1,048
Views
56
CrossRef citations to date
0
Altmetric
Reviews

Targeting astrocytes in major depression

, , &

References

  • Kettenmann H , Kirchhoff F , Verkhratsky A . Microglia: new roles for the synaptic stripper. Neuron 2013;77:10-18
  • Verkhratsky A , Butt AM . Glial physiology and pathophysiology. Wiley-Blackwell; Chichester: 2013
  • Hertz L . Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacol 2008;55:289-309
  • Rose CF , Verkhratsky A , Parpura V . Astrocyte glutamine synthetase: pivotal in health and disease. Biochem Soc Trans 2013;41:1518-24
  • Zhou Y , Danbolt NC . Glutamate as a neurotransmitter in the healthy brain. J Neural Transm 2014;121:799-817
  • Hertz L . Astrocytic energy metabolism and glutamate formation–relevance for 13C-NMR spectroscopy and importance of cytosolic/mitochondrial trafficking. Magn Reson Imaging 2011;29:1319-29
  • Parpura V , Grubišić V , Verkhratsky A . Ca2+ sources for the exocytotic release of glutamate from astrocytes. Biochim Biophys Acta 2011;1813:984-91
  • Hertz L , Rothman DL , Li B , et al. Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift. Front Behav Neurosci 2015;9:25
  • Verkhratsky A , Parpura V . Verkhratsky, Recent advances in (patho)physiology of astroglia. Acta Pharmacol Sin 2010;31:1044-54
  • Verkhratsky A , Rodriguez JJ , Parpura V . Calcium signalling in astroglia. Mol Cell Endocrinol 2012;353:45-56
  • Kirischuk S , Parpura V , Verkhratsky A . Sodium dynamics: another key to astroglial excitability? Trends Neurosci 2012;35:497-506
  • Muller N , Schwarz MJ . The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 2007;12:988-1000
  • Hertz L . Astrocytic energy metabolism and glutamate formation–relevance for 13C-NMR spectroscopy and importance of cytosolic/mitochondrial trafficking. Magn Reson Imaging 2011;29:1319-29
  • Rajkowska G , Stockmeier CA . Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 2013;14:1225-36
  • Benton CS , Miller BH , Skwerer S , et al. Evaluating genetic markers and neurobiochemical analytes for fluoxetine response using a panel of mouse inbred strains. Psychopharmacology (Berl) 2012;221:297-315
  • Sun JD , Liu Y , Yuan YH , et al. Gap junction dysfunction in the prefrontal cortex induces depressive-like behaviors in rats. Neuropsychopharmacology 2012;37:1305-20
  • Bechtholt-Gompf AJ , Walther HV , Adams MA , et al. Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacology 2010;35:2049-59
  • Sanacora G , Treccani G , Popoli M . Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 2012;62:63-77
  • Verkhratsky A , Parpura V . Neurological and psychiatric disorders as a neuroglial failure. Period Biol 2014;116:115-24
  • Paslakis G , Gass P , Deuschle M . [The role of the glutamatergic system in pathophysiology and pharmacotherapy for depression: preclinical and clinical data]. Fortschr Neurol Psychiatr 2011;79:204-12
  • De Vasconcellos-Bittencourt AP , Vendite DA , Nassif M , et al. Chronic stress and lithium treatments alter hippocampal glutamate uptake and release in the rat and potentiate necrotic cellular death after oxygen and glucose deprivation. Neurochem Res 2011;36:793-800
  • Almeida RF , Thomazi AP , Godinho GF , et al. Effects of depressive-like behavior of rats on brain glutamate uptake. Neurochem Res 2010;35:1164-71
  • Lapidus KA , Soleimani L , Murrough JW . Novel glutamatergic drugs for the treatment of mood disorders. Neuropsychiatr Dis Treat 2013;9:1101-12
  • Hertz L , Li B , Song D , et al. Astrocytes as a 5-HT2B-Mediated SSRI, SERT-independent target, slowly altering depression-associated genes and function. Curr Signal Transduct Ther 2012;7:43-55
  • Diaz SL , Doly S , Narboux-Nême N , et al. 5-HT2B receptors are required for serotonin-selective antidepressant actions. Mol Psychiatry 2012;17:54-63
  • Schipke CG , Heuser I , Peters O . Antidepressants act on glial cells: SSRIs and serotonin elicit astrocyte calcium signaling in the mouse prefrontal cortex. J Psychiatr Res 2011;45:242-8
  • Peng L , Huang J . Astrocytic 5-HT2B receptor as in vitro and in vivo target of SSRIs. Recent Pat CNS Drug Discov 2012;7:243-53
  • Hertz L , Song D , Li B , et al. Importance of ‘inflammatory molecules’, but not necessarily of inflammation, in the pathophysiology of bipolar disorder and in the mechanisms of action of anti-bipolar drugs. Neurology Psychiatry Brain Res 2013;19:174-9
  • Li B , Zhang S , Zhang H , et al. Fluoxetine affects GluK2 editing, glutamate-evoked Ca2+ influx and extracellular signal-regulated kinase phosphorylation in mouse astrocytes. J Psychiatry Neurosci 2011;36:322-38
