve guide implants in humans: a comprehensive survey. Neurosurgery 2006;59(4):740-7; discussion 747-748
  • Luis AL, Rodrigues JM, Amado S, et al. PLGA 90/10 and caprolactone biodegradable nerve guides for the reconstruction of the rat sciatic nerve. Microsurgery 2007;27(2):125-37
  • Meek MF, Coert JH. US. Food and Drug Administration/Conformit Europe- approved absorbable nerve conduits for clinical repair of peripheral and cranial nerves. Ann Plast Surg 2008;60(4):466-72
  • Bertleff MJ, Meek MF, Nicolai JP. A prospective clinical evaluation of biodegradable neurolac nerve guides for sensory nerve repair in the hand. J Hand Surg Am 2005;30(3):513-18
  • Tabesh H, Amoabediny G, Nik NS, et al. The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration. Neurochem Int 2009;54(2):73-83
  • Battiston B, Tos P, Conforti LG, Geuna S. Alternative techniques for peripheral nerve repair: conduits and end-to-side neurorrhaphy. Acta Neurochir Suppl 2007;100:43-50
  • Battiston B, Geuna S, Ferrero M, Tos P. Nerve repair by means of tubulization: literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery 2005;25(4):258-67
  • Moore AM, Kasukurthi R, Magill CK, et al. Limitations of conduits in peripheral nerve repairs. Hand (NY) 2009;4(2):180-6
  • Hung V, Dellon AL. Reconstruction of a 4-cm human median nerve gap by including an autogenous nerve slice in a bioabsorbable nerve conduit: case report. J Hand Surg Am 2008;33(3):313-15
  • Giachini FR, Carriel V, Capelo LP, et al. Maternal diabetes affects specific extracellular matrix components during placentation. J Anat 2008;212(1):31-41
  • Carriel VS, Aneiros-Fernandez J, Arias-Santiago S, et al. A novel histochemical method for a simultaneous staining of melanin and collagen fibers. J Histochem Cytochem 2011;59(3):270-7
  • Gonzalez-Perez F, Udina E, Navarro X. Extracellular matrix components in peripheral nerve regeneration. Int Rev Neurobiol 2013;108:257-75
  • Chernousov MA, Yu WM, Chen ZL, et al. Regulation of Schwann cell function by the extracellular matrix. Glia 2008;56(14):1498-507
  • Yao L, de Ruiter GC, Wang H, et al. Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit. Biomaterials 2010;31(22):5789-97
  • Brown RA. In the beginning there were soft collagen-cell gels: towards better 3D connective tissue models? Exp Cell Res 2013;319(16):2460-9
  • Brown RA. Direct collagen-material engineering for tissue fabrication. Tissue Eng Part A 2013;19(13-14):1495-8
  • Cheema U, Rong Z, Kirresh O, et al. Oxygen diffusion through collagen scaffolds at defined densities: implications for cell survival in tissue models. J Tissue Eng Regen Med 2012;6(1):77-84
  • Taras JS, Nanavati V, Steelman P. Nerve conduits. J Hand Ther 2005;18(2):191-7
  • Lohmeyer JA, Siemers F, Machens HG, Mailander P. The clinical use of artificial nerve conduits for digital nerve repair: a prospective cohort study and literature review. J Reconstr Microsurg 2009;25(1):55-61
  • Bushnell BD, McWilliams AD, Whitener GB, Messer TM. Early clinical experience with collagen nerve tubes in digital nerve repair. J Hand Surg Am 2008;33(7):1081-7
  • Taras JS, Jacoby SM, Lincoski CJ. Reconstruction of digital nerves with collagen conduits. J Hand Surg Am 2011;36(9):1441-6
  • Liodaki E, Bos I, Lohmeyer JA, et al. Removal of collagen nerve conduits (NeuraGen) after unsuccessful implantation: focus on histological findings. J Reconstr Microsurg 2013;29(8):517-22
  • Ashley WW Jr, Weatherly T, Park TS. Collagen nerve guides for surgical repair of brachial plexus birth injury. J Neurosurg 2006;105(6 Suppl):452-6
  • Farole A, Jamal BT. A bioabsorbable collagen nerve cuff (NeuraGen) for repair of lingual and inferior alveolar nerve injuries: a case series. J Oral Maxillofac Surg 2008;66(10):2058-62
