214
Views
8
CrossRef citations to date
0
Altmetric
Review

Exploring novel AEDs from drugs used for treatment of non-epileptic disorders

, &
Pages 449-461 | Received 08 Sep 2015, Accepted 22 Feb 2016, Published online: 24 Mar 2016

References

  • Moshe SL, Perucca E, Ryvlin P, et al. Epilepsy: new advances. Lancet. 2015;385(9971):884–898.
  • Thurman DJ, Beghi E, Begley CE, et al. Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia. 2011;52(Suppl 7):2–26.
  • Schuele SU, Lüders HO. Intractable epilepsy: management and therapeutic alternatives. Lancet Neurol. 2008;7(6):514–524.
  • Schmidt D, Schachter SC. Drug treatment of epilepsy in adults. BMJ. 2014;348:g254.
  • Moshé SL. Mechanisms of action of anticonvulsant agents. Neurology. 2000;55(5 Suppl 1):S32–40; discussion S54–38.
  • Trinka E, Brigo F. Antiepileptogenesis in humans: disappointing clinical evidence and ways to move forward. Curr Opin Neurol. 2014;27(2):227–235.
  • Price M, Gunther A, Kwan JS. Antiepileptic drugs for the primary and secondary prevention of seizures after intracranial venous thrombosis. Cochrane Database Syst Rev. 2014;8:CD005501.
  • Sykes L, Wood E, Kwan J. Antiepileptic drugs for the primary and secondary prevention of seizures after stroke. Cochrane Database Syst Rev. 2014;1:(CD005398.
  • Pandey S, Rathore C, Michael BD. Antiepileptic drugs for the primary and secondary prevention of seizures in viral encephalitis. Cochrane Database Syst Rev. 2014;10:CD010247.
  • Marigold R, Gunther A, Tiwari D, et al. Antiepileptic drugs for the primary and secondary prevention of seizures after subarachnoid haemorrhage. Cochrane Database Syst Rev. 2013;6:CD008710.
  • Maryanoff BE, Nortey SO, Gardocki JF, et al. Anticonvulsant o-alkyl sulfamates. 2, 3:4,5-bis-o-(1-methylethylidene)-beta-d-fructopyranosesulfamate and related compounds. J Med Chem. 1987;30(5):880–887.
  • Zeng LH, Xu L, Gutmann DH, et al. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol. 2008;63(4):444–453.
  • Zeng LH, Rensing NR, Wong M. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neuroscience: Official Journal Soc Neurosci. 2009;29(21):6964–6972.
  • Huang X, Zhang H, Yang J, et al. Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy. Neurobiol Dis. 2010;40(1):193–199.
  • Buckmaster PS, Lew FH. Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy. J Neuroscience: Official Journal Soc Neurosci. 2011;31(6):2337–2347.
  • Sadarangani SP, Estes LL, Steckelberg JM. Non-anti-infective effects of antimicrobials and their clinical applications: A review. Mayo Clin Proc. 2015;90(1):109–127.
  • Canpolat M, Per H, Gumus H, et al. Rapamycin has a beneficial effect on controlling epilepsy in children with tuberous sclerosis complex: results of 7 children from a cohort of 86. Child’s Nerv Syst: Chns: off J Int Soc Pediatr Neurosurg. 2014;30(2):227–240.
  • Zou L, Liu Y, Pang L, et al. [efficacy and safety of rapamycin in treatment of children with epilepsy complicated with tuberous sclerosis]. Zhonghua Er Ke Za Zhi Chin J Pediatr. 2014;52(11):812–816.
  • Krueger DA, Wilfong AA, Holland-Bouley K, et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann Neurol. 2013;74(5):679–687.
  • Wiegand G, May TW, Ostertag P, et al. Everolimus in tuberous sclerosis patients with intractable epilepsy: A treatment option? Eur J Paediatr Neurol: EJPN: Off J Eur Paediatr Neurol Soc. 2013;17(6):631–638.
  • Cardamone M, Flanagan D, Mowat D, et al. Mammalian target of rapamycin inhibitors for intractable epilepsy and subependymal giant cell astrocytomas in tuberous sclerosis complex. J Pediatr. 2014;164(5):1195–1200.
