740
Views
57
CrossRef citations to date
0
Altmetric
Drug Profiles

Masitinib for the treatment of mild to moderate Alzheimer’s disease

, , , , , , , , , & show all

References

  • Roberson ED, Mucke L. 100 years and counting: prospects for defeating Alzheimer’s disease. Science 2006;314(5800):781-4
  • Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology 2014;76(Part A):27-50
  • Tayeb HO, Yang HD, Price BH, et al. Pharmacotherapies for Alzheimer’s disease: Beyond cholinesterase inhibitors. Pharmacol Ther 2012;134(1):8-25
  • Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature 2004;430(7000):631-9
  • Hardy J, Bogdanovic N, Winblad B, et al. Pathways to Alzheimer’s disease. J Intern Med 2014;275(3):296-303
  • Dumas JA, Newhouse PA. The cholinergic hypothesis of cognitive aging revisited again: cholinergic functional compensation. Pharmacol Biochem Behav 2011;99(2):254-61
  • Castellani RJ, Perry G. Pathogenesis and disease-modifying therapy in Alzheimer’s disease: the flat line of progress. Arch Med Res 2012;43(8):694-8
  • Esposito Z, Belli L, Toniolo S, et al. Amyloid β, glutamate, excitotoxicity in Alzheimer’s disease: are we on the right track? CNS Neurosci Ther 2013;19(8):549-55
  • Piette F, Belmin J, Vincent H, et al. Masitinib as an adjunct therapy for mild-to-moderate Alzheimer’s disease: a randomised, placebo-controlled phase 2 trial. Alzheimers. Res Ther 2011;3(2):16
  • Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 1991;12(10):383-8
  • Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992;256(5054):184-5
  • Armstrong RA. A critical analysis of the “amyloid cascade hypothesis”. Folia Neuropathol 2014;52(3):211-25
  • Mullane K, Williams M. Alzheimer’s therapeutics: Continued clinical failures question the validity of the amyloid hypothesis - But what lies beyond? Biochem Pharmacol 2014;85(3):289-305
  • Mangialasche F, Solomon A, Winblad B, et al. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 2010;9(7):702-16
  • Schneider LS, Mangialasche F, Andreasen N, et al. Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. J Intern Med 2014;275(3):251-83
  • Hefti F, Goure WF, Jerecic J, et al. The case for soluble A?? oligomers as a drug target in Alzheimer’s disease. Trends Pharmacol Sci 2013;34(5):261-6
  • Mattson MP. Mother’s legacy: mitochondrial DNA mutations and Alzheimer’s disease. Trends Neurosci 1997;20(9):373-5
  • Swerdlow RH. Mitochondria and cell bioenergetics: increasingly recognized components and a possible etiologic cause of Alzheimer’s disease. Antioxid Redox Signal 2012;16(12):1434-55
  • Sims-Robinson C, Kim B, Rosko A, et al. How does diabetes accelerate Alzheimer disease pathology? Nat Rev Neurol 2010;6(10):551-9
  • Letiembre M, Liu Y, Walter S, et al. Screening of innate immune receptors in neurodegenerative diseases: a similar pattern. Neurobiol Aging 2009;30(5):759-68
  • Silver R, Curley JP. Mast cells on the mind: New insights and opportunities. Trends Neurosci 2013;36(9):513-21
  • Debruin EJ, Gold M, Lo BC, et al. Mast cells in human health and disease. Methods Mol Biol 2015;1220:93-119
  • Zappulla JP, Arock M, Mars LT, et al. Mast cells: new targets for multiple sclerosis therapy? J Neuroimmunol 2002;131(1-2):5-20
  • Frenzel L, Hermine O. Mast cells and inflammation. Jt Bone Spine 2013;80(2):141-5
  • Walker ME, Hatfield JK, Brown MA. New insights into the role of mast cells in autoimmunity: Evidence for a common mechanism of action? Biochim Biophys Acta Mol Basis Dis 2012;1822(1):57-65