  • Waitayawinyu T, Parisi DM, Miller B, et al. A comparison of polyglycolic acid versus type 1 collagen bioabsorbable nerve conduits in a rat model: an alternative to autografting. J Hand Surg Am 2007;32(10):1521-9
  • Boeckstyns ME, Sorensen AI, Vineta JF, et al. Collagen conduit versus microsurgical seurorrhaphy: 2-year follow-up of a prospective, blinded clinical and electrophysiological multicenter randomized, controlled trial. J Hand Surg Am 2013;38(12):2405-11
  • Irintchev A. Potentials and limitations of peripheral nerve injury models in rodents with particular reference to the femoral nerve. Ann Anat 2011;193(4):276-85
  • Hoffman-Kim D, Mitchel JA, Bellamkonda RV. Topography, cell response, and nerve regeneration. Annu Rev Biomed Eng 2010;12:203-31
  • Pabari A, Yang SY, Mosahebi A, Seifalian AM. Recent advances in artificial nerve conduit design: strategies for the delivery of luminal fillers. J Control Release 2011;156(1):2-10
  • Kalbermatten DF, Pettersson J, Kingham PJ, et al. New fibrin conduit for peripheral nerve repair. J Reconstr Microsurg 2009;25(1):27-33
  • Pettersson J, Kalbermatten D, McGrath A, Novikova LN. Biodegradable fibrin conduit promotes long-term regeneration after peripheral nerve injury in adult rats. J Plast Reconstr Aesthet Surg 2010;63(11):1893-9
  • Pettersson J, McGrath A, Kalbermatten DF, et al. Muscle recovery after repair of short and long peripheral nerve gaps using fibrin conduits. Neurosci Lett 2011;500(1):41-6
  • Gnavi S, Barwig C, Freier T, et al. The use of chitosan-based scaffolds to enhance regeneration in the nervous system. Int Rev Neurobiol 2013;109:1-62
  • Haastert-Talini K, Geuna S, Dahlin LB, et al. Chitosan tubes of varying degrees of acetylation for bridging peripheral nerve defects. Biomaterials 2013;34(38):9886-904
  • Martin BC, Minner EJ, Wiseman SL, et al. Agarose and methylcellulose hydrogel blends for nerve regeneration applications. J Neural Eng 2008;5(2):221-31
  • Wang HB, Mullins ME, Cregg JM, et al. Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. J Neural Eng 2009;6(1):016001
  • Valmikinathan CM, Tian J, Wang J, Yu X. Novel nanofibrous spiral scaffolds for neural tissue engineering. J Neural Eng 2008;5(4):422-32
  • Nazhat SN, Neel EA, Kidane A, et al. Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers. Biomacromolecules 2007;8(2):543-51
  • Xie J, MacEwan MR, Schwartz AG, Xia Y. Electrospun nanofibers for neural tissue engineering. Nanoscale 2010;2(1):35-44
  • Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005;26(15):2603-10
  • Yu W, Zhao W, Zhu C, et al. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(epsilon-caprolactone) nerve conduit with tailored degradation rate. BMC Neurosci 2011;12:68
  • Lee BK, Ju YM, Cho JG, et al. End-to-side neurorrhaphy using an electrospun PCL/collagen nerve conduit for complex peripheral motor nerve regeneration. Biomaterials 2012;33(35):9027-36
  • Jin J, Park M, Rengarajan A, et al. Functional motor recovery after peripheral nerve repair with an aligned nanofiber tubular conduit in a rat model. Regen Med 2012;7(6):799-806
  • Ouyang Y, Huang C, Zhu Y, et al. Fabrication of seamless electrospun collagen/PLGA conduits whose walls comprise highly longitudinal aligned nanofibers for nerve regeneration. J Biomed Nanotechnol 2013;9(6):931-43
  • Koh HS, Yong T, Teo WE, et al. In vivo study of novel nanofibrous intra-luminal guidance channels to promote nerve regeneration. J Neural Eng 2010;7(4):046003
  • Bellamkonda RV. Peripheral nerve regeneration: an opinion on channels, scaffolds and anisotropy. Biomaterials 2006;27(19):3515-18
  • Chen MB, Zhang F, Lineaweaver WC. Luminal fillers in nerve conduits for peripheral nerve repair. Ann Plast Surg 2006;57(4):462-71