  • Li B , Dong L , Wang B , et al. Cell type-specific gene expression and editing responses to chronic fluoxetine treatment in the in vivo mouse brain and their relevance for stress-induced anhedonia. J Neurochem Res 2012;37:2480-95
  • Mercier G , Lennon AM , Renouf B , et al. MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J Mol Neurosci 2004;24:207-16
  • Prickaerts J , De Vry J , Boere J , et al. Differential BDNF responses of triple versus dual reuptake inhibition in neuronal and astrocytoma cells as well as in rat hippocampus and prefrontal cortex. J Mol Neurosci 2012;48:167-75
  • Allaman I , Fiumelli H , Magistretti PJ , et al. Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes. Psychopharmacology (Berl) 2011;216:75-84
  • Quesseveur G , David DJ , Gaillard MC , et al. BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl Psychiatry 2013;3:e253
  • Vollmayr B , Mahlstedt MM , Henn FA . Neurogenesis and depression: what animal models tell us about the link. Eur Arch Psychiatry Clin Neurosci 2007;257:300-3
  • Verkhratsky A , Parpura V . Store-operated calcium entry in neuroglia. Neurosci Bull 2014;30:125-33
  • Li B , Dong L , Fu H , et al. Effects of chronic treatment with fluoxetine on receptor-stimulated increase of [Ca2+]i in astrocytes mimic those of acute inhibition of TRPC1 channel activity. Cell Calcium 2011;50:42-53
  • Manev H , Uz T , Manev R . Glia as a putative target for antidepressant treatments. J Affect Disord 2003;75:59-64
  • Li B , Gu L , Hertz L , et al. Expression of nucleoside transporter in freshly isolated neurons and astrocytes from mouse brain. Neurochem Res 2013;38:2351-8
  • Nagai K , Konishi H . Effect of fluoxetine and pergolide on expression of nucleoside transporters and nucleic-related enzymes in mouse brain. Fundam Clin Pharmacol 2014;28:217-20
  • Hetzel G , Moeller O , Evers S , et al. The astroglial protein S100B and visually evoked event-related potentials before and after antidepressant treatment. Psychopharmacology (Berl) 2005;178:161-6
  • Luo KR , Hong CJ , Liou YJ , et al. Differential regulation of neurotrophin S100B and BDNF in two rat models of depression. Prog Neuropsychopharmacol Biol Psychiatry 2010;34:1433-9
  • Tramontina AC , Tramontina F , Bobermin LD , et al. Secretion of S100B, an astrocyte-derived neurotrophic protein, is stimulated by fluoxetine via a mechanism independent of serotonin. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:1580-3
  • Nagelhus EA , Veruki ML , Torp R , et al. Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in Müller cells and fibrous astrocytes. J Neurosci 1998;18:2506-19
  • Czéh B , Di Benedetto B . Antidepressants act directly on astrocytes: evidences and functional consequences. Eur Neuropsychopharmacol 2013;23:171-85
  • Bernard R , Kerman IA , Thompson RC , et al. Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry 2011;16:634-46
  • Kong H , Sha LL , Fan Y , et al. Requirement of AQP4 for antidepressive efficiency of fluoxetine: implication in adult hippocampal neurogenesis. Neuropsychopharmacology 2009;34:1263-76
  • Czéh B , Simon M , Schmelting B , et al. Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology 2006;31:1616-26
  • Jaako K , Zharkovsky T , Zharkovsky A . Effects of repeated citalopram treatment on kainic acid-induced neurogenesis in adult mouse hippocampus. Brain Res 2009;1288:18-28
  • Al-Amin MM , Uddin MM , Rahman MM , et al. Effect of diclofenac and antidepressants on the inflammatory response in astrocyte cell culture. Inflammopharmacology 2013;21:421-5
  • Hisaoka K , Nishida A , Koda T , et al. Antidepressant drug treatments induce glial cell line-derived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells. J Neurochem 2001;79:25-34
  • Kajitani N , Hisaoka-Nakashima K , Morioka N , et al. Antidepressant acts on astrocytes leading to an increase in the expression of neurotrophic/growth factors: differential regulation of FGF-2 by noradrenaline. PLoS One 2012;7:e51197
  • Kim Y , Kim SH , Kim YS . Imipramine activates glial cell line-derived neurotrophic factor via early growth response gene 1 in astrocytes. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1026-32
  • Hisaoka K , Tsuchioka M , Yano R , et al. Tricyclic antidepressant amitriptyline activates fibroblast growth factor receptor signaling in glial cells: involvement in glial cell line-derived neurotrophic factor production. J Biol Chem 2011;286:21118-28
