526
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Effect of cocaine dependence on brain connections: clinical implications

, , , &

References

  • Spronk DB, van Wel JH, Ramaekers JG, et al. Characterizing the cognitive effects of cocaine: a comprehensive review. Neurosci Biobehav Rev. 2013;37(8):1838–1859.
  • Potvin S, Stavro K, Rizkallah E, et al. Cocaine and cognition: a systematic quantitative review. J Addict Med. 2014;8(5):368–376.
  • Collette F, Van der Linden M. Brain imaging of the central executive component of working memory. Neurosci Biobehav Rev. 2002;26(2):105–125.
  • D’Esposito M. From cognitive to neural models of working memory. Philos Trans R Soc Lond B Biol Sci. 2007;362(1481):761–772.
  • Funahashi S. Prefrontal cortex and working memory processes. Neuroscience. 2006;139(1):251–261.
  • Vuilleumier P, Driver J. Modulation of visual processing by attention and emotion: windows on causal interactions between human brain regions. Philos Trans R Soc Lond B Biol Sci. 2007;362(1481):837–855.
  • Bechara A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci. 2005;8(11):1458–1463.
  • Noel X, Brevers D, Bechara A. A neurocognitive approach to understanding the neurobiology of addiction. Curr Opin Neurobiol. 2013;23(4):632–638.
  • Everitt BJ, Belin D, Economidou D, et al. Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci. 2008;363(1507):3125–3135.
  • Garavan H, Brennan KL, Hester R, et al. The neurobiology of successful abstinence. Curr Opin Neurobiol. 2013;23(4):668–674.
  • Kravitz AV, Tomasi D, LeBlanc KH, et al. Cortico-striatal circuits: novel therapeutic targets for substance use disorders. Brain Res. 2015 Apr 9. pii: S0006-8993(15):00283-8. doi:10.1016/j.brainres.2015.03.048. [Epub ahead of print].
  • Robbins TW, Gillan CM, Smith DG, et al. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn Sci. 2012;16(1):81–91.
  • Friston KJ. Functional and effective connectivity: a review. Brain Connect. 2011;1(1):13–36.
  • Bastiani M, Roebroeck A. Unraveling the multiscale structural organization and connectivity of the human brain: the role of diffusion MRI. Front Neuroanat. 2015;9:77.
  • Ma L, Wang B, Chen X, et al. Detecting functional connectivity in the resting brain: a comparison between ICA and CCA. Magn Reson Imaging. 2007;25(1):47–56.
  • Lu H, Stein EA. Resting state functional connectivity: its physiological basis and application in neuropharmacology. Neuropharmacology. 2014;84:79–89.
  • Ma L, Steinberg JL, Hasan KM, et al. Stochastic dynamic causal modeling of working memory connections in cocaine dependence. Hum Brain Mapp. 2014;35(3):760–778.
  • Ma L, Steinberg JL, Cunningham KA, et al. Inhibitory behavioral control: a stochastic dynamic causal modeling study comparing cocaine dependent subjects and controls. NeuroImage Clinical. 2015;7:837–847.
  • Ray S, Haney M, Hanson C, et al. Modeling causal relationship between brain regions within the drug-cue processing network in chronic cocaine smokers. Neuropsychopharmacology. 2015; Jun 3. doi:10.1038/npp.2015.150. [Epub ahead of print].
  • Chen YI, Famous K, Xu H, et al. Cocaine self-administration leads to alterations in temporal responses to cocaine challenge in limbic and motor circuitry. Eur J Neurosci. 2011;34(5):800–815.
  • Lu H, Zou Q, Chefer S, et al. Abstinence from cocaine and sucrose self-administration reveals altered mesocorticolimbic circuit connectivity by resting state MRI. Brain Connect. 2014;4(7):499–510.
  • Murnane KS, Gopinath KS, Maltbie E, et al. Functional connectivity in frontal-striatal brain networks and cocaine self-administration in female rhesus monkeys. Psychopharmacology (Berl). 2015;232(4):745–754.