  • Skaper SD, Giusti P, Facci L. Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J 2012;26(8):3103-17
  • Skaper SD, Facci L, Romanello S, et al. Mast cell activation causes delayed neurodegeneration in mixed hippocampal cultures via the nitric oxide pathway. J Neurochem 1996;66(3):1157-66
  • Cheng X, Shen Y, Li R. Targeting TNF: a therapeutic strategy for Alzheimer’s disease. Drug Discov Today 2014;19(11):1822-7
  • Sabatino G, Nicoletti M, Neri G, et al. Impact of IL -9 and IL-33 in mast cells. J Biol Regul Homeost Agents 2012;26(4):577-86
  • Milovanovic M, Volarevic V, Radosavljevic G, et al. IL-33/ST2 axis in inflammation and immunopathology. Immunol Res 2012;52(1-2):89-99
  • Hendrix S, Warnke K, Siebenhaar F, et al. The majority of brain mast cells in B10.PL mice is present in the hippocampal formation. Neurosci Lett 2006;392(3):174-7
  • Silverman AJ, Sutherland a K, Wilhelm M, et al. Mast cells migrate from blood to brain. J Neurosci 2000;20(1):401-8
  • Lambracht-Hall M, Dimitriadou V, Theoharides TC. Migration of mast cells in the developing rat brain. Dev Brain Res 1990;56(2):151-9
  • El-Agamy DS. Targeting c-kit in the therapy of mast cell disorders: Current update. Eur J Pharmacol 2012;690(1-3):1-3
  • Lennartsson J, Ronnstrand L. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev 2012;92(4):1619-49
  • Ashman LK, Griffith R. Therapeutic targeting of c-KIT in cancer. Expert Opin Investig Drugs 2013;22(1):103-15
  • Yuzawa S, Opatowsky Y, Zhang Z, et al. Structural basis for activation of the receptor tyrosine kinase KIT by stem cell factor. Cell 2007;130(2):323-34
  • Paulhe F, Wehrle-Haller M, Jacquier MC, et al. Dimerization of Kit-ligand and efficient cell-surface presentation requires a conserved Ser-Gly-Gly-Tyr motif in its transmembrane domain. FASEB J 2009;23(9):3037-48
  • Mol CD, Lim KB, Sridhar V, et al. Structure of a c-Kit product complex reveals the basis for kinase transactivation. J Biol Chem 2003;278(34):31461-4
  • Roskoski R. Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor. Biochem Biophys Res Commun 2005;337(1):1-13
  • Roskoski R. Structure and regulation of Kit protein-tyrosine kinase--the stem cell factor receptor. Biochem Biophys Res Commun 2005;338(3):1307-15
  • Nishida T, Doi T, Naito Y. Tyrosine kinase inhibitors in the treatment of unresectable or metastatic gastrointestinal stromal tumors. Expert Opin Pharmacother 2014;15(14):1979-89
  • Rask-Andersen M, Zhang J, Fabbro D, et al. Advances in kinase targeting: current clinical use and clinical trials. Trends Pharmacol Sci 2014;35(11):604-20
  • Azizi G, Mirshafiey A. Imatinib mesylate: an innovation in treatment of autoimmune diseases. Recent Pat Inflamm Allergy Drug Discov 2013;7(3):259-67
  • Anastassiadis T, Deacon SW, Devarajan K, et al. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol 2011;29(11):1039-45
  • Dubreuil P, Letard S, Ciufolini M, et al. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS ONE 2009;4(9):e7258
  • Marech I, Patruno R, Zizzo N, et al. Masitinib (AB1010), from canine tumor model to human clinical development: Where we are? Crit Rev Oncol Hematol 2014;91(1):98-111
  • Demetri GD. Differential properties of current tyrosine kinase inhibitors in gastrointestinal stromal tumors. Semin Oncol 2011;38:S10-19
  • Mitry E, Hammel P, Deplanque G, et al. Safety and activity of masitinib in combination with gemcitabine in patients with advanced pancreatic cancer. Cancer Chemother Pharmacol 2010;66(2):394-403