  • Pereira MG, Becari C, Oliveira JA, et al. Inhibition of the renin-angiotensin system prevents seizures in a rat model of epilepsy. Clin Sci. 2010;119(11):477–482.
  • Georgiev VP, Lazarova MB, Kambourova TS. Effects of non-peptide angiotensin ii-receptor antagonists on pentylenetetrazol kindling in mice. Neuropeptides. 1996;30(5):401–404.
  • Tchekalarova JD, Ivanova NM, Pechlivanova DM, et al. Antiepileptogenic and neuroprotective effects of losartan in kainate model of temporal lobe epilepsy. Pharmacol Biochem Behav. 2014;127:27–36.
  • Shafiq N, Malhotra S, Pandhi P. Anticonvulsant action of celecoxib (alone and in combination with sub-threshold dose of phenytoin) in electroshock induced convulsion. Methods Find Exp Clin Pharmacol. 2003;25(2):87–90.
  • Oliveira MS, Furian AF, Royes LF, et al. Cyclooxygenase-2/pge2 pathway facilitates pentylenetetrazol-induced seizures. Epilepsy Res. 2008;79(1):14–21.
  • Ciceri P, Zhang Y, Shaffer AF, et al. Pharmacology of celecoxib in rat brain after kainate administration. J Pharmacol Exp Ther. 2002;302(3):846–852.
  • Jung KH, Chu K, Lee ST, et al. Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol Dis. 2006;23(2):237–246.
  • Lee JK, Won JS, Singh AK, et al. Statin inhibits kainic acid-induced seizure and associated inflammation and hippocampal cell death. Neurosci Lett. 2008;440(3):260–264.
  • Malfitano AM, Marasco G, Proto MC, et al. Statins in neurological disorders: an overview and update. Pharmacol Res: off J Ital Pharmacol Soc. 2014;88:74–83.
  • Kahle KT, Staley KJ. The bumetanide-sensitive na-k-2cl cotransporter nkcc1 as a potential target of a novel mechanism-based treatment strategy for neonatal seizures. Neurosurg Focus. 2008;25(3):E22.
  • Stepien KM, Tomaszewski M, Luszczki JJ, et al. The interactions of atorvastatin and fluvastatin with carbamazepine, phenytoin and valproate in the mouse maximal electroshock seizure model. Eur J Pharmacol. 2012;674(1):20–26.
  • Conti L, Palma E, Roseti C, et al. Anomalous levels of cl- transporters cause a decrease of gabaergic inhibition in human peritumoral epileptic cortex. Epilepsia. 2011;52(9):1635–1644.
  • Kahle KT, Barnett SM, Sassower KC, et al. Decreased seizure activity in a human neonate treated with bumetanide, an inhibitor of the na(+)-k(+)-2cl(-) cotransporter nkcc1. J Child Neurol. 2009;24(5):572–576.
  • Bonnet U, Bingmann D, Wiemann M. Intracellular ph modulates spontaneous and epileptiform bioelectric activity of hippocampal ca3-neurones. Eur Neuropsychopharmacol: J Eur Coll Neuropsychopharmacol. 2000;10(2):97–103.
  • Lipton JO, Sahin M. The neurology of mtor. Neuron. 2014;84(2):275–291.
  • Curatolo P, Moavero R, de Vries PJ. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol. 2015;14(7):733–745.
  • Marin-Valencia I, Guerrini R, Gleeson JG. Pathogenetic mechanisms of focal cortical dysplasia. Epilepsia. 2014;55(7):970–978.
  • Lal D, Reinthaler EM, Schubert J, et al. Depdc5 mutations in genetic focal epilepsies of childhood. Ann Neurol. 2014;75(5):788–792.
  • Scheffer IE, Heron SE, Regan BM, et al. Mutations in mammalian target of rapamycin regulator depdc5 cause focal epilepsy with brain malformations. Ann Neurol. 2014;75(5):782–787.
  • Li J, Kim SG, Blenis J. Rapamycin: One drug, many effects. Cell Metab. 2014;19(3):373–379.