  • Contreras-Rodriguez O, Albein-Urios N, Vilar-Lopez R, et al. Increased corticolimbic connectivity in cocaine dependence versus pathological gambling is associated with drug severity and emotion-related impulsivity. Addict Biol. 2015 Mar 29. doi:10.1111/adb.12242. [Epub ahead of print].
  • Hu Y, Salmeron BJ, Gu H, et al. Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction. JAMA Psychiatry. 2015;72(6):584–592.
  • Adinoff B, Gu H, Merrick C, et al. Basal hippocampal activity and its functional connectivity predicts cocaine relapse. Biol Psychiatry. 2015;78(7):496–504.
  • Camchong J, MacDonald AW 3rd, Nelson B, et al. Frontal hyperconnectivity related to discounting and reversal learning in cocaine subjects. Biol Psychiatry. 2011;69(11):1117–1123.
  • Cisler JM, Elton A, Kennedy AP, et al. Altered functional connectivity of the insular cortex across prefrontal networks in cocaine addiction. Psychiatry Res. 2013;213(1):39–46.
  • Gu H, Salmeron BJ, Ross TJ, et al. Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity. Neuroimage. 2010;53(2):593–601.
  • Kelly C, Zuo XN, Gotimer K, et al. Reduced interhemispheric resting state functional connectivity in cocaine addiction. Biol Psychiatry. 2011;69(7):684–692.
  • Konova AB, Moeller SJ, Tomasi D, et al. Effects of methylphenidate on resting-state functional connectivity of the mesocorticolimbic dopamine pathways in cocaine addiction. JAMA Psychiatry. 2013;70(8):857–868.
  • Konova AB, Moeller SJ, Tomasi D, et al. Effects of chronic and acute stimulants on brain functional connectivity hubs. Brain Res. 2015 Feb 24. pii: S0006-8993(15)00081-5. doi: 10.1016/j.brainres.2015.02.002. [Epub ahead of print].
  • Li Z, Santhanam P, Coles CD, et al. Increased “default mode” activity in adolescents prenatally exposed to cocaine. Hum Brain Mapp. 2011;32(5):759–770.
  • Liang X, He Y, Salmeron BJ, et al. Interactions between the salience and default-mode networks are disrupted in cocaine addiction. J Neurosci. 2015;35(21):8081–8090.
  • McHugh MJ, Demers CH, Braud J, et al. Striatal-insula circuits in cocaine addiction: implications for impulsivity and relapse risk. Am J Drug Alcohol Abuse. 2013;39(6):424–432.
  • McHugh MJ, Demers CH, Salmeron BJ, et al. Cortico-amygdala coupling as a marker of early relapse risk in cocaine-addicted individuals. Front Psychiatry. 2014;5:16.
  • Ray S, Gohel SR, Biswal BB. Altered functional connectivity strength in abstinent chronic cocaine smokers compared to healthy controls. Brain Connect. 2015;5:476–486.
  • Salzwedel AP, Grewen KM, Vachet C, et al. Prenatal drug exposure affects neonatal brain functional connectivity. J Neurosci. 2015;35(14):5860–5869.
  • Schweitzer JB, Riggins T, Liang X, et al. Prenatal drug exposure to illicit drugs alters working memory-related brain activity and underlying network properties in adolescence. Neurotoxicol Teratol. 2015;48:69–77.
  • Verdejo-Garcia A, Contreras-Rodriguez O, Fonseca F, et al. Functional alteration in frontolimbic systems relevant to moral judgment in cocaine-dependent subjects. Addict Biol. 2014;19(2):272–281.
  • Wang Z, Suh J, Li Z, et al. A hyper-connected but less efficient small-world network in the substance-dependent brain. Drug Alcohol Depend. 2015;152:102–108.
  • Wisner KM, Patzelt EH, Lim KO, et al. An intrinsic connectivity network approach to insula-derived dysfunctions among cocaine users. Am J Drug Alcohol Abuse. 2013;39(6):403–413.
