799
Views
16
CrossRef citations to date
0
Altmetric
Drug Profile

New advances in the treatment of generalized anxiety disorder: the multimodal antidepressant vortioxetine

, , , , , , , , , , , , , & show all
Pages 483-495 | Received 26 Dec 2015, Accepted 30 Mar 2016, Published online: 18 Apr 2016

References

  • APA (American Psychiatric Association). Diagnostic and statistical manual of mental disorders. Arlington, VA: American Psychiatric Publishing; 2013. p. 5.
  • Hoffman DL, Dukes EM, Wittchen HU. Human and economic burden of generalized anxiety disorder. Depress Anxiety. 2008;25(1):72–90. doi:10.1002/da.20257.
  • Revicki DA, Travers K, Wyrwich KW, et al. Humanistic and economic burden of generalized anxiety disorder in North America and Europe. J Affect Disord. 2012;140(2):103–112. doi:10.1016/j.jad.2011.11.014.
  • Tyrer P, Baldwin D. Generalised anxiety disorder. Lancet. 2006;368(9553):2156–2166. doi:10.1016/S0140-6736(06)69865-6.
  • Kroenke K, Spitzer RL, Williams JB, et al. Anxiety disorders in primary care: prevalence, impairment, comorbidity, and detection. Ann Intern Med. 2007;146(5):317–325. doi:10.7326/0003-4819-146-5-200703060-00004.
  • Kessler RC, Chiu WT, Demler O, et al. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62:617–627.
  • Zbozinek TD, Rose RD, Wolitzky-Taylor KB, et al. Diagnostic overlap of generalized anxiety disorder and major depressive disorder in a primary care sample. Depress Anxiety. 2012;29:1065–1071.
  • Combs H, Markman J. Anxiety disorders in primary care. Med Clin North Am. 2014;98(5):1007–1023. doi:10.1016/j.mcna.2014.06.003.
  • Baldwin DS, Anderson IM, Nutt DJ, et al. Evidence-based pharmacological treatment of anxiety disorders, post-traumatic stress disorder and obsessive-compulsive disorder: a revision of the 2005 guidelines from the British Association for Psychopharmacology. J Psychopharmacol. 2014;28(5):403–439. doi:10.1177/0269881114525674.
  • Katzman MA, Bleau P, Blier P, et al. Canadian clinical practice guidelines for the management of anxiety, posttraumatic stress and obsessive-compulsive disorders. BMC Psychiatry. 2014;14(Suppl 1):S1. doi:10.1186/1471-244X-14-S1-S1.
  • Baldwin DS, Waldman S, Allgulander C. Evidence-based pharmacological treatment of generalized anxiety disorder. Int J Neuropsychopharmacol. 2011;14:697–710.
  • Baldwin DS. Where is the room for improvement in the drug treatment of depression and anxiety? Hum Psychopharmacol. 2011;26:1–3.
  • Lundbeck and Takeda form alliance to develop and commercialize a portfolio of novel compounds in the US and Japan for the treatment of mood and anxiety disorders. H Lundbeck A/S Press Release. 2007 Sep 05.
  • Lundbeck H. AS and Takeda Pharmaceutical Company Limited. Takeda and Lundbeck announce FDA approval of BrintellixTM (vortioxetine) for treatment of adults with major depressive disorder [media release]. 2013 Oct 01. Available from: http://www.lundbeck.com
  • Food and Drug Administration. NDA approval [letter]. 2013.[cited 2013 Nov 20]. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/appletter/2013/204447Orig1s000ltr.pdf
  • European Medicines Agency. Summary of opinion (initial authorization): Brintellix, vortioxetine; 2013. [cited 2013 Oct 31]. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion_-_Initial_authorisation/human/002717/WC500153088.pdf
  • Mørk A, Pehrson A, Brennum LT, et al. Pharmacological effects of Lu AA21004: a novel multimodal compound for the treatment of major depressive disorder. J Pharmacol Exp Ther. 2012;340(3):666–675. doi:10.1124/jpet.111.189068.
  • Andersen VL, Hansen HD, Herth MM, et al. (11)C-labeling and preliminary evaluation of vortioxetine as a PET radioligand. Bioorg Med Chem Lett. 2014;24(11):2408–2411. doi:10.1016/j.bmcl.2014.04.044.
