440
Views
16
CrossRef citations to date
0
Altmetric
Review

Retinoic acid as a therapeutic option in Alzheimer’s disease: a focus on cholinergic restoration

, , , &

References

  • Selkoe DJ. Alzheimer’s disease. Cold Spring Harb Perspect Biol 2011;3(7):pii: a004457
  • Butterworth RF. Thiamine deficiency-related brain dysfunction in chronic liver failure. Metab Brain Dis 2009;24(1):189-96
  • Zatta P, Drago D, Bolognin S, Sensi SL. Alzheimer’s disease. Metal ions and metal homeostatic therapy. Trends Pharmacol Sci 2009;30(7):346-55
  • Bohnen NI, Kaufer DI, Ivanco LS, et al. Cortical cholinergic function is more severely affected in Parkinsonian dementia than in Alzheimer’s disease. Arch Neurol 2003;60(12):1745-8
  • Jelinger KA. The pathology of ‘Vascular dementia’: a critical update. J Alzheimer’s Dis 2008;14(1):107-23
  • Chen Z, Zhong C. Decoding Ailzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Progr Neurobiol 2013;108(1):21-43
  • Ikonomovic MD, Klunk WE, Abrahamson EE, et al. Precuneus amyloid burden is associated with reduced cholinergic activity in Alzheimer’s disease. Neurology 2011;77(1):39-47
  • Bao F, Wicklund L, Lacor PN, et al. Different β-amyloid oligomer assembles in Alzheimer brains correlate with age of disease onset and impaired cholinergic activity. Neurobiol Aging 2012;33(4):825.e1-13
  • Davies P. Neurotransmitter-related enzymes in senile dementia of the Alzheimer type. Brain Res 1979;171(2):319-27
  • Parent MJ, Bedart MA, Aliaga A, et al. Cholinergic depletion in Alzheimer’s disease shown by [18F]FEOBV autoriadiography. Int J Molec Imag 2013;2013:205045
  • Mufson EJ, Counts SE, Perez SE, Ginsberg SD. Cholinergic system during progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother 2008;8(11):1703-18
  • DeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002;51(2):145-55
  • Szutowicz A, Bielarczyk H, Jankowska-Kulawy A, et al. Acetyl-CoA the key factor for survival or death of cholinergic neurons in course of neurodegenerative diseases. Neurochem Res 2013;38(8):1523-42
  • Dash SK. Cognitive impairment and diabetes. Recent Pat Edocr Metab Immune Drug Discov 2013;7(2):155-65
  • Steinert JR, Chernova T, Forsythe ID. Nitric oxide signaling in brain function, dysfunction and dementia. Neuroscientist 2010;16(4):435-52
  • Ronowska A, Dyś A, Jankowska-Kulawy A, et al. Short-term effects of zinc on acetylcholine metabolism and viability of SN56 cholinergic neuroblastoma cells. Neurochem Int 2010;56(1):143-51
  • Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 2010;345(1-2):91-104
  • Szutowicz A, Madziar B, Pawełczyk T, et al. Effects of NGF on acetylcholine, acetyl-CoA metabolism, and viability of differentiated and non-differentiated cholinegric neuroblastoma cells. J Neurochem 2004;90(4):952-61
  • Schliebs R, Arendt T. The cholinergic system in aging and neuronal degeneration. Behav Brain Res 2011;221(2):555-63
  • Szutowicz A, Bielarczyk H, Ronowska A, et al. Intracellular redistribution of acetyl-CoA, the pivotal point in differential susceptibility of cholinergic neurons and glial cells to neurodegenerative signals. Biochem Soc Trans 2014;42(4):1101-6
  • Bubber P, Haroutunian V, Fisch G, et al. Mitochondrial abnormalities in Alzheimer’s brain: mechanistic implications. Ann Neurol 2005;57(5):695-703
  • Kantarci K. Magnetic resonance spectroscopy in common dementias. Neuroimaging Clin N Am 2013;23(3):393-406
  • Tauber C, Beaufils E, Hommet C, et al. Brain [18F] FDDNP binding and glucose metabolism in advanced elderly healthy subjects and Alzheimer’s disease patients. J Alzheimer’s Dis 2013;36(2):311-20
  • Szutowicz A. Aluminum, NO, and nerve growth factor neurotoxicity in cholinergic neurons. J Neurosci Res 2001;66(X):1009-18