  • Kittel-Schneider S , Kenis G , Schek J , et al. Expression of monoamine transporters, nitric oxide synthase 3, and neurotrophin genes in antidepressant-stimulated astrocytes. Front Psychiatry 2012;3:33
  • Takano K , Yamasaki H , Kawabe K , et al. Imipramine induces brain-derived neurotrophic factor mRNA expression in cultured astrocytes. J Pharmacol Sci 2012;120:176-86
  • Macaulay N . Zeuthen T. Glial K. Clearance and cell swelling: key roles for cotransporters and pumps. Neurochem Res 2012;37:2299-309
  • Xu J , Song D , Xue Z , et al. Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K+ homeostasis and glycogen usage in brain. Neurochem Res 2013;38:472-85
  • Hertz L , Xu J , Song D , et al. Brain glycogenolysis, adrenoceptors, pyruvate carboxylase, Na+,K+-ATPase and Marie E. Gibbs’ pioneering learning studies. Front Integr Neurosci 2013;7:20
  • D’Ambrosio R Gordon DS , Winn HR . Differential role of KIR channel and Na+/K+-pump in the regulation of extracellular K+ in rat hippocampus. J Neurophysiol 2002;87:87-102
  • Su S , Ohno Y , Lossin C , et al. Inhibition of astroglial inwardly rectifying Kir4.1 channels by a tricyclic antidepressant, nortriptyline. J Pharmacol Exp Ther 2007;320:573-80
  • Ohno Y , Hibino H , Lossin C , et al. Inhibition of astroglial Kir4.1 channels by selective serotonin reuptake inhibitors. Brain Res 2007;1178:44-51
  • Furutani K , Ohno Y , Inanobe A , et al. Mutational and in silico analyses for antidepressant block of astroglial inward-rectifier Kir4.1 channel. Mol Pharmacol 2009;75:1287-95
  • Dinarello CA . Interleukin-18, a proinflammatory cytokine. Eur Cytokine Netw 2000;11:483-6
  • Hwang J , Zheng LT , Ock J , et al. Inhibition of glial inflammatory activation and neurotoxicity by tricyclic antidepressants. Neuropharmacology 2008;55:826-34
  • Lee YH , Kim SH , Kim Y , et al. Inhibitory effect of the antidepressant imipramine on NF-κB-dependent CXCL1 expression in TNFα-exposed astrocytes. Int Immunopharmacol 2012;12:547-55
  • Obuchowicz E , Kowalski J , Labuzek K , et al. Amitriptyline and nortriptyline inhibit interleukin-1 release by rat mixed glial and microglial cell cultures. Int J Neuropsychopharmacol 2006;9:27-35
  • Cho W , Brenner M , Peters N , et al. Drug screening to identify suppressors of GFAP expression. Hum Mol Genet 2010;19:3169-78
  • Gabryel B , Bielecka A , Stolecka A , et al. Cytosolic phospholipase A2 inhibition is involved in the protective effect of nortriptyline in primary astrocyte cultures exposed to combined oxygen-glucose deprivation. Pharmacol Rep 2010;62:814-26
  • Harkin A , Nally R , Kelly JP , et al. Effects of reboxetine and sertraline treatments alone and in combination on the binding properties of cortical NMDA and beta 1-adrenergic receptors in an animal model of depression. J Neural Transm 2000;107:1213-27
  • Hundal Ø . Major depressive disorder viewed as a dysfunction in astroglial bioenergetics. Med Hypotheses 2007;68:370-7
  • Trzeciak HI , Pudełko A , Gabryel B , et al. Effect of antidepressants on ATP content, 3H-valine incorporation and cell morphometry of astrocytes cultured from rat brain. Dev Neurosci 1995;17:292-9
  • Cao X , Li LP , Wang Q , et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med 2013;19:773-7
  • Melas PA , Rogdaki M , Lennartsson A , et al. Antidepressant treatment is associated with epigenetic alterations in the promoter of P11 in a genetic model of depression. Int J Neuropsychopharmacol 2012;15:669-79
  • Zimmermann N , Zschocke J , Perisic T , et al. Antidepressants inhibit DNA methyltransferase 1 through reducing G9a levels. Biochem J 2012;448:93-102
  • Gourley SL , Espitia JW , Sanacora G , et al. Antidepressant-like properties of oral riluzole and utility of incentive disengagement models of depression in mice. Psychopharmacology (Berl) 2012;219:805-14
  • Yoshizumi M , Eisenach JC , Hayashida K . Riluzole and gabapentinoids activate glutamate transporters to facilitate glutamate-induced glutamate release from cultured astrocytes. Eur J Pharmacol 2012;677:87-92
  • Carbone M , Duty S , Rattray M . Riluzole elevates GLT-1 activity and levels in striatal astrocytes. Neurochem Int 2012;60:31-8
  • Mizuta I , Ohta M , Ohta K , et al. Riluzole stimulates nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor synthesis in cultured mouse astrocytes. Neurosci Lett 2001;310:117-20
  • Tsuchioka M , Hisaoka K , Yano R , et al. Riluzole-induced glial cell line-derived neurotrophic factor production is regulated through fibroblast growth factor receptor signaling in rat C6 glioma cells. Brain Res 2011;1384:1-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.