  • Gibb A, Deeks ED. Vortioxetine: first global approval. Drugs. 2014;74(1):135–145. doi:10.1007/s40265-013-0161-9.
  • Areberg J, Luntang-Jensen M, Sogaard B, et al. Occupancy of the serotonin transporter after administration of Lu AA21004 and its relation to plasma concentration in healthy subjects. Basic Clin Pharmacol Toxicol. 2012;110(4):401–404.
  • Stenkrona P, Halldin C, Lundberg J. 5-HTT and 5-HT1A receptor occupancy of the novel substance vortioxetine (Lu AA21004). A PET study in control subjects. Eur Neuropsychopharmacol. 2013;23(10):1190–1198.
  • Boulenger JP, Loft H, Florea I. A randomized clinical study of Lu AA21004 in the prevention of relapse in patients with major depressive disorder. J Psychopharmacol. 2012;26(11):1408–1416. doi:10.1177/0269881112441866.
  • Westrich L, Pehrson A, Zhong H, et al. In vitro and in vivo effects of the multimodal antidepressant vortioxetine (Lu AA21004) at human and rat targets. Int J Psychiatry Clin Pract. 2012;16(Suppl 1):47.
  • Pehrson AL, Sanchez C. Serotonergic modulation of glutamate neurotransmission as a strategy for treating depression and cognitive dysfunction. CNS Spectr. 2014;19(2):121–133.
  • Stahl SM. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): blocking 5HT3 receptors enhances release of serotonin, norepinephrine, and acetylcholine. CNS Spectr. 2015;20:331–336.
  • Santana N, Bortolozzi A, Serrats J, et al. Expression of serotonin 1A and serotonin 2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex. 2004;14:1100–1109.
  • Palchaudhrui M, Flugge G. 5-HT1A receptor expression in pyramidal neurons of cortical and limbic brain regions. Cell Tissue Res. 2005;321:159–172.
  • Parsey RV, Arango V, Olvet DM, et al. Regional heterogeneity of 5-HT1A receptors in human cerebellum as assessed by positron emission tomography. J Cereb Blood Flow Metab. 2005;25(7):785–793.
  • Patel TD, Zhou FC. Ontogeny of 5-HT1A receptor expression in the developing hippocampus. Brain Res Dev Brain Res. 2005;157:42–57.
  • Day HE, Greenwood BN, Hammack SE, et al. Differential expression of 5HT-1A, alpha 1b adrenergic, CRF-R1, and CRF-R2 receptor mRNA in serotonergic, gamma-aminobutyric acidergic, and catecholaminergic cells of the rat dorsal raphe nucleus. J Comp Neurol. 2004;474(3):364–378.
  • Jeong HJ, Han SH, Min BI, et al. 5-HT1A receptor-mediated activation of G-protein-gated inwardly rectifying K+ current in rat periaqueductal gray neurons. Neuropharmacology. 2001;41(2):175–185.
  • Lei Q, Talley EM, Bayliss DA. Receptor-mediated inhibition of G protein-coupled inwardly rectifying potassium channels involves G(alpha)q family subunits, phospholipase C, and a readily diffusible messenger. J Biol Chem. 2001;276(20):16720–16730.
  • Blier P, Bergeron R, de Montigny C. Selective activation of postsynaptic 5-HT1A receptors induces rapid antidepressant response. Neuropsychopharmacology. 1997;16(5):333–338.
  • Zanardi R, Artigas F, Franchini L, et al. How long should pindolol be associated with paroxetine to improve the antidepressant response? J Clin Psychopharmacol. 1997;17(6):446–450.
  • Arborelius L, Linnér L, Wallsten C, et al. Partial 5-HT1A receptor agonist properties of (-)pindolol in combination with citalopram on serotonergic dorsal raphe cell firing in vivo. Psychopharmacology (Berl). 2000;151(1):77–84.
  • Guilloux JP, David DJ, Guiard BP, et al. Blockade of 5-HT1A receptors by (±)-pindolol potentiates cortical 5-HT outflow, but not antidepressant-like activity of paroxetine: microdialysis and behavioral approaches in 5-HT1A receptor knockout mice. Neuropsychopharmacology. 2006;31(10):2162–2172.
  • Said N, Lakehayli S, El Khachibi M, et al. Effect of prenatal stress on memory, nicotine withdrawal and 5HT1A expression in raphe nuclei of adult rats. Int J Dev Neurosci. 2015;43:92–98. doi:10.1016/j.ijdevneu.2015.04.008.