  • Ronowska A, Gul-Hinc S, Bielarczyk H, et al. Effects of zinc on SN56 cholinergic neuroblastoma cells. J Neurochem 2007;103(3):972-83
  • Furst AJ, Lal RA. Amyloid-β and glucose metabolism in Alzheimer’s disease. J Alzheimer’s Dis 2011;26(Suppl 3):105-16
  • Cohen AD, Klunk WE. Early detection of Alzheimer’s disease using PiB and FDG PET. Neurobiol Dis 2014;72PA:117-22
  • Baslow MH. N-acetylaspartate and N-acetylaspartylglutamate. In: Oja SS, Schousboe A, Saransaari P, editors. Handbook of Neurochemistry and Molecular Biology 3rd edition. Amino Acids and Peptides in the Nervous System Springer, Berlin; 2007;pp. 305-46
  • Villeneuve S, Brisson D, Marchant NL, et al. The potential applications of Apolipoprotein E in personalized medicine, Front. Aging Neurosci 2014;6:154
  • Bertram L, McQueen M, Mullin K, et al. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 2007;39(1):17-25
  • Tai LM, Mehra S, Shete V, et al. Soluble apoE/Aβ complex: mechanism and therapeutic target for APOE4-induced AD risk. Molec. Neurodegen 2014;9:2
  • Szutowicz A, Bielarczyk H, Gul S, et al. Phenotype -dependent susceptibility of cholinergic neuroblastoma cells to neurotoxic inputs. Metab Brain Dis 2006;21(2-3):149-61
  • Wurtman RJ, Cansev M, Sakamoto T, Ulus IH. Nutritional modifiers of aging brain function: increasing the formation of brain synapses by administering uridine and other phosphate precursors. Nutr Rev 2010;68(Suppl 2):88-101
  • Reale M, de Angelis F, di Nicola M, et al. Relation between pro-inflammatory cytokines and acetylcholine levels in relapsing-remitting multiple sclerosis patients. Int J Mol Sci 2012;13(10):12656-64
  • den Daas I, Wemer J, Farha KA, et al. Serial CSF sampling over a period of 30 h via an indwelling spinal catheter in healthy volunteers: headache, back pain, tolerability and measured acetylcholine profile. Eur J Clin Pharmacol 2013;69(5):1083-90
  • Vijayaraghavan S, Karami A, Aeinehband S, et al. Regulated extracellular choline acetyltransferase activity – The plausible missing link of the distant action of acetylcholine in the cholinergic anti-inflammatory pathway. PLoS One 2013;8:e65936
  • Kawashima K, Fujii T, Moriwaki Y, Misawa H. Critical roles of acetylcholine and muscarinic and nicotinic acetylcholine receptors in the regulation of immune function. Life Sci 2012;91(21-22):1027-32
  • Wollen KA. Alzheimer’s disease: the pros and cons of pharmaceutical, Nutritional, Botanical and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners. Altern Med Rev 2010;15(3):223-44
  • DeKosky ST, Scheff SW, Hackney CG. Acetylcholine synthesis in human CSF: implications for study of central cholinergic metabolism. Neurochem Res 1989;14(2):191-6
  • Hollnagel JO, Ul Haq R, Behrens CJ, et al. No evidence for role of extracellular choline-acetyltransferase in generation of gamma oscillations in rat hippocampal slices in vitro. Neuroscience 2015;284(2):459-69
  • Darreh-Shori T, Soininen H. Effects of cholinesterase inhibitors on the activities and protein levels of cholinesterases in the cerebrospinal fluid of patients with Alzheimer’s disease: a review of recent clinical studies. Curr Alzheimer Res 2010;7(1):67-73
  • Bielarczyk H, Gul S, Ronowska A, et al. RS-α-lipoic acid protects cholinergic cells against sodium nitroprusside and amyloid-ß neurotoxicity through restoration of acetyl-CoA level. J Neurochem 2006;98(4):1242-51
  • Oberbauer E, Urmann C, Steffenhagen C, et al. Chroman-like cyclic prenylflavonoids promote neuronal differentiation and neurite outgrowth and are neuroprotective. J Nutr Biochem 2013;24(11):1953-62
  • da Silva SL, Vells B, Elemans S, et al. Plasma nutrient status of patients with Alzheimer’s disease: systematic review and meta-analysis. Alzheimer’s & Dementia 2014;10:485-502