  • Kritas SK, Saggini A, Cerulli G, et al. Impact of mast cells on multiple sclerosis: inhibitory effect of natalizumab. Int J Immunopathol Pharmacol 2014;27(3):331-5
  • Kritas SK, Saggini A, Varvara G, et al. Mast cell involvement in rheumatoid arthritis. J Biol Regul Homeost Agents 2013;27(3):655-60
  • Niederhoffer N, Levy R, Sick E, et al. Amyloid beta peptides trigger CD47-dependent mast cell secretory and phagocytic responses. Int J Immunopathol Pharmacol 2009;22(2):473-83
  • Maslinska D, Laure-Kamionowska M, Maslinski KT, et al. Distribution of tryptase-containing mast cells and metallothionein reactive astrocytes in human brains with amyloid deposits. Inflamm Res 2007;56(Suppl 1):S17-18
  • Shirazi SK, Wood JG. The protein tyrosine kinase, fyn, in Alzheimer’s disease pathology. Neuroreport 1993;4(4):435-7
  • Lee G, Thangavel R, Sharma VM, et al. Phosphorylation of tau by fyn: implications for Alzheimer’s disease. J Neurosci 2004;24(9):2304-12
  • Vermersch P, Benrabah R, Schmidt N, et al. Masitinib treatment in patients with progressive multiple sclerosis: a randomized pilot study. BMC Neurol 2012;12:36
  • Le Cesne A, Blay JY, Bui BN, et al. Phase II study of oral masitinib mesilate in imatinib-naïve patients with locally advanced or metastatic gastro-intestinal stromal tumour (GIST). Eur J Cancer 2010;46(8):1344-51
  • Adenis A, Blay JY, Bui-Nguyen B, et al. Masitinib in advanced gastrointestinal stromal tumor (GIST) after failure of imatinib: a randomized controlled open-label trial. Ann Oncol 2014;25(9):1762-9
  • Sedger LM, McDermott MF. TNF and. TNF-receptors: From mediators of cell death and inflammation to therapeutic giants – past, present and future. Cytokine Growth Factor Rev 2014;25(4):453-72
  • Tebib J, Mariette X, Bourgeois P, et al. Masitinib in the treatment of active rheumatoid arthritis: results of a multicentre, open-label, dose-ranging, phase 2a study. Arthritis Res Ther 2009;11(3):R95
  • A Phase IIb/III study to evaluate efficacy and safety of masitinib in comparison to methotrexate in patients with active rheumatoid arthritis with inadequate response to methotrexate or to any disease-modifying antirheumatic drug. Available from: https://clinicaltrials.gov/ct2/show/NCT01410695
  • Efficacy of oral AB1010 in adult patients with severe persistent corticosteroid dependent asthma. Available from: https://www.clinicaltrials.gov/ct2/show/NCT00842270
  • Humbert M, De Blay F, Garcia G, et al. Masitinib, a c-kit/PDGF receptor tyrosine kinase inhibitor, improves disease control in severe corticosteroid-dependent asthmatics. Allergy Eur J Allergy Clin Immunol 2009;64(8):1194-201
  • Paul C, Sans B, Suarez F, et al. Masitinib for the treatment of systemic and cutaneous mastocytosis with handicap: A phase 2a study. Am J Hematol 2010;85(12):921-5
  • Lenihan DJ, Kowey PR. Overview and management of cardiac adverse events associated with tyrosine kinase inhibitors. Oncologist 2013;18(8):900-8
  • Soria JC, Massard C, Magné N, et al. Phase 1 dose-escalation study of oral tyrosine kinase inhibitor masitinib in advanced and/or metastatic solid cancers. Eur J Cancer 2009;45(13):2333-41
  • Williamson R, Scales T, Clark BR, et al. Rapid tyrosine phosphorylation of neuronal proteins including tau and focal adhesion kinase in response to amyloid-beta peptide exposure: involvement of Src family protein kinases. J Neurosci 2002;22(1):10-20
  • Yasunaga M, Yagi T, Hanzawa N, et al. Involvement of Fyn tyrosine kinase in progression of cytokinesis of B lymphocyte progenitor. J Cell Biol 1996;132(1-2):91-9