  • Fogaça MV, Reis FM, Campos AC, et al. Effects of intra-prelimbic prefrontal cortex injection of cannabidiol on anxiety-like behavior: involvement of 5HT1A receptors and previous stressful experience. Eur Neuropsychopharmacol. 2014;24(3):410–419. doi:10.1016/j.euroneuro.2013.10.012.
  • Malenka R. Intercellular communication in the nervous system. Waltham, MA: Academic; 2010.
  • Ressler KJ, Nemeroff CB. Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety. 2000;12(Suppl 1):2–19.
  • Murrough JW, Neumeister A. The serotonin 1B receptor: a new target for depression therapeutics? Biol Psychiatry. 2011;69(8):714–715. doi:10.1016/j.biopsych.2011.02.020.
  • Hjorth S, Tao R. The putative 5-HT1B receptor agonist CP-93,129 suppresses rat hippocampal 5-HT release in vivo: comparison with RU 24969. Eur J Pharmacol. 1991;209(3):249–252.
  • Hjorth S, Suchowski CS, Galloway MP. Evidence for 5-HT autoreceptor-mediated, nerve impulse-independent, control of 5-HT synthesis in the rat brain. Synapse. 1995;19(3):170–176.
  • Daws LC, Gould GG, Teicher SD, et al. 5-HT(1B) receptor-mediated regulation of serotonin clearance in rat hippocampus in vivo. J Neurochem. 2000;75(5):2113–2122.
  • Neumaier JF, Petty F, Kramer GL, et al. Learned helplessness increases 5-hydroxytryptamine1B receptor mRNA levels in the rat dorsal raphe nucleus. Biol Psychiatry. 1997;41(6):668–674.
  • Clark MS, Sexton TJ, McClain M, et al. Overexpression of 5-HT1B receptor in dorsal raphe nucleus using Herpes Simplex Virus gene transfer increases anxiety behavior after inescapable stress. J Neurosci. 2002;22(11):4550–4562.
  • Neumaier JF, Vincow ES, Arvanitogiannis A, et al. Elevated expression of 5-HT1B receptors in nucleus accumbens efferents sensitizes animals to cocaine. J Neurosci. 2002;22(24):10856–10863.
  • Neumaier JF, Szot P, Peskind ER, et al. Serotonergic lesioning differentially affects presynaptic and postsynaptic 5-HT1B receptor mRNA levels in rat brain. Brain Res. 1996;722(12):50–58.
  • McDevitt RA, Hiroi R, Mackenzie SM, et al. Serotonin 1B autoreceptors originating in the caudal dorsal raphe nucleus reduce expression of fear and depression-like behavior. Biol Psychiatry. 2011;69(8):780–787. doi:10.1016/j.biopsych.2010.12.029.
  • Solati J, Salari AA, Bakhtiari A. 5HT(1A) and 5HT(1B) receptors of medial prefrontal cortex modulate anxiogenic-like behaviors in rats. Neurosci Lett. 2011;504(3):325–329. doi:10.1016/j.neulet.2011.09.058.
  • Dawson LA, Hughes ZA, Starr KR, et al. Characterization of the selective 5-HT1B receptor antagonist SB-616234-A (1-[6-(cis-3,5-dimethylpiperazin-1-yl)-2,3-dihydro-5-methoxyindol-1-yl]-1-[2ʹ-me-thyl-4ʹ-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methanone hydrochloride): in vivo neurochemical and behavioral evidence of anxiolytic/antidepressant activity. Neuropharmacology. 2006;50(8):975–983.
  • Bidmon HJ, Schleicher A, Wicke K, et al. Localisation of mRNA for h5-HT1B and h5-HT1D receptors in human dorsal raphe. Naunyn Schmiedebergs Arch Pharmacol. 2001;363(3):364–368.
  • Rebeck GW, Maynard KI, Hyman BT, et al. Selective 5-HT1D alpha serotonin receptor gene expression in trigeminal ganglia: implications for antimigraine drug development. Proc Natl Acad Sci U S A. 1994;91(9):3666–3669.
  • Bruinvels AT, Landwehrmeyer B, Gustafson EL, et al. Localization of 5-HT1B, 5-HT1D alpha, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology. 1994;33(34):367–386.