  • Iulita MF, Cuelo AC. Nerve growth factor metabolic dysfunction in Alzheimer’s disease and Down syndrome. Trends Pharmacol Sci 2014;35(7):338-48
  • Lin LF, Liao MJ, Xue XY, et al. Combination of Aβ clearance and neurotrophic factors as a potential treatment for Alzheimer’s disease. Neurosci Bull 2013;29(1):111-20
  • Lopez-Coviella I, Mellot TJ, Schnitzler AC, Blusztajn JK. BMP9 protects septal neurons fro axotomy-evoked loss of cholinergic phenotype. PLoS One 2011;6:e21166
  • Armato U, Chakravarthy B, Pacchiana R, Whitfield JF. Alzheimer’s disease: an update of the roles of receptors, astrocytes and primary cilia. Int J Mol Med 2013;31(1):3-10
  • Ranson J, Morgan PJ, McCaffery PJ, Stoney PN. The rhythm of retinoids in the brain. J Neurochem 2014;129(3):366-76
  • Sohdi RK, Singh N. Retinoids as potential targets for Alzheimer’s disease. Pharmacol Biochem Behav 2014;120:117-23
  • Shudo K, Fukusawa H, Nakagomi N, Yamagata N. Towards retinoid therapy for Alzheimer’s disease. Curr Alzheimer’s Res 2009;6(3):302-11
  • Kapoor A, Wang BJ, Hsu WM, et al. Retinoic acid-elicited RARα/RXRα signaling attenuates Aβ production by directly inhibiting γ-secretase-mediated cleavage of amyloid precursor protein. ACS Chem Neurosci 2013;4(7):1093-100
  • Korecka JA, van Kesteren RE, Blaas E, et al. Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One 2013;8(5):e63862
  • Fahrenholz F, Tippmann F, Endres K. Retinoids as a perspective in treatment of Alzheimer’s disease. Neurodegenerative Dis 2010;7(1-3):190-2
  • Borrmann C, Stricker R, Reiser G. Retinoic acid-induced upregulation of metallopeptidase nardilysin in accelerated by co-expression of the brain-specific protein p42IP4 (centaurin α1; ADAP1) in neuroblastoma cells. Neurochem Int 2011;59(6):936-44
  • Andres D, Keyser BM, Petrali J, et al. Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid. BMC Neurosci 2013;14:49
  • dos Santos GA, Kats L, Pandolfi PP. Synergy against PML-RARa: targeting transcription, proteolysis, differentiation and self-renewal in acute promyelocytic leukemia. J Exp Med 2013;210(13):2793-802
  • Lee HP, Casadesus G, Zhy X, et al. All-trans retinoic acid as a novel therapeutic strategy for Alzheimer’s disease. Expert Rev Neurother 2009;9(11):1615-21
  • Obulesu M, Dowlathabad MR, Bramhachari PV. Carotenoids and Alzheimer’s disease: an insight into therapeutic role of retinoids in animal models. Neurochem Int 2011;59(5):535-41
  • Ono K, Yamada M. Vitamin A and Alzheimer’s disease. Geriatr Gerontol Int 2012;12(2):180-8
  • Kawahara K, Suenobu M, Ohtsuka H, et al. Cooperative therapeutic action of retinoic acid receptor and retinoid X receptor agonists in a mouse model of Alzheimer’s disease. J Alzheimer’s Dis 2014;42(2):587-605
  • Takasaki J, Ono K, Yoshiike Y, et al. Vitamin A has anti-oligomerization effects of amyloid-β in vitro. J Alzheimer’s Dis 2014;27(4):271-80
  • Berse B, Blusztajn JK. Modulation of cholinergic locus expression by glucocorticoids and retinoic acid is cell type specific. FEBS Lett 1997;410(2-3):175-9
  • Szutowicz A, Jankowska A, Blusztajn JK, Tomaszewicz M. Acetylcholine and acetyl-CoA metabolism in differentiating SN56 septal cell lines. J Neurosci Res 1999;57(1):131-6
  • Fukasawa H, Nakagomi M, Yamagata N, et al. Tamibarotene: a candidate retinoid drug for Alzheimer’s disease. Biol Pharm Bull 2012;35(8):1206-12
  • Crochemore C, Virgili M, Bonamassa B, et al. Long-term dietary administration of valproic acid does not affect, while retinoic acid decreases, the lifespan of G93A mice, a model for amyotrophic lateral sclerosis. Muscle Nerve 2009;39(4):548-52
  • Das E, Bhattacharyya NP. MicroRNA-432 contributes to dopamine cocktail and retinoic acid induced differentiation of human neuroblastoma cells by targeting NESTIN and RCOR1 genes. FEBS Lett 2014;588(9):1706-14