  • Fischer KE, Gelfond JA, Soto VY, et al. Health effects of long-term rapamycin treatment: the impact on mouse health of enteric rapamycin treatment from four months of age throughout life. Plos One. 2015;10(5):e0126644.
  • Curatolo P, Moavero R. Mtor inhibitors as a new therapeutic option for epilepsy. Expert Rev Neurother. 2013;13(6):627–638.
  • Bateup HS, Johnson CA, Denefrio CL, et al. Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron. 2013;78(3):510–522.
  • Zeng LH, Bero AW, Zhang B, et al. Modulation of astrocyte glutamate transporters decreases seizures in a mouse model of tuberous sclerosis complex. Neurobiol Dis. 2010;37(3):764–771.
  • Chu-Shore CJ, Major P, Camposano S, et al. The natural history of epilepsy in tuberous sclerosis complex. Epilepsia. 2010;51(7):1236–1241.
  • Krueger DA, Care MM, Holland K, et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med. 2010;363(19):1801–1811.
  • Franz DN. Everolimus: an mtor inhibitor for the treatment of tuberous sclerosis. Expert Rev Anticancer Ther. 2011;11(8):1181–1192.
  • Franz DN, Belousova E, Sparagana S, et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (exist-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2013;381(9861):125–132.
  • Bar-Klein G, Cacheaux LP, Kamintsky L, et al. Losartan prevents acquired epilepsy via tgf-beta signaling suppression. Ann Neurol. 2014;75(6):864–875.
  • Friedman A, Bar-Klein G, Serlin Y, et al. Should losartan be administered following brain injury? Expert Rev Neurother. 2014;14(12):1365–1375.
  • Sun H, Wu H, Yu X, et al. Angiotensin ii and its receptor in activated microglia enhanced neuronal loss and cognitive impairment following pilocarpine-induced status epilepticus. Mol Cell Neurosci. 2015;65C:58–67.
  • Lukawski K, Jakubus T, Janowska A, et al. Interactions between ace inhibitors and classical antiepileptic drugs in the mouse maximal electroshock seizures. Pharmacol Biochem Behav. 2011;100(1):152–156.
  • Łukawski K, Janowska A, Jakubus T, et al. Angiotensin at1 receptor antagonists enhance the anticonvulsant action of valproate in the mouse model of maximal electroshock. Eur J Pharmacol. 2010;640(1–3):172–177.
  • Lukawski K, Raszewski G, Czuczwar SJ. Interactions between levetiracetam and cardiovascular drugs against electroconvulsions in mice. Pharmacol Rep: PR. 2014;66(6):1100–1105.
  • Łukawski K, Janowska A, Jakubus T, et al. Interactions between angiotensin at1 receptor antagonists and second-generation antiepileptic drugs in the test of maximal electroshock. Fundam Clin Pharmacol. 2014;28(3):277–283.
  • Lukawski K, Janowska A, Jakubus T, et al. Combined treatment with gabapentin and drugs affecting the renin-angiotensin system against electroconvulsions in mice. Eur J Pharmacol. 2013;706(1–3):92–97.
  • Weinberg AJ, Zappe DH, Ashton M, et al. Safety and tolerability of high-dose angiotensin receptor blocker therapy in patients with chronic kidney disease: A pilot study. Am J Nephrol. 2004;24(3):340–345.
  • Rojas A, Jiang J, Ganesh T, et al. Cyclooxygenase-2 in epilepsy. Epilepsia. 2014;55(1):17–25.
  • McCormack PL. Celecoxib: A review of its use for symptomatic relief in the treatment of osteoarthritis, rheumatoid arthritis and ankylosing spondylitis. Drugs. 2011;71(18):2457–2489.
  • Kaufmann WE, Worley PF, Pegg J, et al. Cox-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proc Natl Acad Sci U S A. 1996;93(6):2317–2321.
  • Zandieh A, Maleki F, Hajimirzabeigi A, et al. Anticonvulsant effect of celecoxib on pentylenetetrazole-induced convulsion: modulation by no pathway. Acta Neurobiol Exp (Wars). 2010;70(4):390–397.