  • Bruinvels AT, Landwehrmeyer B, Probst A, et al. A comparative autoradiographic study of 5-HT1D binding sites in human and guinea-pig brain using different radioligands. Brain Res Mol Brain Res. 1994;21(12):19–29.
  • Feuerstein TJ, Hüring H, van Velthoven V, et al. 5-HT1D-like receptors inhibit the release of endogenously formed [3H]GABA in human, but not in rabbit, neocortex. Neurosci Lett. 1996;209(3):210–214.
  • Anseloni VC, He F, Novikova SI, et al. Alterations in stress-associated behaviors and neurochemical markers in adult rats after neonatal short-lasting local inflammatory insult. Neuroscience. 2005;131(3):635–645.
  • Koran LM, Pallanti S, Quercioli L. Sumatriptan, 5-HT(1D) receptors and obsessive-compulsive disorder. Eur Neuropsychopharmacol. 2001;11(2):169–172.
  • Pian KL, Westenberg HG, van Megen HJ, et al. Sumatriptan (5-HT1D receptor agonist) does not exacerbate symptoms in obsessive compulsive disorder. Psychopharmacology (Berl). 1998;140(3):365–370.
  • Tsaltas E, Kontis D, Chrysikakou S, et al. Reinforced spatial alternation as an animal model of obsessive-compulsive disorder (OCD): investigation of 5-HT2C and 5-HT1D receptor involvement in OCD pathophysiology. Biol Psychiatry. 2005;57(10):1176–1185.
  • Amital D, Fostick L, Sasson Y, et al. Anxiogenic effects of Sumatriptan in panic disorder: a double-blind, placebo-controlled study. Eur Neuropsychopharmacol. 2005;15(3):279–282.
  • Connolly CN, Wafford KA. The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function. Biochem Soc Trans. 2004;32(Pt3):529–534.
  • Boess FG, Beroukhim R, Martin IL. Ultrastructure of the 5-hydroxytryptamine3 receptor. J Neurochem. 1995;64(3):1401–1405.
  • Brown AM, Hope AG, Lambert JJ, et al. Ion permeation and conduction in a human recombinant 5-HT3 receptor subunit (h5-HT3A). J Physiol. 1998;507:653–665.
  • Davies PA, Pistis M, Hanna MC, et al. The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature. 1999;397(6717):359–363.
  • Dubin AE, Huvar R, D’Andrea MR, et al. The pharmacological and functional characteristics of the serotonin 5-HT(3A) receptor are specifically modified by a 5-HT(3B) receptor subunit. J Biol Chem. 1999;274(43):30799–30810.
  • Holbrook JD, Gill CH, Zebda N, et al. Characterisation of 5-HT3C, 5-HT3D and 5-HT3E receptor subunits: evolution, distribution and function. J Neurochem. 2009;108(2):384–396. doi:10.1111/j.1471-4159.2008.05775.x.
  • Hapfelmeier G, Tredt C, Haseneder R, et al. Co-expression of the 5-HT3B serotonin receptor subunit alters the biophysics of the 5-HT3 receptor. Biophys J. 2003;84(3):1720–1733.
  • Walstab J, Hammer C, Bönisch H, et al. Naturally occurring variants in the HTR3B gene significantly alter properties of human heteromeric 5-hydroxytryptamine-3A/B receptors. Pharmacogenet Genomics. 2008;18(9):793–802. doi:10.1097/FPC.0b013e3283050117.
  • Abi-Dargham A, Laruelle M, Wong DT, et al. Pharmacological and regional characterization of [3H]LY278584 binding sites in human brain. J Neurochem. 1993;60(2):730–737.
  • Parker RM, Barnes JM, Ge J, et al. Autoradiographic distribution of [3H]-(S)-zacopride-labelled 5-HT3 receptors in human brain. J Neurol Sci. 1996;144(12):119–127.
  • Malinowska B, Göthert M, Godlewski G, et al. Inhibitory effect of ethanol on the 5-hydroxytryptamine-induced Bezold-Jarisch reflex – involvement of peripheral 5-HT3 receptors. Eur J Pharmacol. 1995;293(1):71–76.
  • Huang YY, Cheng CY, Huang WS, et al. Toxicity and radiation dosimetry studies of the serotonin transporter radioligand [(18) F]AFM in rats and monkeys. EJNMMI Res. 2014;4(1):71. doi:10.1186/s13550-014-0071-1.
