737
Views
50
CrossRef citations to date
0
Altmetric
Review

Dopamine and Huntington’s disease

, , , , &

References

  • Evans SJW, Douglas I, Rawlins MD, et al. Prevalence of adult Huntington’s disease in the UK based on diagnoses recorded in general practice records. J Neurol Neurosurg Psychiatry 2013;84(10):1156-60
  • Fisher ER, Hayden MR. Multisource ascertainment of Huntington disease in Canada: prevalence and population at risk. Mov Disord 2014;29(1):105-14
  • Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993;72(6):971-83
  • Ross CA, Aylward EH, Wild EJ, et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 2014;10(4):204-16
  • Gil J, Rego A. Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci 2008;27(11):2803-20
  • Vonsattel JP, Myers RH, Stevens TJ, et al. Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 1985;44(6):559-77
  • Cicchetti F, Lacroix S, Cisbani G, et al. Mutant huntingtin is present in neuronal grafts in Huntington disease patients. Ann Neurol 2014;76(1):31-42
  • Wade A, Jacobs P, Morton AJ. Atrophy and degeneration in sciatic nerve of presymptomatic mice carrying the Huntington’s disease mutation. Brain Res 2008;1188:61-8
  • Zuccato C, Ciammola A, Rigamonti D, et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 2001;293(5529):493-8
  • Martinez-Vicente M, Talloczy Z, Wong E, et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci 2010;13(5):567-76
  • Björkqvist M, Wild EJ, Thiele J, et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med 2008;205(8):1869-77
  • Tang TS, Slow E, Lupu V, et al. Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. Proc Natl Acad Sci USA 2005;102(7):2602-7
  • Ortiz AN, Kurth BJ, Osterhaus GL, Johnson MA. Impaired dopamine release and uptake in R6/1 Huntington’s disease model mice. Neurosci Lett 2011;492(1):11-14
  • Ortiz AN, Osterhaus GL, Lauderdale K, et al. Motor function and dopamine release measurements in transgenic Huntington’s disease model rats. Brain Res 2012;1450:148-56
  • Klawans HC, Paulson GW, Barbeau A. Predictive test for Huntington’s chorea. Lancet 1970;2(7684):1185-6
  • Bird ED. Chemical pathology of Huntington’s disease. Annu Rev Pharmacol Toxicol 1980;20:533-51
  • Spokes EG. Neurochemical alterations in Huntington’s chorea: a study of post-mortem brain tissue. Brain 1980;103(1):179-210
  • Miller BR, Bezprozvanny I. Corticostriatal circuit dysfunction in Huntington’s disease: intersection of glutamate, dopamine and calcium. Future Neurol 2010;5(5):735-56
  • Chen JY, Wang EA, Cepeda C, Levine MS. Dopamine imbalance in Huntington’s disease: a mechanism for the lack of behavioral flexibility. Front Neurosci 2013;7:114
  • Girault JA, Greengard P. The neurobiology of dopamine signaling. Arch Neurol 2004;61(5):641-4
  • Seeman P, Bzowej NH, Guan HC, et al. Human brain D1 and D2 dopamine receptors in schizophrenia, Alzheimer’s, Parkinson’s, and Huntington’s diseases. Neuropsychopharmacology 1987;1(1):5-15
  • Lang A, Lozano A. Parkinson’s disease: first of Two Parts. N Engl J Med 1998;339(15):1044-53
  • Purves D, Brannon E, Cabeza R, et al. Principles of cognitive neuroscience. Sinauer Associates, Stamford, Connecticut, USA; 2008. p. 757
  • Vallone D, Picetti R, Borrelli E. Structure and function of dopamine receptors. Neurosci Biobehav Rev 2000;24(1):125-32
  • Murray GK, Corlett PR, Clark L, et al. Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Mol Psychiatry 2008;13(3):239, 267–76