  • Albein-Urios N, Verdejo-Roman J, Soriano-Mas SC, et al. Cocaine users with comorbid Cluster B personality disorders show dysfunctional brain activation and connectivity in the emotional regulation networks during negative emotion maintenance and reappraisal. Eur Neuropsychopharmacol. 2013;23(12):1698–1707.
  • Albein-Urios N, Verdejo-Roman J, Asensio S, et al. Re-appraisal of negative emotions in cocaine dependence: dysfunctional corticolimbic activation and connectivity. Addict Biol. 2014;19(3):415–426.
  • Hanlon CA, Wesley MJ, Stapleton JR, et al. The association between frontal-striatal connectivity and sensorimotor control in cocaine users. Drug Alcohol Depend. 2011;115(3):240–243.
  • Kilts CD, Kennedy A, Elton AL, et al. Individual differences in attentional bias associated with cocaine dependence are related to varying engagement of neural processing networks. Neuropsychopharmacology. 2014;39(5):1135–1147.
  • Mitchell MR, Balodis IM, Devito EE, et al. A preliminary investigation of Stroop-related intrinsic connectivity in cocaine dependence: associations with treatment outcomes. Am J Drug Alcohol Abuse. 2013;39(6):392–402.
  • Tomasi D, Volkow ND, Wang R, et al Disrupted functional connectivity with dopaminergic midbrain in cocaine abusers. PLoS One. 2010;5(5):e10815.
  • Worhunsky PD, Stevens MC, Carroll KM, et al. Functional brain networks associated with cognitive control, cocaine dependence, and treatment outcome. Psychol Addict Behav. 2013;27(2):477–488.
  • Belin D, Everitt BJ. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron. 2008;57(3):432–441.
  • Rowe JB. Connectivity analysis is essential to understand neurological disorders. Front Syst Neurosci. 2010;Sep 17;4. pii: 144. doi: 10.3389/fnsys.2010.00144. eCollection 2010
  • Elkashef A, Vocci F. Biological markers of cocaine addiction: implications for medications development. Addict Biol. 2003;8(2):123–139.
  • Frank R, Hargreaves R. Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov. 2003;2(7):566–580.
  • Guengerich FP. Mechanisms of drug toxicity and relevance to pharmaceutical development. Drug Metab Pharmacokinet. 2011;26(1):3–14.
  • Daliri M, Behroozi M. Advantages and disadvantages of resting state functional connectivity magnetic resonance imaging for clinical applications. OMICS J Radiol. 2013;3:e123.
  • Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–541.
  • McKeown MJ, Makeig S, Brown GG, et al. Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp. 1998;6(3):160–188.
  • Friston K, Penny W. Post hoc Bayesian model selection. Neuroimage. 2011;56(4):2089–2099.
  • Friston KJ, Li B, Daunizeau J, et al. Network discovery with DCM. Neuroimage. 2011;56(3):1202–1221.
  • Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage. 2003;19(4):1273–1302.
  • Stephan KE, Weiskopf N, Drysdale PM, et al. Comparing hemodynamic models with DCM. Neuroimage. 2007;38(3):387–401.
  • David O, Guillemain I, Saillet S, et al. Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biol. 2008;6(12):2683–2697.
  • Li B, Daunizeau J, Stephan KE, et al. Generalised filtering and stochastic DCM for fMRI. Neuroimage. 2011;58(2):442–457.
  • Di X, Biswal BB. Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging. Neuroimage. 2014;86:53–59.
  • Friston KJ, Kahan J, Biswal B, et al. A DCM for resting state fMRI. Neuroimage. 2014;94:396–407.
  • Razi A, Kahan J, Rees G, et al. Construct validation of a DCM for resting state fMRI. Neuroimage. 2015;106:1–14.
  • Campo P, Garrido MI, Moran RJ, et al. Remote effects of hippocampal sclerosis on effective connectivity during working memory encoding: a case of connectional diaschisis? Cereb Cortex. 2012;22(6):1225–1236.