  • Yu Y, Cao DQ, Xu HY, et al. 5-HT3A receptors are required in long-term depression and AMPA receptor internalization. Neuroscience. 2014;278:105–112. doi:10.1016/j.neuroscience.2014.07.070.
  • Kondo M, Nakamura Y, Ishida Y, et al. The 5-HT3 receptor is essential for exercise-induced hippocampal neurogenesis and antidepressant effects. Mol Psychiatry. 2015;20(11):1428–1437. doi:10.1038/mp.2014.153.
  • Miquel MC, Emerit MB, Nosjean A, et al. Differential subcellular localization of the 5-HT3-As receptor subunit in the rat central nervous system. Eur J Neurosci. 2002;15(3):449–457.
  • Gershon MD. Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol. 2005;39(5Suppl 3):S184 S193.
  • Homberg JR. The stress-coping (mis)match hypothesis for nature × nurture interactions. Brain Res. 2012;1432:114–121. doi:10.1016/j.brainres.2011.11.037.
  • Rajkumar R, Mahesh R. The auspicious role of the 5-HT3 receptor in depression: a probable neuronal target? J Psychopharmacol. 2010;24(4):455–469. doi:10.1177/0269881109348161.
  • Kelley SP, Bratt AM, Hodge CW. Targeted gene deletion of the 5-HT3A receptor subunit produces an anxiolytic phenotype in mice. Eur J Pharmacol. 2003;461(1):19–25.
  • Chong Y, Choo H. 5-HT₃ antagonists under development. Expert Opin Investig Drugs. 2010;19(11):1309–1319. doi:10.1517/13543784.2010.528388.
  • Pae C-U, Wang S-M, Han C, et al. Vortioxetine, a multimodal antidepressant for generalized anxiety disorder: a systematic review and meta-analysis. J Psychiatr Res. 2015;64:88–98. doi:10.1016/j.jpsychires.2015.02.017.
  • Bard JA, Zgombick J, Adham N, et al. Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J Biol Chem. 1993;268(31):23422–23426.
  • Heidmann DE, Metcalf MA, Kohen R, et al. Four 5-hydroxytryptamine7 (5-HT7) receptor isoforms in human and rat produced by alternative splicing: species differences due to altered intron-exon organization. J Neurochem. 1997;68(4):1372–1381.
  • Brüss M, Kiel S, Bönisch H, et al. Decreased agonist, but not antagonist, binding to the naturally occurring Thr92Lys variant of the h5-HT7(a)receptor. Neurochem Int. 2005;47(3):196–203.
  • Shen Y, Monsma FJ Jr, Metcalf MA, et al. Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J Biol Chem. 1993;268(24):18200–18204.
  • Ruat M, Traiffort E, Leurs R, et al. Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc Natl Acad Sci U S A. 1993;90(18):8547–8551.
  • Neumaier JF, Sexton TJ, Yracheta J, et al. Localization of 5-HT(7) receptors in rat brain by immunocytochemistry, in situ hybridization, and agonist stimulated cFos expression. J Chem Neuroanat. 2001;21(1):63–73.
  • Lovenberg TW, Baron BM, De Lecea L, et al. A novel adenylyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron. 1993;11(3):449–458.
  • Martín-Cora FJ, Pazos A. Autoradiographic distribution of 5-HT7 receptors in the human brain using [3H]mesulergine: comparison to other mammalian species. Br J Pharmacol. 2004;141(1):92–104.
  • Bickmeyer U, Heine M, Manzke T, et al. Differential modulation of I(h) by 5-HT receptors in mouse CA1 hippocampal neurons. Eur J Neurosci. 2002;16(2):209–218.
  • Hedlund PB, Sutcliffe JG. Functional, molecular and pharmacological advances in 5-HT7 receptor research. Trends Pharmacol Sci. 2004;25(9):481–486.
  • Hedlund PB. The 5-HT7 receptor and disorders of the nervous system: an overview. Psychopharmacology (Berl). 2009;206(3):345–354. doi:10.1007/s00213-009-1626-0.
  • Hedlund PB, Sutcliffe JG. The 5-HT7 receptor influences stereotypic behavior in a model of obsessive-compulsive disorder. Neurosci Lett. 2007;414(3):247–251.
  • Wesołowska A, Tatarczyńska E, Nikiforuk A, et al. Enhancement of the anti-immobility action of antidepressants by a selective 5-HT7 receptor antagonist in the forced swimming test in mice. Eur J Pharmacol. 2007;555(1):43–47.