  • Eisenegger C, Naef M, Linssen A, et al. Role of dopamine D2 receptors in human reinforcement learning. Neuropsychopharmacology 2014;39(10):2366-75
  • Levy R, Dubios B. Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cereb Cortex 2006;16(7):916-28
  • Floresco SB, Magyar O. Mesocortical dopamine modulation of executive functions: beyond working memory. Psychopharmacology (Berl) 2006;188(4):567-85
  • Leh SE, Petrides M, Strafella AP. The neural circuitry of executive functions in healthy subjects and Parkinson’s disease. Neuropsychopharmacology 2010;35(1):70-85
  • Dunnett SB, Bentivoglio M, Björklund A, Hökfelt T. Handbook of chemical neuroanatomy: dopamine. Elsevier, Amsterdam; 2004. p. 418
  • Robbins TW. Chemistry of the mind: neurochemical modulation of prefrontal cortical function. J Comp Neurol 2005;493(1):140-6
  • Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000;80(4):1523-631
  • Beaulieu J, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011;63(1):182-217
  • Grace AA. The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction 2000;95(Suppl 2):119-28
  • Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 1996;50(4):381-425
  • Surmeier DJ, Ding J, Day M, et al. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 2007;30(5):228-35
  • Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989;12(10):366-75
  • Volkow ND, Fowler JS, Logan J, Wang GJ. Measuring dopamine release in the human brain with PET. Conference on the bioclinical interface: recent advances in psychiatry, Rouffach (France) 20-22 Sep 1995; Report number: BNL-62345; CONF-9509263–1
  • Johnson MA, Rajan V, Miller CE, Wightman RM. Dopamine release is severely compromised in the R6/2 mouse model of Huntington’s disease. J Neurochem 2006;97(3):737-46
  • Petersén A, Puschban Z, Lotharius J, et al. Evidence for dysfunction of the nigrostriatal pathway in the R6/1 line of transgenic Huntington’s disease mice. Neurobiol Dis 2002;11(1):134-46
  • Bernheimer H, Birkmayer W, Hornykiewicz O, et al. Brain dopamine and the syndromes of Parkinson and Huntington Clinical, morphological and neurochemical correlations. J Neurol Sci 1973;20(4):415-55
  • Waters CM, Peck R, Rossor M, et al. Immunocytochemical studies on the basal ganglia and substantia nigra in Parkinson’s disease and Huntington’s chorea. Neuroscience 1988;25(2):419-38
  • Oyanagi K, Takeda S, Takahashi H, et al. A quantitative investigation of the substantia nigra in Huntington’s disease. Ann Neurol 1989;26(1):13-19
  • Yohrling GJ, Jiang GC, DeJohn MM, et al. Analysis of cellular, transgenic and human models of Huntington’s disease reveals tyrosine hydroxylase alterations and substantia nigra neuropathology. Mol Brain Res 2003;119(1):28-36
  • Bédard C, Wallman MJ, Pourcher E, et al. Serotonin and dopamine striatal innervation in Parkinson’s disease and Huntington’s chorea. Parkinsonism Relat Disord 2011;17(8):593-8
  • Ferrante RJ, Kowall NW. Tyrosine hydroxylase-like immunoreactivity is distributed in the matrix compartment of normal human and Huntington’s disease striatum. Brain Res 1987;416(1):141-6
  • Bohnen NI, Koeppe RA, Meyer P, et al. Decreased striatal monoaminergic terminals in Huntington disease. Neurology 2000;54(9):1753-9
  • Suzuki M, Desmond TJ, Albin RL, Frey KA. Vesicular neurotransmitter transporters in Huntington’s disease: initial observations and comparison with traditional synaptic markers. Synapse 2001;41(4):329-36
  • Cyr M, Beaulieu JM, Laakso A, et al. Sustained elevation of extracellular dopamine causes motor dysfunction and selective degeneration of striatal GABAergic neurons. Proc Natl Acad Sci USA 2003;100(19):11035-40