  • Claycomb RJ, Hewett SJ, Hewett JA. Prophylactic, prandial rofecoxib treatment lacks efficacy against acute ptz-induced seizure generation and kindling acquisition. Epilepsia. 2011;52(2):273–283.
  • Polascheck N, Bankstahl M, Löscher W. The cox-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobe epilepsy. Exp Neurol. 2010;224(1):219–233.
  • Strozzi I, Nolan SJ, Sperling MR, et al. Early versus late antiepileptic drug withdrawal for people with epilepsy in remission. Cochrane Database Syst Rev. 2015;2:CD001902.
  • Strand V. Are cox-2 inhibitors preferable to non-selective non-steroidal anti-inflammatory drugs in patients with risk of cardiovascular events taking low-dose aspirin? Lancet. 2007;370(9605):2138–2151.
  • Gislason GH, Jacobsen S, Rasmussen JN, et al. Risk of death or reinfarction associated with the use of selective cyclooxygenase-2 inhibitors and nonselective nonsteroidal antiinflammatory drugs after acute myocardial infarction. Circulation. 2006;113(25):2906–2913.
  • Bermeo-Ovalle AC, Kennedy JD, Schuele SU. Cardiac and autonomic mechanisms contributing to sudep. J Clin Neurophysiol: Official Publication Am Electroencephalograp Soc. 2015;32(1):21–29.
  • Jiang J, Quan Y, Ganesh T, et al. Inhibition of the prostaglandin receptor ep2 following status epilepticus reduces delayed mortality and brain inflammation. Proc Natl Acad Sci U S A. 2013;110(9):3591–3596.
  • Löscher W, Langer O. Imaging of p-glycoprotein function and expression to elucidate mechanisms of pharmacoresistance in epilepsy. Curr Top Med Chem. 2010;10(17):1785–1791.
  • Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain: J Neurol. 2006;129(Pt 1):18–35.
  • Avemary J, Salvamoser JD, Peraud A, et al. Dynamic regulation of p-glycoprotein in human brain capillaries. Mol Pharm. 2013;10(9):3333–3341.
  • Bauer B, Hartz AM, Pekcec A, et al. Seizure-induced up-regulation of p-glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling. Mol Pharmacol. 2008;73(5):1444–1453.
  • Zibell G, Unkrüer B, Pekcec A, et al. Prevention of seizure-induced up-regulation of endothelial p-glycoprotein by cox-2 inhibition. Neuropharmacology. 2009;56(5):849–855.
  • Schlichtiger J, Pekcec A, Bartmann H, et al. Celecoxib treatment restores pharmacosensitivity in a rat model of pharmacoresistant epilepsy. Br J Pharmacol. 2010;160(5):1062–1071.
  • Arnan MK, Burke GL, Bushnell C. Secondary prevention of stroke in the elderly: focus on drug therapy. Drugs Aging. 2014;31(10):721–730.
  • Funck VR, De Oliveira CV, Pereira LM, et al. Differential effects of atorvastatin treatment and withdrawal on pentylenetetrazol-induced seizures. Epilepsia. 2011;52(11):2094–2104.
  • Banach M, Czuczwar SJ, Borowicz KK. Statins - are they anticonvulsant? Pharmacol Rep: PR. 2014;66(4):521–528.
  • Xie C, Sun J, Qiao W, et al. Administration of simvastatin after kainic acid-induced status epilepticus restrains chronic temporal lobe epilepsy. Plos One. 2011;6(9):e24966.
  • Gouveia TL, Scorza FA, Iha HA, et al. Lovastatin decreases the synthesis of inflammatory mediators during epileptogenesis in the hippocampus of rats submitted to pilocarpine-induced epilepsy. Epilepsy & Behav: E&B. 2014;36:68–73.
  • Lehtimäki KA, Keränen T, Palmio J, et al. Increased plasma levels of cytokines after seizures in localization-related epilepsy. Acta Neurol Scand. 2007;116(4):226–230.
  • Liimatainen S, Fallah M, Kharazmi E, et al. Interleukin-6 levels are increased in temporal lobe epilepsy but not in extra-temporal lobe epilepsy. J Neurol. 2009;256(5):796–802.