  • Lin YC, Marra KG. Injectable systems and implantable conduits for peripheral nerve repair. Biomed Mater 2012;7(2):024102
  • Williams LR. Exogenous fibrin matrix precursors stimulate the temporal progress of nerve regeneration within a silicone chamber. Neurochem Res 1987;12(10):851-60
  • Williams LR, Danielsen N, Muller H, Varon S. Exogenous matrix precursors promote functional nerve regeneration across a 15-mm gap within a silicone chamber in the rat. J Comp Neurol 1987;264(2):284-90
  • Nakayama K, Takakuda K, Koyama Y, et al. Enhancement of peripheral nerve regeneration using bioabsorbable polymer tubes packed with fibrin gel. Artif Organs 2007;31(7):500-8
  • Nakayama K, Takakuda K, Koyama Y, et al. Regeneration of peripheral nerves by bioabsorbable polymer tubes with fibrin gel. J Nanosci Nanotechnol 2007;7(3):730-3
  • Lee JY, Giusti G, Friedrich PF, et al. The effect of collagen nerve conduits filled with collagen-glycosaminoglycan matrix on peripheral motor nerve regeneration in a rat model. J Bone Joint Surg Am 2012;94(22):2084-91
  • Sahakyants T, Lee JY, Friedrich PF, et al. Return of motor function after repair of a 3-cm gap in a rabbit peroneal nerve: a Comparison of autograft, collagen conduit, and conduit filled with collagen-GAG matrix. J Bone Joint Surg Am 2013;95(21):1952-8
  • Ngo TT, Waggoner PJ, Romero AA, et al. Poly(L-Lactide) microfilaments enhance peripheral nerve regeneration across extended nerve lesions. J Neurosci Res 2003;72(2):227-38
  • Jiao H, Yao J, Yang Y, et al. Chitosan/polyglycolic acid nerve grafts for axon regeneration from prolonged axotomized neurons to chronically denervated segments. Biomaterials 2009;30(28):5004-18
  • Neal RA, Tholpady SS, Foley PL, et al. Alignment and composition of laminin-polycaprolactone nanofiber blends enhance peripheral nerve regeneration. J Biomed Mater Res A 2011. [Epub ahead of print]
  • Cai J, Peng X, Nelson KD, et al. Permeable guidance channels containing microfilament scaffolds enhance axon growth and maturation. J Biomed Mater Res A 2005;75(2):374-86
  • Huang W, Begum R, Barber T, et al. Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats. Biomaterials 2012;33(1):59-71
  • Matsumoto K, Ohnishi K, Kiyotani T, et al. Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves. Brain Res 2000;868(2):315-28
  • Kim YP, Lee GS, Kim JW, et al. Phosphate glass fibres promote neurite outgrowth and early regeneration in a peripheral nerve injury model. J Tissue Eng Regen Med 2012. [Epub ahead of print]
  • Biazar E, Khorasani MT, Montazeri N, et al. Types of neural guides and using nanotechnology for peripheral nerve reconstruction. Int J Nanomed 2010;5:839-52
  • Clements IP, Kim YT, English AW, et al. Thin-film enhanced nerve guidance channels for peripheral nerve repair. Biomaterials 2009;30(23-24):3834-46
  • Labrador RO, Buti M, Navarro X. Influence of collagen and laminin gels concentration on nerve regeneration after resection and tube repair. Exp Neurol 1998;149(1):243-52
  • Stang F, Fansa H, Wolf G, et al. Structural parameters of collagen nerve grafts influence peripheral nerve regeneration. Biomaterials 2005;26(16):3083-91
  • Deister C, Schmidt CE. Optimizing neurotrophic factor combinations for neurite outgrowth. J Neural Eng 2006;3(2):172-9
  • Lee AC, Yu VM, Lowe JB 3rd, et al. Controlled release of nerve growth factor enhances sciatic nerve regeneration. Exp Neurol 2003;184(1):295-303
  • Wood MD, Moore AM, Hunter DA, et al. Affinity-based release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration. Acta Biomater 2009;5(4):959-68