  • Wersinger C, Chen J, Sidhu A. Bimodal induction of dopamine-mediated striatal neurotoxicity is mediated through both activation of D1 dopamine receptors and autoxidation. Mol Cell Neurosci 2004;25(1):124-37
  • Benchoua A, Trioulier Y, Diguet E, et al. Dopamine determines the vulnerability of striatal neurons to the N-terminal fragment of mutant huntingtin through the regulation of mitochondrial complex II. Hum Mol Genet 2008;17(10):1446-56
  • Tang TS, Chen X, Liu J, Bezprozvanny I. Dopaminergic signaling and striatal neurodegeneration in Huntington’s disease. J Neurosci 2007;27(30):7899-910
  • Ginovart N, Lundin A, Farde L, et al. PET study of the pre- and post-synaptic dopaminergic markers for the neurodegenerative process in Huntington’s disease. Brain 1997;120(Pt 3):503-14
  • Pavese N, Politis M, Tai Y, et al. Cortical dopamine dysfunction in symptomatic and premanifest Huntington’s disease gene carriers. Neurobiol Dis 2010;37(2):356-61
  • van Oostrom JCH, Dekker M, Willemsen TM, et al. Changes in striatal dopamine D2 receptor binding in pre-clinical Huntington’s disease. Eur J Neurol 2009;16(2):226-31
  • Pavese N, Andrews T, Brooks D, et al. Progressive striatal and cortical dopamine receptor dysfunction in Huntington’s disease: a PET study. Brain 2003;126(5):1127-35
  • Turjanski N, Weeks R, Dolan R, et al. 1 and D 2 receptor binding in patients with Huntington’s disease and other choreas A PET study. Brain 1995;118(3):689-96
  • Andrews TC, Weeks RA, Turjanski N, et al. Huntington’s disease progression. PET and clinical observations. Brain 1999;122(Pt 1):2353-63
  • Backman L. Cognitive deficits in Huntington’s disease are predicted by dopaminergic PET markers and brain volumes. Brain 1997;120(12):2207-17
  • Paulsen JS, Langbehn DR, Stout JC, et al. Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry 2008;79(8):874-80
  • Glass M, Dragunow M, Faull RLM. The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABAA receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 2000;97(3):505-19
  • Politis M, Pavese N, Tai YF, et al. Hypothalamic involvement in Huntington’s disease: an in vivo PET study. Brain 2008;131(Pt 11):2860-9
  • Ba L, Lundin A, Ginovart N, Farde L. Cognitive deficits in Huntington's disease are predicted by dopaminergic PET markers and brain volumes. Brain 1997;120:2207-17
  • Esmaeilzadeh M, Farde L, Karlsson P, et al. Extrastriatal dopamine D(2) receptor binding in Huntington’s disease. Hum Brain Mapp 2011;32(10):1626-36
  • Mangiarini L, Sathasivam K, Seller M, et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 1996;87(3):493-506
  • Dodds L, Chen J, Berggren K, Fox J. Characterization of striatal neuronal loss and atrophy in the R6/2 mouse model of Huntington’s disease. PLoS Curr 2014;6
  • Ramaswamy S, McBride JL, Kordower JH. Animal models of Huntington’s disease. ILAR J 2007;48(4):356-73
  • Hansson O, Petersén A, Leist M, et al. Transgenic mice expressing a Huntington’s disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity. Proc Natl Acad Sci USA 1999;96(15):8727-32
  • Slow EJ, van Raamsdonk J, Rogers D, et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 2003;12(13):1555-67
  • Pouladi MA, Stanek LM, Xie Y, et al. Marked differences in neurochemistry and aggregates despite similar behavioural and neuropathological features of Huntington disease in the full-length BACHD and YAC128 mice. Hum Mol Genet 2012;21(10):2219-32