  • Sette C, Paronetto MP, Barchi M, et al. Tr-kit-induced resumption of the cell cycle in mouse eggs requires activation of a Src-like kinase. EMBO J 2002;21(20):5386-95
  • Folch J, Junyent F, Verdaguer E, et al. Role of cell cycle re-entry in neurons: A common apoptotic mechanism of neuronal cell death. Neurotox Res 2012;22(3):195-207
  • Seward ME, Swanson E, Norambuena A, et al. Amyloid-β signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer’s disease. J Cell Sci 2013;126(Pt 5):1278-86
  • Souter S, Lee G. Tubulin-independent tau in Alzheimer’s disease and cancer: implications for disease pathogenesis and treatment. Curr Alzheimer Res 2010;7(8):697-707
  • Chin J, Palop JJ, Puoliväli J, et al. Fyn kinase induces synaptic and cognitive impairments in a transgenic mouse model of Alzheimer’s disease. J Neurosci 2005;25(42):9694-703
  • Um JW, Nygaard HB, Heiss JK, et al. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci 2012;15(9):1227-35
  • Ittner LM, Ke YD, Delerue F, et al. Dendritic function of tau mediates amyloid-β toxicity in alzheimer’s disease mouse models. Cell 2010;142(3):387-97
  • Chin J, Palop JJ, Yu GQ, et al. Fyn kinase modulates synaptotoxicity, but not aberrant sprouting, in human amyloid precursor protein transgenic mice. J Neurosci 2004;24(19):4692-7
  • Peña F, Ordaz B, Balleza-Tapia H, et al. Beta-amyloid protein (25-35) disrupts hippocampal network activity: Role of Fyn-kinase. Hippocampus 2010;20(1):78-96
  • Um J, Kaufman A, Kostylev M, et al. Metabotropic glutamate receptor 5 Is a coreceptor for Alzheimer Aβ oligomer bound to cellular prion protein. Neuron 2013;79(5):887-902
  • Larson M, Sherman MA, Amar F, et al. The Complex PrPc-Fyn Couples Human Oligomeric A with Pathological Tau Changes in Alzheimer’s Disease. J Neurosci 2012;32(47):16857-71
  • Safety and Tolerability of AZD0530 (Saracatinib) in Alzheimer’s Disease. Available from: https://clinicaltrials.gov/ct2/show/NCT01864655
  • A Phase IIa Multi-Center Study of 18F-FDG PET, Safety, and Tolerability of AZD0530 in Mild Alzheimer’s Disease. Available from: https://clinicaltrials.gov/ct2/show/NCT02167256
  • Ferreira ST, Clarke JR, Bomfim TR, et al. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimer’s Dement 2014;10(Suppl 1):S76-83
  • Perry VH, Holmes C. Microglial priming in neurodegenerative disease. Nat Rev Neurol 2014;10(4):217-24
  • Liu L, Chan C. The role of inflammasome in Alzheimer’s disease. Ageing Res Rev 2014;15(1):6-15
  • McGeer PL, McGeer EG. Targeting microglia for the treatment of Alzheimer’s disease. Expert Opin Ther Targets 2015;19(4):497-506
  • McGeer PL, McGeer EG. NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol Aging 2007;28(5):639-47
  • McGeer PL, McGeer EG. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: Implications for therapy. Acta Neuropathol 2013;126(4):479-97
  • in t’ Veld BA, Ruitenberg A, Hofman A, et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med 2001;345(21):1515-21
  • Etminan M, Gill S, Samii A. Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: systematic review and meta-analysis of observational studies. BMJ 2003;327(7407):128
  • Dhawan G, Combs CK. Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer’s disease. J Neuroinflammation 2012;9(1):117
  • Cochran JN, Hall AM, Roberson ED. The dendritic hypothesis for Alzheimer’s disease pathophysiology. Brain Res Bull 2013;103:18-28

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.