  • Lee CY, Jaw T, Tseng HC, et al. Lovastatin modulates glycogen synthase kinase-3beta pathway and inhibits mossy fiber sprouting after pilocarpine-induced status epilepticus. Plos One. 2012;7(6):e38789.
  • Rangel P, Cysneiros RM, Arida RM, et al. Lovastatin reduces neuronal cell death in hippocampal ca1 subfield after pilocarpine-induced status epilepticus: preliminary results. Arq Neuropsiquiatr. 2005;63(4):972–976.
  • Ramirez C, Tercero I, Pineda A, et al. Simvastatin is the statin that most efficiently protects against kainate-induced excitotoxicity and memory impairment. J Alzheimer’s Dis: JAD. 2011;24(1):161–174.
  • Sun J, Xie C, Liu W, et al. The effects of simvastatin on hippocampal caspase-3 and bcl-2 expression following kainate-induced seizures in rats. Int J Mol Med. 2012;30(4):739–746.
  • Russo E, Donato di Paola E, Gareri P, et al. Pharmacodynamic potentiation of antiepileptic drugs’ effects by some hmg-coa reductase inhibitors against audiogenic seizures in dba/2 mice. Pharmacol Res: off J Ital Pharmacol Soc. 2013;70(1):1–12.
  • Dzhala VI, Talos DM, Sdrulla DA, et al. Nkcc1 transporter facilitates seizures in the developing brain. Nat Med. 2005;11(11):1205–1213.
  • Dzhala VI, Kuchibhotla KV, Glykys JC, et al. Progressive nkcc1-dependent neuronal chloride accumulation during neonatal seizures. J Neuroscience: Official Journal Soc Neurosci. 2010;30(35):11745–11761.
  • Pressler RM, Boylan GB, Marlow N, et al. Bumetanide for the treatment of seizures in newborn babies with hypoxic ischaemic encephalopathy (nemo): an open-label, dose finding, and feasibility phase 1/2 trial. Lancet Neurol. 2015;14(5):469–477.
  • Huberfeld G, Blauwblomme T, Miles R:. Hippocampus and epilepsy: findings from human tissues. Rev Neurol (Paris). 2015;171(3):236–251.
  • Palma E, Amici M, Sobrero F, et al. Anomalous levels of cl- transporters in the hippocampal subiculum from temporal lobe epilepsy patients make gaba excitatory. Proc Natl Acad Sci U S A. 2006;103(22):8465–8468.
  • Talos DM, Sun H, Kosaras B, et al. Altered inhibition in tuberous sclerosis and type iib cortical dysplasia. Ann Neurol. 2012;71(4):539–551.
  • Eftekhari S, Mehvari Habibabadi J, Najafi Ziarani M, et al. Bumetanide reduces seizure frequency in patients with temporal lobe epilepsy. Epilepsia. 2013;54(1):e9–12.
  • Reid AY, Riazi K, Campbell Teskey G, et al. Increased excitability and molecular changes in adult rats after a febrile seizure. Epilepsia. 2013;54(4):e45–48.
  • Wang S, Zhang XQ, Song CG, et al. In vivo effects of bumetanide at brain concentrations incompatible with nkcc1 inhibition on newborn dgc structure and spontaneous eeg seizures following hypoxia-induced neonatal seizures. Neuroscience. 2015;286:203–215.
  • Holmes GL, Tian C, Hernan AE, et al. Alterations in sociability and functional brain connectivity caused by early-life seizures are prevented by bumetanide. Neurobiol Dis. 2015;77:204–219.
  • Brandt C, Nozadze M, Heuchert N, et al. Disease-modifying effects of phenobarbital and the nkcc1 inhibitor bumetanide in the pilocarpine model of temporal lobe epilepsy. J Neuroscience: Official Journal Soc Neurosci. 2010;30(25):8602–8612.
  • Mares P:. Age- and dose-specific anticonvulsant action of bumetanide in immature rats. Physiol Res/Academia Sci Bohemoslov. 2009;58(6):927–930.