  • Gray M, Shirasaki DI, Cepeda C, et al. Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci 2008;28(24):6182-95
  • Cha JH, Kosinski CM, Kerner JA, et al. Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human Huntington disease gene. Proc Natl Acad Sci USA 1998;95(11):6480-5
  • Davies SW, Turmaine M, Cozens BA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997;90(3):537-48
  • Crook ZR, Housman D. Huntington’s disease: can mice lead the way to treatment? Neuron 2011;69(3):423-35
  • Garrett MC, Soares-da-Silva P. Increased cerebrospinal fluid dopamine and 3,4-dihydroxyphenylacetic acid levels in Huntington’s disease: evidence for an overactive dopaminergic brain transmission. J Neurochem 1992;58(1):101-6
  • Callahan JW, Abercrombie ED. In vivo dopamine efflux is decreased in striatum of both fragment (R6/2) and full-length (YAC128) transgenic mouse models of Huntington’s Disease. Front Syst Neurosci 2011;5:61
  • Hickey MA, Reynolds GP, Morton AJ. The role of dopamine in motor symptoms in the R6/2 transgenic mouse model of Huntington’s disease. J Neurochem 2002;81(1):46-59
  • Frank S. Tetrabenazine: the first approved drug for the treatment of chorea in US patients with Huntington disease. Neuropsychiatr Dis Treat 2010;6:657-65
  • Chen JJ, Ondo WG, Dashtipour K, Swope DM. Tetrabenazine for the treatment of hyperkinetic movement disorders: a review of the literature. Clin Ther 2012;34(7):1487-504
  • Lane JD, Smith JE, Shea PA, McBride WJ. Neurochemical changes following the administration of depleters of biogenic monoamines. Life Sci 1976;19(11):1663-7
  • Pearson S, Reynolds G. Depletion of monoamine transmitters by tetrabenazine in brain tissue in Huntington’s disease. Neuropharmacology 1988;27(7):717-19
  • Erickson JD, Schafer MK, Bonner TI, et al. Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci USA 1996;93(10):5166-71
  • Mehvar R, Jamali F. Concentration-effect relationships of tetrabenazine and dihydrotetrabenazine in the rat. J Pharm Sci 1987;76(6):461-5
  • Jankovic J, Orman J. Tetrabenazine therapy of dystonia, chorea, tics, and other dyskinesias. Neurology 1988;38(3):391-4
  • Jankovic J, Beach J. Long-term effects of tetrabenazine in hyperkinetic movement disorders. Neurology 1997;48(2):358-62
  • Group HS. Tetrabenazine as antichorea therapy in Huntington disease: a randomized controlled trial. Neurology 2006. 66(3):366-72
  • Huang CY, McLeod JG, Holland RT, Elliot C. Tetrabenazine in the treatment of Huntington’s chorea. Med J Aust 1976;1(16):583-4
  • Toglia JU, McGlamery M, Sambandham RR. Tetrabenazine in the treatment of Huntington’s chorea and other hyperkinetic movement disorders. J Clin Psychiatry 1978;39(1):81-7
  • Ondo WG, Tintner R, Thomas M, Jankovic J. Tetrabenazine treatment for Huntington’s disease-associated chorea. Clin Neuropharmacol 2002;25(6):300-2
  • Kenney C, Hunter C, Davidson A, Jankovic J. Short-term effects of tetrabenazine on chorea associated with Huntington’s disease. Mov Disord 2007;22(1):10-13
  • Fasano A, Cadeddu F, Guidubaldi A, et al. The long-term effect of tetrabenazine in the management of Huntington disease. Clin Neuropharmacol 2008;31(6):313-18
  • Frank S. Tetrabenazine as anti-chorea therapy in Huntington disease: an open-label continuation study. Huntington Study Group/TETRA-HD Investigators. BMC Neurol 2009;9:62
  • Frank S, Ondo W, Fahn S, et al. A study of chorea after tetrabenazine withdrawal in patients with Huntington disease. Clin Neuropharmacol 2008;31(3):127-33