  • Carrera E, Tononi G. Diaschisis: past, present, future. Brain. 2014;137(Pt 9):2408–2422.
  • Guye M, Bartolomei F, Ranjeva JP. Imaging structural and functional connectivity: towards a unified definition of human brain organization? Curr Opin Neurol. 2008;21(4):393–403.
  • Damoiseaux JS, Greicius MD. Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct. 2009;213:525–533.
  • Moeller FG, Hasan KM, Steinberg JL, et al. Reduced anterior corpus callosum white matter integrity is related to increased impulsivity and reduced discriminability in cocaine-dependent subjects: diffusion tensor imaging. Neuropsychopharmacology. 2005;30(3):610–617.
  • Moeller FG, Hasan KM, Steinberg JL, et al. Diffusion tensor imaging eigenvalues: preliminary evidence for altered myelin in cocaine dependence. Psychiatry Res. 2007;154(3):253–258.
  • Lim KO, Wozniak JR, Mueller BA, et al. Brain macrostructural and microstructural abnormalities in cocaine dependence. Drug Alcohol Depend. 2008;92(1–3):164–172.
  • Ma L, Hasan KM, Steinberg JL, et al. Diffusion tensor imaging in cocaine dependence: regional effects of cocaine on corpus callosum and effect of cocaine administration route. Drug Alcohol Depend. 2009;104(3):262–267.
  • Ma L, Steinberg JL, Keyser-Marcus L, et al. Altered white matter in cocaine-dependent subjects with traumatic brain injury: a diffusion tensor imaging study. Drug Alcohol Depend. 2015;151:128–134.
  • Lane SD, Steinberg JL, Ma L, et al. Diffusion tensor imaging and decision making in cocaine dependence. PLoS ONE. 2010;5(7):e11591.
  • Bell RP, Foxe JJ, Nierenberg J, et al. Assessing white matter integrity as a function of abstinence duration in former cocaine-dependent individuals. Drug Alcohol Depend. 2011;114(2–3):159–168.
  • Narayana PA, Ahobila-Vajjula P, Ramu J, et al. Diffusion tensor imaging of cocaine-treated rodents. Psychiatry Res. 2009;171(3):242–251.
  • Narayana PA, Herrera JJ, Bockhorst KH, et al. Chronic cocaine administration causes extensive white matter damage in brain: diffusion tensor imaging and immunohistochemistry studies. Psychiatry Res. 2014;221(3):220–230.
  • Xu J, DeVito EE, Worhunsky PD, et al. White matter integrity is associated with treatment outcome measures in cocaine dependence. Neuropsychopharmacology. 2010;35(7):1541–1549.
  • Lebel C, Warner T, Colby J, et al. White matter microstructure abnormalities and executive function in adolescents with prenatal cocaine exposure. Psychiatry Res. 2013;213(2):161–168.
  • Coullaut-Valera R, Arbaiza I, Bajo R, et al. Drug polyconsumption is associated with increased synchronization of brain electrical-activity at rest and in a counting task. Int J Neural Syst. 2014;24(1):1450005.
  • Nishida K, Razavi N, Jann K, et al. Integrating different aspects of resting brain activity: a review of electroencephalographic signatures in resting state networks derived from functional magnetic resonance imaging. Neuropsychobiology. 2015;71(1):6–16.
  • Rykhlevskaia E, Gratton G, Fabiani M. Combining structural and functional neuroimaging data for studying brain connectivity: a review. Psychophysiology. 2008;45(2):173–187.
  • Stephan KE, Tittgemeyer M, Knosche TR, et al. Tractography-based priors for dynamic causal models. Neuroimage. 2009;47(4):1628–1638.
  • Moran RJ, Campo P, Symmonds M, et al. Free energy, precision and learning: the role of cholinergic neuromodulation. J Neurosci. 2013;33(19):8227–8236.
  • Moran RJ, Jones MW, Blockeel AJ, et al. Losing control under ketamine: suppressed cortico-hippocampal drive following acute ketamine in rats. Neuropsychopharmacology. 2015;40(2):268–277.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.