  • Eriksson TM, Holst S, Stan TL, et al. 5-HT1A and 5-HT7 receptor crosstalk in the regulation of emotional memory: implications for effects of selective serotonin reuptake inhibitors. Neuropharmacology. 2012;63(6):1150–1160. doi:10.1016/j.neuropharm.2012.06.061.
  • Bang-Andersen B, Ruhland T, Jørgensen M, et al. Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a novel multimodal compound for the treatment of major depressive disorder. J Med Chem. 2011;54(9):3206–3221. doi:10.1021/jm101459g.
  • Wang Y, Wojtkowski T, Devoti A, et al. Effect of Lu AA21004 on the pharmacokinetics and pharmacodynamics of ethinyl estradiol (30 lg) and levonorgestrel (150 lg) in healthy adult women. J Clin Pharmacol. 2009;49:1114.
  • Wang Y, Munsaka M, Hanson E, et al. The effect of multiple-doses of fluconazole, or ketoconazole, on the single-dose pharmacokinetic profile of Lu AA21004 in healthy adult subjects. Aaps J. 2010;12(S2).
  • Areberg J, Søgaard B, Højer A-M. The clinical pharmacokinetics of Lu AA21004 and its major metabolite in healthy young volunteers. Basic Clin Pharmacol Toxicol. 2012;111(3):198–205. doi:10.1111/j.1742-7843.2012.00886.x.
  • Buchbjerg JK, Højer A-M, Jensen KG, et al. Assessment of the CYP2C19 interaction potential of Lu AA21004. J Clin Pharmacol. 2009;49:1119.
  • Wang Y, Wojtkowski T, Ross G, et al. Effect of multiple doses of rifampicin on the single dose pharmacokinetics of Lu AA21004. J Clin Pharmacol. 2010;50:1082.
  • Nilausen D, Højer A-M, Bendahl L. Absorption, metabolism, and excretion of an oral dose of [14C]-Lu AA21004 50 mg in healthy men. J Clin Pharmacol. 2009;49:1113.
  • Chen G, Zhang W, Serenko M. Lack of effect of multiple doses of vortioxetine on the pharmacokinetics and pharmacodynamics of aspirin and warfarin. J Clin Pharmacol. 2015;55(6):671–679. doi:10.1002/jcph.456.
  • Higgins JPT, Green S, editor. Cochrane handbook for systematic reviews of interventions. 5th ed. The Cochrane Collaboration; 2011. [updated 2011 Mar; cited 2015 Dec 2]. Available from: www.cochrane-handbook.org
  • Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700. doi:10.1136/bmj.b2700.
  • Bidzan L, Mahableshwarkar AR, Jacobsen P, et al. Vortioxetine (Lu AA21004) in generalized anxiety disorder: results of an 8-week, multinational, randomized, double-blind, placebo-controlled clinical trial. Eur Neuropsychopharmacol. 2012;22(12):847–857.
  • Mahableshwarkar AR, Jacobsen PL, Serenko M, et al. A randomized, double-blind, fixed-dose study comparing the efficacy and tolerability of vortioxetine 2.5 and 10 mg in acute treatment of adults with generalized anxiety disorder. Hum Psychopharmacol. 2014;29(1):64–72. doi:10.1002/hup.2371.
  • Rothschild AJ, Mahableshwarkar AR, Jacobsen P, et al. Vortioxetine (Lu AA21004) 5 mg in generalized anxiety disorder: results of an 8-week randomized, double-blind, placebo-controlled clinical trial in the United States. Eur Neuropsychopharmacol. 2012;22(12):858–866.
  • Baldwin DS, Loft H, Florea I. Lu AA21004, a multimodal psychotropic agent, in the prevention of relapse in adult patients with generalized anxiety disorder. Int Clin Psychopharmacol. 2012;27(4):197–207.
  • Mahableshwarkar AR, Jacobsen PL, Chen Y, et al. A randomised, double-blind, placebo-controlled, duloxetine-referenced study of the efficacy and tolerability of vortioxetine in the acute treatment of adults with generalised anxiety disorder. Int J Clin Pract. 2014;68(1):49–59. doi:10.1111/ijcp.12328.