  • Killoran A, Biglan KM. Therapeutics in Huntington’s disease. Curr Treat Options Neurol 2012. [Epub ahead of print]
  • Koller W, Trimble J. The gait abnormality of Huntington’s disease. Neurology 1985;35(10):1450-4
  • Charvin D, Roze E, Perrin V, et al. Haloperidol protects striatal neurons from dysfunction induced by mutated huntingtin in vivo. Neurobiol Dis 2008;29(1):22-9
  • Charvin D, Vanhoutte P, Pagès C, et al. Unraveling a role for dopamine in Huntington’s disease: the dual role of reactive oxygen species and D2 receptor stimulation. Proc Natl Acad Sci USA 2005;102(34):12218-23
  • Girotti F, Carella F, Scigliano G, et al. Effect of neuroleptic treatment on involuntary movements and motor performances in Huntington’s disease. J Neurol Neurosurg Psychiatry 1984;47(8):848-52
  • Korenyi C, Whittier JR. Drug treatment in 117 cases of Huntington’s disease with special reference to fluphenazine (Prolixin). Psychiatr Q 1967;41(2):203-10
  • Quinn N, Marsden CD. A double blind trial of sulpiride in Huntington’s disease and tardive dyskinesia. J Neurol Neurosurg Psychiatry 1984;47(8):844-7
  • Priller J, Ecker D, Landwehrmeyer B, Craufurd D. A Europe-wide assessment of current medication choices in Huntington’s disease. Mov Disord 2008;23(12):1788
  • Squitieri F, Cannella M, Porcellini A, et al. Short-term effects of olanzapine in Huntington disease. Neuropsychiatry Neuropsychol Behav Neurol 2001;14(1):69-72
  • Paleacu D, Anca M, Giladi N. Olanzapine in Huntington’s disease. Acta Neurol Scand 2002;105(6):441-4
  • Bonelli RM, Mahnert FA, Niederwieser G. Olanzapine for Huntington’s disease: an open label study. Clin Neuropharmacol 2002;25(5):263-5
  • Reveley MA, Dursun SM, Andrews H. A comparative trial use of sulpiride and risperidone in Huntington’s disease: a pilot study. J Psychopharmacol 1996;10(2):162-5
  • Duff K, Beglinger LJ, O’Rourke ME, et al. Risperidone and the treatment of psychiatric, motor, and cognitive symptoms in Huntington’s disease. Ann Clin Psychiatry 2008;20(1):1-3
  • Shapiro DA, Renock S, Arrington E, et al. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 2003;28(8):1400-11
  • Brusa L, Orlacchio A, Moschella V, et al. Treatment of the symptoms of Huntington’s disease: preliminary results comparing aripiprazole and tetrabenazine. Mov Disord 2009;24(1):126-9
  • Ciammola A, Sassone J, Colciago C, et al. Aripiprazole in the treatment of Huntington’s disease: a case series. Neuropsychiatr Dis Treat 2009;5:1-4
  • Shirasaki Y, Sugimura M, Sato T. Bromocriptine, an ergot alkaloid, inhibits excitatory amino acid release mediated by glutamate transporter reversal. Eur J Pharmacol 2010;643(1):48-57
  • Trabucchi M, Spano PF, Tonon GC, Frattola L. Effects of bromocriptine on central dopaminergic receptors. Life Sci 1976;19(2):225-31
  • Kartzinel R, Hunt RD, Calne DB. Bromocriptine in Huntington chorea. Arch Neurol 1976;33(7):517-18
  • Caraceni TA, Girotti F, Giovannini P, et al. Effects of DA agonist in Huntington disease hyperkinesia. Ital J Neurol Sci 1980;1(3):155-61
  • Frattola L, Albizzati MG, Alemani A, et al. Acute treatment of Huntington’s chorea with lisuride. J Neurol Sci 1983;59(2):247-53
  • Loeb C, Roccatagliata G, La Medica G, et al. Levodopa and Huntington’s chorea. J Neurol Neurosurg Psychiatry 1976;39(10):958-61
  • Schenk G, Leijnse-Ybema HJ. Letter: Huntington’s chorea and levodopa. Lancet 1974;1(7853):364
  • Tan BK, Leijnse-Ybema HJ, v d Brand HJ. Levodopa in Huntington’s chorea. Lancet 1972;1(7756):903