  • Wood MD, MacEwan MR, French AR, et al. Fibrin matrices with affinity-based delivery systems and neurotrophic factors promote functional nerve regeneration. Biotechnol Bioeng 2010;106(6):970-9
  • Midha R, Munro CA, Dalton PD, et al. Growth factor enhancement of peripheral nerve regeneration through a novel synthetic hydrogel tube. J Neurosurg 2003;99(3):555-65
  • Terris DJ, Toft KM, Moir M, et al. Brain-derived neurotrophic factor-enriched collagen tubule as a substitute for autologous nerve grafts. Arch Otolaryngol Head Neck Surg 2001;127(3):294-8
  • Wang H, Zhao Q, Zhao W, et al. Repairing rat sciatic nerve injury by a nerve-growth-factor-loaded, chitosan-based nerve conduit. Biotechnol Appl Biochem 2012;59(5):388-94
  • Tang S, Zhu J, Xu Y, et al. The effects of gradients of nerve growth factor immobilized PCLA scaffolds on neurite outgrowth in vitro and peripheral nerve regeneration in rats. Biomaterials 2013;34(29):7086-96
  • Piotrowicz A, Shoichet MS. Nerve guidance channels as drug delivery vehicles. Biomaterials 2006;27(9):2018-27
  • Madduri S, di Summa P, Papaloizos M, et al. Effect of controlled co-delivery of synergistic neurotrophic factors on early nerve regeneration in rats. Biomaterials 2010;31(32):8402-9
  • Xu H, Yan Y, Li S. PDLLA/chondroitin sulfate/chitosan/NGF conduits for peripheral nerve regeneration. Biomaterials 2011;32(20):4506-16
  • de Boer R, Borntraeger A, Knight AM, et al. Short- and long-term peripheral nerve regeneration using a poly-lactic-co-glycolic-acid scaffold containing nerve growth factor and glial cell line-derived neurotrophic factor releasing microspheres. J Biomed Mater Res A 2012;100(8):2139-46
  • Xu X, Yu H, Gao S, et al. Polyphosphoester microspheres for sustained release of biologically active nerve growth factor. Biomaterials 2002;23(17):3765-72
  • Karagoz H, Ulkur E, Kerimoglu O, et al. Vascular endothelial growth factor-loaded poly(lactic-co-glycolic acid) microspheres-induced lateral axonal sprouting into the vein graft bridging two healthy nerves: nerve graft prefabrication using controlled release system. Microsurgery 2012;32(8):635-41
  • Wood MD, Kim H, Bilbily A, et al. GDNF released from microspheres enhances nerve regeneration after delayed repair. Muscle Nerve 2012;46(1):122-4
  • Ma F, Xiao Z, Chen B, et al. Linear ordered collagen scaffolds loaded with collagen-binding basic fibroblast growth factor facilitate recovery of sciatic nerve injury in rats. Tissue Eng Part A 2013. [Epub ahead of print]
  • Kuihua Z, Chunyang W, Cunyi F, Xiumei M. Aligned SF/P(LLA-CL)-blended nanofibers encapsulating nerve growth factor for peripheral nerve regeneration. J Biomed Mater Res A 2013. [Epub ahead of print]
  • Han Q, Sun W, Lin H, et al. Linear ordered collagen scaffolds loaded with collagen-binding brain-derived neurotrophic factor improve the recovery of spinal cord injury in rats. Tissue Eng Part A 2009;15(10):2927-35
  • Huang J, Xiang J, Yan Q, et al. Dog tibial nerve regeneration across a 30-mm defect bridged by a PRGD/PDLLA/beta-TCP/NGF sustained-release conduit. J Reconstr Microsurg 2013;29(2):77-87
  • Jin J, Limburg S, Joshi SK, et al. Peripheral nerve repair in rats using composite hydrogel-filled aligned nanofiber conduits with incorporated nerve growth factor. Tissue Eng Part A 2013;19(19-20):2138-46
  • Aszmann OC, Korak KJ, Kropf N, et al. Simultaneous GDNF and BDNF application leads to increased motoneuron survival and improved functional outcome in an experimental model for obstetric brachial plexus lesions. Plast Reconstr Surg 2002;110(4):1066-72
  • Boyd JG, Gordon T. Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. Exp Neurol 2003;183(2):610-19
  • Fine EG, Decosterd I, Papaloizos M, et al. GDNF and NGF released by synthetic guidance channels support sciatic nerve regeneration across a long gap. Eur J Neurosci 2002;15(4):589-601