  • Mazarati A, Shin D, Sankar R. Bumetanide inhibits rapid kindling in neonatal rats. Epilepsia. 2009;50(9):2117–2122.
  • Dzhala VI, Brumback AC, Staley KJ. Bumetanide enhances phenobarbital efficacy in a neonatal seizure model. Ann Neurol. 2008;63(2):222–235.
  • Lazdunski M, Frelin C, Vigne P. The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal ph. J Mol Cell Cardiol. 1985;17(11):1029–1042.
  • Ali A, Ahmad FJ, Dua Y, et al. Seizures and sodium hydrogen exchangers: potential of sodium hydrogen exchanger inhibitors as novel anticonvulsants. CNS Neurol Disord Drug Targets. 2008;7(4):343–347.
  • Ali A, Ahmad FJ, Pillai KK, et al. Evidence of the antiepileptic potential of amiloride with neuropharmacological benefits in rodent models of epilepsy and behavior. Epilepsy Behav. 2004;5(3):322–328.
  • Ali A, Ahmad FJ, Pillai KK, et al. Amiloride protects against pentylenetetrazole-induced kindling in mice. Br J Pharmacol. 2005;145(7):880–884.
  • Ali A, Pillai KP, Ahmad FJ, et al. Anticonvulsant effect of amiloride in pentetrazole-induced status epilepticus in mice. Pharmacol Rep: PR. 2006;58(2):242–245.
  • N’Gouemo P. Amiloride delays the onset of pilocarpine-induced seizures in rats. Brain Res. 2008;1222:230–232.
  • Ali A, Kolappa Pillai K, Jalees Ahmad F, et al. Comparative efficacy of liposome-entrapped amiloride and free amiloride in animal models of seizures and serum potassium in mice. Eur Neuropsychopharmacol: J Eur Coll Neuropsychopharmacol. 2007;17(3):227–229.
  • Luszczki JJ, Sawicka KM, Kozinska J, et al. Amiloride enhances the anticonvulsant action of various antiepileptic drugs in the mouse maximal electroshock seizure model. J Neural Transm (Vienna, Austria:. 1996)(2009) 116(1):57–66.
  • Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discovery. 2012;11(8):633–652.
  • Virta M, Hurme M, Helminen M. Increased plasma levels of pro- and anti-inflammatory cytokines in patients with febrile seizures. Epilepsia. 2002;43(8):920–923.
  • Rizzi M, Perego C, Aliprandi M, et al. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development. Neurobiol Dis. 2003;14(3):494–503.
  • Rodgers KM, Hutchinson MR, Northcutt A, et al. The cortical innate immune response increases local neuronal excitability leading to seizures. Brain: J Neurol. 2009;132(Pt 9):2478–2486.
  • Bialer M, Johannessen SI, Levy RH, et al. Progress report on new antiepileptic drugs: a summary of the eleventh eilat conference (eilat xi). Epilepsy Res. 2013;103(1):2–30.
  • Ryan NJ. Ataluren: First global approval. Drugs. 2014;74(14):1709–1714.
  • Schubert J, Siekierska A, Langlois M, et al. Mutations in stx1b, encoding a presynaptic protein, cause fever-associated epilepsy syndromes. Nat Genet. 2014;46(12):1327–1332.
  • Boison D. Adenosinergic signaling in epilepsy. Neuropharmacology. 2015.
  • Wiesner JB, Ugarkar BG, Castellino AJ, et al. Adenosine kinase inhibitors as a novel approach to anticonvulsant therapy. J Pharmacol Exp Ther. 1999;289(3):1669–1677.
  • DeGiorgio CM, Miller PR, Harper R, et al. Fish oil (n-3 fatty acids) in drug resistant epilepsy: a randomised placebo-controlled crossover study. J Neurol Neurosurg Psychiatry. 2015;86(1):65–70.
  • Takahashi Y, Imai K, Ikeda H, et al. Open study of pranlukast add-on therapy in intractable partial epilepsy. Brain Dev. 2013;35(3):236–244.
  • Kwan J, Wood E. Antiepileptic drugs for the primary and secondary prevention of seizures after stroke. Cochrane Database Syst Rev. 2010;1):CD005398.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.