  • Wang K, Zhou F, Zhu X, et al. Neuroprotective properties of ciliary neurotrophic factor on retinoic acid (RA)-predifferentiated SH-SY5Y neuroblastoma cells. Folia Neuropathol 2014;52(2):121-7
  • Jantas D, Roman A, Kuśmierczyk J, et al. The extent of neurodegeneration and neuroprotection in two chemical in vitro models related to Parkinson’s disease is critically dependent on cell culture conditions. Neurotox Res 2013;24(1):41-54
  • Ganeshan VR, Schor NF. p75 neurotrophin receptor and fenretinide-induced signaling in neuroblastoma. Cancer Chemother Pharmacol 2014;73(2):271-9
  • Werner EA, Deluca HF. Retinoic acid is detected at relatively high levels in the CNS of adult rats. Am J Physiol Endocrinol Metab 2002;282(3):E672-8
  • Jarvis CI, Goncalves MB, Clarke E, et al. Retinoic receptor-α signaling antagonizes both intracellular and extracellular amyloid-β production and prevents neuronal cell death caused by amyloid-β. Eur J Neurosci 2010;32(8):1246-55
  • Bissonnette CJ, Lyass L, Bhattacharyya BJ, et al. The controlled generation of functional basal forebrain cholinergic neurons from human embryonic stem cells. Stem Cells 2011;29(5):802-11
  • Manabe T, Tatsumi K, Inoue M, et al. L3/Lhx8 is a pivotal factor for cholinergic differentiation of murine embryonic stem cells. Cell Death Differ 2007;14:1080-5
  • Goncalves MB, Clarke E, Hobbs C, et al. Amyloid β inhibits retinoic acid synthesis exacerbating Alzheimer’s disease pathology which can be attenuated by an retinoic acid receptor α agonist. Eur J Neurosci 2013;37(7):1182-92
  • Holthoewer D, Endres K, Schuck F, et al. Acitretin, an enhancer of alpha-secretase expression, crosses the blood-brain barrier and is not eliminated by P-glycoprotein. Neurodegenerative Dis 2012;10(1-4):224-8
  • Fujiwara N, Shimizu J, Takai K, et al. Restoration of spatial memory dysfunction of human APP transgenic mice by transplantation of neuronal precursors derived from human iPS cells. Neurosci Lett 2013;557:129-34
  • Reiner DJ, Yu SJ, Shen H, et al. 9-cis retinoic acid protects against methamphetamine-induced neurotoxicity in nigrostriatal dopamine neurons. Neurochem Res 2014;25(3):248-61
  • Yin LH, Shen H, Diaz-Ruiz O, et al. Early post-treatment with 9-cis retinoic acid reduces neurodegeneration of dopaminergic neurons in a rat model of Parkinson’s disease. BMC Neurosci 2012;13:120
  • Domzi P, Aoyama C, Banchio C. Choline kinase alpha expression during RA-induced neuronal differentiation: role of cEBPβ. Biochim Biophys Acta 2014;1841(4):544-51
  • Wu PY, Lin YC, Chang CL, et al. Functional decreases in P2X7 receptors are associated with retinoic acid-induced neuronal differentiation of Neuro-2a neuroblastoma cells. Cell Signal 2009;21(9):681-91
  • Tremblay RG, Sikorska M, Sandhu JK, Gaudet D. Differentiation of mouse Neuro 2A cells into dopamine neurons. J Neurosci Meth 2010;186(1):60-7
  • Chen KC, Liu YC, Lee CC, Chen YC. Potential retinoid X receptor agonists for treating Alzheimer’s disease from traditional Chinese medicine. Evid Based Complement Alternat Med 2014;2014:278493
  • Chen KH, Ji ZS, Dodson SE, et al. ApolipoproteinE4 domain interaction mediates detrimental effects on mitochondria and is a potential therapeutic target for Alzheimer’s disease. J Biol Chem 2011;286(2):5215-21
  • Zhao J, Fu Y, Lian CC, et al. Retinoic acid isomers facilitate apolipoprotein E production and lipidation in astrocytes through retinoid X receptor/retinoic acid receptor pathway. J Biol Chem 2014;289:11282-92
  • Lerner AJ, Gustaw-Rothenberg K, Smyth S, Casadesus G. Retinoids for treatment of Alzheimer’s disease. Bio Factors 2012;38(2):84-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.