  • Mosahebi A, Woodward B, Wiberg M, et al. Retroviral labeling of Schwann cells: in vitro characterization and in vivo transplantation to improve peripheral nerve regeneration. Glia 2001;34(1):8-17
  • Zhou LN, Zhang JW, Wang JC, et al. Bone marrow stromal and Schwann cells from adult rats can interact synergistically to aid in peripheral nerve repair even without intercellular contact in vitro. J Tissue Eng Regen Med 2012;6(7):579-88
  • Wang Y, Zhao Z, Ren Z, et al. Recellularized nerve allografts with differentiated mesenchymal stem cells promote peripheral nerve regeneration. Neurosci Lett 2012;514(1):96-101
  • Yang Y, Yuan X, Ding F, et al. Repair of rat sciatic nerve gap by a silk fibroin-based scaffold added with bone marrow mesenchymal stem cells. Tissue Eng Part A 2011;17(17-18):2231-44
  • di Summa PG, Kingham PJ, Raffoul W, et al. Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg 2010;63(9):1544-52
  • Kalbermatten DF, Erba P, Mahay D, et al. Schwann cell strip for peripheral nerve repair. J Hand Surg Eur Vol 2008;33(5):587-94
  • Madduri S, Gander B. Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration. J Peripher Nerv Syst 2010;15(2):93-103
  • Sinis N, Schaller HE, Schulte-Eversum C, et al. Nerve regeneration across a 2-cm gap in the rat median nerve using a resorbable nerve conduit filled with Schwann cells. J Neurosurg 2005;103(6):1067-76
  • Strauch B, Rodriguez DM, Diaz J, et al. Autologous Schwann cells drive regeneration through a 6-cm autogenous venous nerve conduit. J Reconstr Microsurg 2001;17(8):589-95. discussion 596-587
  • Mosahebi A, Fuller P, Wiberg M, Terenghi G. Effect of allogeneic Schwann cell transplantation on peripheral nerve regeneration. Exp Neurol 2002;173(2):213-23
  • Rodriguez FJ, Verdu E, Ceballos D, Navarro X. Nerve guides seeded with autologous Schwann cells improve nerve regeneration. Exp Neurol 2000;161(2):571-84
  • Mosahebi A, Wiberg M, Terenghi G. Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits. Tissue Eng 2003;9(2):209-18
  • Suri S, Schmidt CE. Cell-laden hydrogel constructs of hyaluronic acid, collagen, and laminin for neural tissue engineering. Tissue Eng Part A 2010;16(5):1703-16
  • Rutkowski GE, Miller CA, Jeftinija S, Mallapragada SK. Synergistic effects of micropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration. J Neural Eng 2004;1(3):151-7
  • Zhang YG, Sheng QS, Qi FY, et al. Schwann cell-seeded scaffold with longitudinally oriented micro-channels for reconstruction of sciatic nerve in rats. J Mater Sci Mater Med 2013;24(7):1767-80
  • Caddick J, Kingham PJ, Gardiner NJ, et al. Phenotypic and functional characteristics of mesenchymal stem cells differentiated along a Schwann cell lineage. Glia 2006;54(8):840-9
  • Walsh S, Midha R. Practical considerations concerning the use of stem cells for peripheral nerve repair. Neurosurg Focus 2009;26(2):E2
  • Martin-Piedra MA, Garzon I, Oliveira AC, et al. Average cell viability levels of human dental pulp stem cells: an accurate combinatorial index for quality control in tissue engineering. Cytotherapy 2013;15(4):507-18
  • Garzon I, Perez-Kohler B, Garrido-Gomez J, et al. Evaluation of the cell viability of human Wharton's jelly stem cells for use in cell therapy. Tissue Eng Part C Methods 2012;18(6):408-19
  • Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8(4):315-17
  • Alaminos M, Perez-Kohler B, Garzon I, et al. Transdifferentiation potentiality of human Wharton's jelly stem cells towards vascular endothelial cells. J Cell Physiol 2010;223(3):640-7
  • Ladak A, Olson J, Tredget EE, Gordon T. Differentiation of mesenchymal stem cells to support peripheral nerve regeneration in a rat model. Exp Neurol 2011;228(2):242-52
