318
Views
35
CrossRef citations to date
0
Altmetric
Original Research

Nano-ropinirole for the management of Parkinsonism: blood–brain pharmacokinetics and carrier localization

, , , , , & show all

References

  • Pasinetti GM. Biomarker for Parkinson’s disease. US patent 20050202508
  • Medico M, D’Vivo S, Tomasello C, et al. Behavioral and neurochemical effects of dopaminergic drugs in models of brain injury. Eur Neuropsychopharmacol 2000;12:187-94
  • Gassen M, Youdim MB. Free radicals scavengers: chemical concept and clinical relevance. J Neural Transm 1999;56:193-210
  • Bloomer JC, Clarke SE, Chenery RJ. In vitro identification of the P450 enzymes responsible for metabolism of ropinirole. Drug Metab Dispos 1997;25:840-4
  • Gururangan S, Friedman HS. Innovations in design and delivery of chemotherapy for brain tumors. Neuroimaging Clin N Am 2009;12(4):583-97
  • de Lange EC. The mastermind approach to central nervous system drug therapy: translational prediction of human brain distribution, target site kinetics, and therapeutic effects. Fluids Barriers CNS 2013;10(1):12
  • Fernandez-Urrusuno R, Romani D, Calvo D. Development of a freeze dried formulation of insulin-loaded chitosan nanoparticles intended for nasal administration. STP Pharm Sci 1999;9:429-36
  • Koziara J, Lockman PR, Allen DD, Mumper RJ. In-situ blood–brain barrier transport of nanoparticles. Pharm Res 2003;20(11):1772-8
  • Lockman PR, Koziara J, Roder KE, et al. In-vivo and in-vitro assessment of baseline blood–brain barrier parameters in the presence of novel nanoparticles. Pharm Res 2003;20(5):705-13
  • Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood– brain barrier. Drug Dev Ind Pharm 2002;28(1):1-12
  • Kreuter J, Alyautdin RN. Using nanoparticles to target drugs to the central nervous system. In: Begley DJ, Bradbury MW, Kreuter J, Editors The Blood– Brain Barrier and Drug Delivery to the CNS. Marcel Dekker; New York: 2000. pp 205-23
  • Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Discov Today 2002;7:967-75
  • Turker S, Onur E, Ozer Y. Nasal route and drug delivery systems. Pharm World Sci 2002;26:137-42
  • Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci 2000;11:1-18
  • Mathison S, Nagilla R, Kompella UB. Nasal route for direct delivery of solutes to the central nervous system: fact or fiction. J Drug Target 1998;5:415-41
  • Dongxing W, Yongliang G, Liuhong Y. Study on brain targeting of raltitrexed following intranasal administration in rats. Cancer Chemother Pharmacol 2006;57:97-104
  • Critchley H, Davis SS, Farraj NF, Illum L. Nasal absorption of desmopressin in rats and sheep, effect of a bioadhesive microsphere delivery system. J Pharm Pharmacol 1994;46:651-6
  • Dondeti P, Zia H, Needham TE. Bioadhesive and formulation parameters affecting nasal absorption. Int J Pharm 1996;127:115-33
  • Sakane T, Yamashita S, Yata N, et al. Transnasal delivery of 5-fluorouracil to the brain in the rat. J Drug Target 1999;7:233-40
  • Wang F, Jiang X, Lu W. Profiles of methotrexate in blood and CSF following intranasal and intravenous administration to rats. Int J Pharm 2003;263:1-7
  • Marttin E, Schipper NGM, Verhoef JC, Merkus VHM. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev 1998;29:13-38
  • Witschi C, Mrsny R. In vitro evaluation of micro particles and polymer gels for use as nasal plateform for protein delivery. Pharm Res 1999;16:382-90
  • Lehr CM, Boustra JA, Schacht EH, Junginger HE. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm 1992;78:43-58
  • Morimoto K, Tabata H, Morisaka K. Nasal absorption of nifedipine from gel preparation in rats. Chem Pharm Bull 1987;35:3141-4
  • Morimoto K, Morisaka K, Kamada A. Enhancement of nasal absorption of insulin and calcitonin using polyacrylic acid gel. J Pharm Pharmacol 1985;37:134-6
  • Mustafa G, Baboota S, Ahuja A, Ali J. Formulation Development of Chitosan Coated Intra Nasal Ropinirole Nanoemulsion for Better Management Option of Parkinson: An In Vitro Ex Vivo Evaluation. Current Nanosci 2012;8(3):348-60
  • Mustafa G, Kumar N, Singh T, et al. Effect of homogenization on the fate of true nanoemulsion in brain translocation: A gamma scintigraphic evaluation. Sci Ad Material 2012c;4(7):739-48
  • Mustafa G, Ahmad N, Baboota S, et al. C/ESI-Q-TOF-MS method for the measurement of dopamine in rodent striatal tissue: A comparative effects of intranasal administration of ropinirole solution over nanoemulsion. Drug Test Anal 2013;5(8):702-9