  • Mason SL, Barker RA. Emerging drug therapies in Huntington’s disease. Expert Opin Emerg Drugs 2009;14(2):273-97
  • Reuter I, Hu MT, Andrews TC, et al. Late onset levodopa responsive Huntington’s disease with minimal chorea masquerading as Parkinson plus syndrome. J Neurol Neurosurg Psychiatry 2000;68(2):238-41
  • Ponten H, Kullingsjö J, Lagerkvist S, et al. In vivo pharmacology of the dopaminergic stabilizer pridopidine. Eur J Pharmacol 2010;644(1–3):88-95
  • Natesan S, Svensson KA, Reckless GE, et al. The dopamine stabilizers (S)-(-)-(3-methanesulfonyl-phenyl)-1-propyl-piperidine [(-)-OSU6162] and 4-(3-methanesulfonylphenyl)-1-propyl-piperidine (ACR16) show high in vivo D2 receptor occupancy, antipsychotic-like efficacy, and low potential for motor side effects in the rat. J Pharmacol Exp Ther 2006;318(2):810-18
  • Carlsson ML, Carlsson A, Nilsson M. Schizophrenia: from dopamine to glutamate and back. Curr Med Chem 2004;11(3):267-77
  • Lundin A, Dietrichs E, Haghighi S, et al. Efficacy and safety of the dopaminergic stabilizer Pridopidine (ACR16) in patients with Huntington’s disease. Clin Neuropharmacol 2010;33(5):260-4
  • de Yebenes JG, Landwehrmeyer B, Squitieri F, et al. Pridopidine for the treatment of motor function in patients with Huntington’s disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2011;10(12):1049-57
  • Huntington Study Group HART Investigators. A randomized, double-blind, placebo-controlled trial of pridopidine in Huntington’s disease. Mov Disord 2013;28(10):1407-15
  • Sahlholm K, Århem P, Fuxe K, Marcellino D. The dopamine stabilizers. ACR16 and (-)-OSU6162 display nanomolar affinities at the σ-1 receptor. Mol Psychiatry 2013;18(1):12-14
  • Narayanan NS, Rodnitzky RL, Uc EY. Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s disease. Rev Neurosci 2013;24(3):267-78
  • Calabresi P, Picconi B, Parnetti L, Di Filippo M. A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine-acetylcholine synaptic balance. Lancet Neurol 2006;5(11):974-83
  • Petersén A, Larsen KE, Behr GG, et al. Expanded CAG repeats in exon 1 of the Huntington’s disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum Mol Genet 2001;10(12):1243-54
  • Tabrizi SJ, Reilmann R, Roos RAC, et al. Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol 2012;11(1):42-53
  • Bordelon YM. Clinical neurogenetics: Huntington disease. Neurol Clin 2013;31(4):1085-94
  • Giménez-Roldán S, Mateo D. Huntington disease: tetrabenazine compared to haloperidol in the reduction of involuntary movements. Neurologia 1989. 4(8):282-7
  • Seeman P, Tallerico T. Antipsychotic drugs which elicit little or no parkinsonism bind more loosely than dopamine to brain D2 receptors, yet occupy high levels of these receptors. Mol Psychiatry 1998;3:123-34
  • van Vugt JP, Siesling S, Vergeer van der Velde MEA, Roos RA. Clozapine versus placebo in Huntington’s disease: a double blind randomised comparative study. J Neurol Neurosurg Psychiatry 63(1):35-9
  • Bonelli RM, Niederwieser G, Tribl GG, Költringer P. High-dose olanzapine in Huntington’s disease. Int Clin Psychopharmacol 2002;17(2):91-3
  • Pettersson F, Pontén H, Waters N, et al. Synthesis and evaluation of a set of 4-phenylpiperidines and 4-phenylpiperazines as D2 receptor ligands and the discovery of the dopaminergic stabilizer 4-[3-(methylsulfonyl)phenyl]-1-propylpiperidine (Huntexil, pridopidine, ACR16). J Med Chem 2010;53(6):2510-20

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.