  • Peng J, Wang Y, Zhang L, et al. Human umbilical cord Wharton's jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro. Brain Res Bull 2011;84(3):235-43
  • Qian DX, Zhang HT, Ma X, et al. Comparison of the efficiencies of three neural induction protocols in human adipose stromal cells. Neurochem Res 2010;35(4):572-9
  • Kalbermatten DF, Kingham PJ, Mahay D, et al. Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit. J Plast Reconstr Aesthet Surg 2008;61(6):669-75
  • Siemionow M, Duggan W, Brzezicki G, et al. Peripheral nerve defect repair with epineural tubes supported with bone marrow stromal cells: a preliminary report. Ann Plast Surg 2011;67(1):73-84
  • Wei Y, Gong K, Zheng Z, et al. Chitosan/silk fibroin-based tissue-engineered graft seeded with adipose-derived stem cells enhances nerve regeneration in a rat model. J Mater Sci Mater Med 2011;22(8):1947-64
  • Lopatina T, Kalinina N, Karagyaur M, et al. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One 2011;6(3):e17899
  • Faroni A, Terenghi G, Reid AJ. Adipose-derived stem cells and nerve regeneration: promises and pitfalls. Int Rev Neurobiol 2013;108:121-36
  • di Summa PG, Kalbermatten DF, Pralong E, et al. Long-term in vivo regeneration of peripheral nerves through bioengineered nerve grafts. Neuroscience 2011;181:278-91
  • Sasaki R, Aoki S, Yamato M, et al. PLGA artificial nerve conduits with dental pulp cells promote facial nerve regeneration. J Tissue Eng Regen Med 2011;5(10):823-30
  • Sasaki R, Aoki S, Yamato M, et al. Tubulation with dental pulp cells promotes facial nerve regeneration in rats. Tissue Eng Part A 2008;14(7):1141-7
  • Gartner A, Pereira T, Alves MG, et al. Use of poly(DL-lactide-epsilon-caprolactone) membranes and mesenchymal stem cells from the Wharton's jelly of the umbilical cord for promoting nerve regeneration in axonotmesis: in vitro and in vivo analysis. Differentiation 2012;84(5):355-65
  • Cui L, Jiang J, Wei L, et al. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells 2008;26(5):1356-65
  • Zhang P, He X, Zhao F, et al. Bridging small-gap peripheral nerve defects using biodegradable chitin conduits with cultured Schwann and bone marrow stromal cells in rats. J Reconstr Microsurg 2005;21(8):565-71
  • Lin CS, Xin ZC, Deng CH, et al. Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol 2010;25(6):807-15
  • Nieto-Aguilar R, Serrato D, Garzon I, et al. Pluripotential differentiation capability of human adipose-derived stem cells in a novel fibrin-agarose scaffold. J Biomater Appl 2011;25(7):743-68
  • Declercq HA, De Caluwe T, Krysko O, et al. Bone grafts engineered from human adipose-derived stem cells in dynamic 3D-environments. Biomaterials 2013;34(4):1004-17
  • Zhao Z, Wang Y, Peng J, et al. Improvement in nerve regeneration through a decellularized nerve graft by supplementation with bone marrow stromal cells-in-fibrin. Cell Transplant 2014;23(1):97-110
  • Zhang Y, Luo H, Zhang Z, et al. A nerve graft constructed with xenogeneic acellular nerve matrix and autologous adipose-derived mesenchymal stem cells. Biomaterials 2010;31(20):5312-24
  • Suganuma S, Tada K, Hayashi K, et al. Uncultured adipose-derived regenerative cells promote peripheral nerve regeneration. J Orthop Sci 2013;18(1):145-51
  • Dai LG, Huang GS, Hsu SH. Sciatic nerve regeneration by cocultured Schwann cells and stem cells on microporous nerve conduits. Cell Transplant 2013;22(11):2029-39
  • Jia H, Wang Y, Tong XJ, et al. Sciatic nerve repair by acellular nerve xenografts implanted with BMSCs in rats xenograft combined with BMSCs. Synapse 2012;66(3):256-69

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.