  • Guilloux JP, Mendez-David I, Pehrson A, et al. Antidepressant and anxiolytic potential of the multimodal antidepressant vortioxetine (Lu AA21004) assessed by behavioural and neurogenesis outcomes in mice. Neuropharmacology. 2013;73:147–159. doi:10.1016/j.neuropharm.2013.05.014.
  • Westrich L, Haddjeri N, Dkhissi-Benyahya O, et al. Involvement of 5-HT₇ receptors in vortioxetine’s modulation of circadian rhythms and episodic memory in rodents. Neuropharmacology. 2015;89:382–390.
  • Calhoon GG, Tye KM. Resolving the neural circuits of anxiety. Nat Neurosci. 2015;18(10):1394–1404. doi:10.1038/nn.4101.
  • Mørk A, Montezinho LP, Miller S, et al. Vortioxetine (Lu AA21004), a novel multimodal antidepressant, enhances memory in rats. Pharmacol Biochem Behav. 2013;105:41–50. doi:10.1016/j.pbb.2013.01.019.
  • Jensen JB, Du Jardin KG, Song D, et al. Vortioxetine, but not escitalopram or duloxetine, reverses memory impairment induced by central 5HT depletion in rats: evidence for direct 5HT receptor modulation. Eur Neuropyschopharmacol. 2014;24(1):148–159.
  • Du Jardin KG, Jensen JB, Sanchez C, et al. Vortioxetine dose dependently reverses 5HT depletion induced deficits in spatial working and object recognition memory: a potential role of 5HT1A receptor agonism and 5HT3 receptor antagonism. Eur Neuropsychopharmacol. 2014;24(1):160–171.
  • Li Y, Sanchez C, Gulinello M. Memory impairment in old mice is differentially sensitive to different classes of antidepressants. Eur Neuropsychopharmacol. 2013;23(Suppl 2):S282.
  • Jacobsen PL, Mahableshwarkar AR, Palo WA, et al. Treatment-emergent sexual dysfunction in randomized trials of vortioxetine for major depressive disorder or generalized anxiety disorder: a pooled analysis. CNS Spectr. 2016. In press.
  • Theunissen EL, Street D, Højer AM, et al. A randomized trial on the acute and steady-state effects of a new antidepressant, vortioxetine (Lu AA21004), on actual driving and cognition. Clin Pharmacol Ther. 2013;93(6):493–501.
  • Alvarez E, Perez V, Dragheim M, et al. A double-blind, randomized, placebo-controlled, active reference study of Lu AA21004 in patients with major depressive disorder. Int J Neuropsychopharmacol. 2012;15(5):589–600. doi:10.1017/S1461145711001027.
  • Boulenger JP, Loft H, Olsen CK. Efficacy and safety of vortioxetine (Lu AA21004), 15 and 20 mg/day: a randomized, doubleblind, placebo-controlled, duloxetine-referenced study in the acute treatment of adult patients with major depressive disorder. Int Clin Psychopharmacol. 2014;29(3):138–149.
  • Jacobsen P, Mahableshwarkar AR, Serenko M A randomized, double-blind, placebo-controlled study of the efficacy and safety of vortioxetine 10 and 20 mg in adults with major depressive disorder [abstract no. NR9-06]. 166th Annual Meeting of the American Psychiatric Association; 2013 May 18–22; San Francisco.
  • Rosenblat JD, Kakar R, McIntyre RS. The cognitive effects of antidepressants in major depressive disorder: a systematic review and meta-analysis of randomized clinical trials. Int J Neuropsychopharmacol. 2016;19:1–13.
  • Katona CL, Katona CP. New generation multi-modal antidepressants: focus on vortioxetine for major depressive disorder. Neuropsychiatr Dis Treat. 2014;10:349–354. doi:10.2147/NDT.S39544.
  • Al-Sukhni M, Maruschak NA, McIntyre RS. Vortioxetine: a review of efficacy, safety and tolerability with a focus on cognitive symptoms in major depressive disorder. Expert Opin Drug Saf. 2015;14(8):1291–1304. doi:10.1517/14740338.2015.1046836.
  • Meeker AS, Herink MC, Haxby DG, et al. The safety and efficacy of vortioxetine for acute treatment of major depressive disorder: a systematic review and meta-analysis. Syst Rev. 2015;4:21. doi:10.1186/s13643-015-0001-y.
  • Brintellix (vortioxetine) package insert. Deerfield, Illinois: Takeda Pharmaceuticals America, Inc; 2013 Sep.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.