  • Singh T, Kumar N, Soni S, et al. A new method for radiolabeling of human immunoglobulin-G and its biological evaluation. J Pharm Bioallied Sci 2012;4(4):286-90
  • Tushar K, Vyas AK, Babbar RK, et al. Intranasal mucoad-hesive Microemulsions of Clonazepam: Preliminary Studies on Brain Targeting. J Pharm Sci 2006;3:570-80
  • Md S, Haque S, Fazil M, et al. Optimised nanoformulation of bromocriptine for direct nose-to-brain delivery: biodistribution, pharmacokinetic and dopamine estimation by ultra-HPLC/mass spectrometry method. Expert Opin Drug Deliv 2014. [Epub ahead of print]
  • Alam S, Khan ZI, Mustafa G, et al. Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study. Int J Nanomedicine 2012;7:5705-18
  • Tosi G, Costantino L, Rivasi F, et al. Targeting the central nervous system: In vivo experiments with peptide-derivatized NPs loaded with loperamide and rhodamine-123. J Control Release 2007;122:1-9
  • Lange EC, Bock GD, Shinkel AH, et al. BBB transport using MDR 1A and wild-type mice. Total brain versus microdialysis concentration profiles of Rhodamine-123. Pharm Res 1998;15:1657-65
  • Haque S, Md S, Fazil M, et al. Venlafaxine loaded chitosan NPs for brain targeting: Pharmacokinetic and pharmacodynamic evaluation. Carbohydr Polym 2012;89(1):72-9
  • Paxinos G, Watson C. The rat brain stereotaxic coordinates. Sydney’: Academic Press; 1982
  • Ahmad AS, Ansari MA, Ahmad M, et al. Neuroprotection by crocetin in a hemi-parkinsonian rat model. Pharmacol Biochem Behav 2005;81(4):805-13
  • Whitehead J, Rose S, Jenner P. Involvement of intrinsic cholinergic and GABAergic innervation in the effect of NMDA on striatal dopamine efflux and metabolism as assessed by microdialysis studies in freely moving rats. Eur J Neurosci 2001;14:851-60
  • Luthra PM, Barodia SK, Raghubir R. Antagonism of haloperidol-induced swim impairment in l-dopa and caffeine treated mice: A pre-clinical model to study Parkinson’s disease. J Neurosci Methods 2009;178(2):284-90
  • Mustafa G, Ahmad N, Baboota S, et al. Stressed kinetics of nanoemulsion formulation encapsulated ropinirole with a validated ultra high performance liquid chromatography–synapt mass spectrometry (UPLC-MS/MS ESI-Q-TOF). J Chin Chem Soc 2012a;59:8-1021-30
  • Vyas TK, Babbar AK, Sharma RK, Misra A. Intranasal mucoadhesive microemulsions of zolmitriptan: preliminary studies on brain-targeting. J Drug Target 2005;13(5):317-24
  • Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR. Bromobenzeneinduced liver necrosis Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 1974;11:151-69
  • Hassan MZ, Khan SA, Amir M. Design, synthesis and evaluation of N-(substituted benzothiazol-2-yl) amides as anticonvulsant and neuroprotectiveq. Eur J Med Chem 2012;58:206-13
  • Zafar SK, Siddiqui A, Sayeed I, et al. Protective effect of adenosine in rat model of Parkinson’s disease: neurobehavioral and neurochemical evidences. J Chem Neuroanat 2003;26:143-51
  • Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res 1998;15:1326-31
  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan based micro-and nanoparticles in drug delivery. J Control Rel 2004;100:5-28
  • Frey WH, Liu J, Chen X, et al. Delivery of 125I-NGF to the brain via the olfactory route. Drug Deliv 1997;4:87-92
  • Khan S, Patil K, Bobade N, et al. Formulation of intranasal mucoadhesive temperature-mediated in situ gel containing ropinirole and evaluation of brain targeting efficiency in rats. J Drug Target 2010;18(3):223-34
  • Mustafa G, Baboota S, Ali J, et al. Nose to Brain targeting potential of a chitosan coated nanoformulation: Pharmacodynamic and Pharmacoscintigraphic evaluation. Sci Adv Mat 2013;5:9.1236-49
  • Md S, Khan RA, Mustafa G, et al. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, Pharmacokinetic and Scintigraphy study in mice model. Eur J Pharm Sci 2012;48(3):393-405
  • Smith JM, Dornish M. Involvement of protein kinase C in chitosan glutamate-mediated tight junction disruption. Biomaterials 2005;26(16):3269-76
  • Artursson P, Lindmark T, Davis SS, Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res 1994;11:1358-61
  • Soane RJ, Frier M, Perkins AC, et al. Evaluation of the clearance characteristics of bioadhesive systems in humans. Int J Pharm 1999;178:55-65
  • Dufes C, Olivier JC, Gaillard F. Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats. Int J Pharm 2003;255:87-97
  • Gille G, Hung ST, Reichmann H, Rausch WD. Oxidative stress to dopaminergic neurons as models of Parkinson’s disease. Ann NY Acad Sci 2004;1018:533-40

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.