7
Views
0
CrossRef citations to date
0
Altmetric
Review

Population-based gene discovery in psychiatric diseases

, &
Pages 51-57 | Published online: 10 Jan 2014

References

  • Hutton M, Perez-Tur J, Hardy J. Genetics of Alzheimer's disease. Essays Biochem. 33, 117–131 (1998).
  • Concannon P, Gogolin-Ewens KJ, Hinds DA et al A second-generation screen of the human genome for susceptibility to insulin-dependent diabetes mellitus. Nat. Genet. 19(3), 292–296 (1998).
  • Risch N, Merikangas K. The future of genetic studies of complex human diseases [see comments]. Science 273(5281), 1516–1517 (1996).
  • ••Pioneer study indicating the advantage of association analysis over linkage analysis
  • Schork NJ, Cardon LR, Xu X. The future of genetic epidemiology. Trends Genet. 14(7), 266–272 (1998).
  • Risch NJ. Searching for genetic determinants in the new millennium.Nature 405(6788), 847–856 (2000).
  • Boehnke M. Limits of resolution of genetic linkage studies: implications for the positional cloning of human disease genes. Am J. Hum. Genet. 55(2), 379–390 (1994).
  • Kruglyak L, Lander ES. High-resolution genetic mapping of complex traits. Am. J. Hum. Genet. 56(5), 1212–1223 (1995).
  • Kerem B, Rommens JM, Buchanan JA etal Identification of the cystic fibrosis gene: genetic analysis. Science 245(4922), 1073–1080 (1989).
  • Hastbacka J, de la Chapelle A, Kaitila I etal Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nat. Genet. 2(3), 204–211 (1992).
  • Jorde LB. Linkage disequilibrium as a gene- mapping tool [editorial; comment]. Am. J. Hum. Genet. 56(1), 11–14 (1995).
  • Mohlke KL, Lange EM, Valle TT eta]. Linkage disequilibrium between microsatellite markers extends beyond 1 cM on chromosome 20 in Finns. Genome Res. 11(7), 1221–1226 (2001).
  • Service SK, Ophoff RA, Freimer NB. The genome-wide distribution of background linkage disequilibrium in a population isolate. Hum. Mal Genet. 10(5), 545–551 (2001).
  • Reich DE, Cargill M, Bolk S et al Linkage disequilibrium in the human genome.Nature 411(6834), 199–204. (2001).
  • Pritchard JK, Cox NJ. The allelic architecture of human disease genes: common disease-common variant or not? Hum. Mal Genet. 11(20), 2417–2423 (2002).
  • Wright AF, Carothers AD, Pirastu M. Population choice in mapping genes for complex diseases. Nat. Genet. 23(4), 397–404 (1999).
  • ••Describes the advantages of homogenouspopulations in association studies and their importance for the mapping of complex diseases genes.
  • Shifman S, Darvasi A. The value of isolated populations. Nat. Genet. 28(4), 309–310 (2001).
  • Ostrer H. A genetic profile of contemporary Jewish populations. Nat. Rev Genet. 2(11), 891–898 (2001).
  • •Summary of the genetic studies carried out on the Jewish populations, in light of their demographic history Implications for the power of association studies are considered.
  • Shifman S, Bronstein M, Sternfeld M etal A highly significant association between a COMT haplotype and schizophrenia. Am. Hum. Genet. (2002).
  • Faraone SV, Taylor L, Tsuang MT. The molecular genetics of schizophrenia: an emerging consensus. Expert Rev Mal Med. (May 23), www-ermmcbcucamacuk / 0200475-0200471apdf (2002).
  • Pulver AE. Search for schizophrenia susceptibility genes. Biol. PTchiatry 47(3), 221–230 (2000).
  • Murphy KC, Jones LA, Owen MJ. High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch. Gen Bychiatry56(10), 940–945 (1999).
  • Karayiorgou M, Morris MA, Morrow B et al Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc. Natl Acad. Sci. USA 92(17), 7612–7616 (1995).
  • Usiskin SI, Nicolson R, Krasnewich DM et al Velocardiofacial syndrome in childhood-onset schizophrenia. J: Am. Acad. Child Adolesc. Bychiatry38(12), 1536–1543 (1999).
  • Axelrod J, Tomchick R. Enzymatic o- methylation of adrenaline and other catechols. J: Biol. Chem. 233,702–705 (1958).
  • de Chaldee M, Corbex M, Campion D et al No evidence for linkage between COMT and schizophrenia in a French population. Psychiatry Res. 102 (1), 87–90 (2001).
  • Egan ME, Goldberg TE, Kolachana BS eta]. Effect of COMT Va1108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl Acad. Li. USA 98(12), 6917–6922 (2001).
  • Herken H, Erdal ME. Catechol-0-methyltransferase gene polymorphism in schizophrenia: evidence for association between symptomatology and prognosis. fiychiatr Genet. 11(2), 105–109 (2001).
  • Li T, Ball D, Zhao J et al. Family-based linkage disequilibrium mapping using SNP marker haplotypes: application to a potential locus for schizophrenia at chromosome 22q11. Mal Bychiatry5(1), 77–84 (2000).
  • Liou YJ, Tsai SJ, Hong CJ etal. Association analysis of a functional catechol-o-methyltransferase gene polymorphism in schizophrenic patients in Taiwan. Neuropsychobiology 43(1), 11–14 (2001).
  • McCarthy JJ. COMT and schizophrenia: biology meets genetics. Trends Biotechnol 19(8), 283–284 (2001).
  • Weinberger DR, Egan ME, Bertolino A etal Prefrontal neurons and the genetics of schizophrenia. Biol. Psychiatry 50 (11), 825–844 (2001).
  • Lachman HM, Kelsoe J, Moreno L eta]. Lack of association of catechol-0-methyltransferase (COMT) functional polymorphism in bipolar affective disorder. fiychiatr Genet. 7(1), 13–17 (1997).
  • Shifman S, Pisanté-Shalom A, Yakir B et al. Quantitative technologies for allele frequency estimations of SNPs in DNA pools. Mol. Cell probe, in press (2002).
  • Wasson J, Skolnick G, Love-Gregory L eta]. Assessing allele frequencies of single nucleotide polymorphisms in DNA pools by pyrosequencing technology. Biotechniques32(5), 1144–1146,1148, 1150 passim (2002).
  • Escamilla MA. Population isolates: their special value for locating genes for bipolar disorder. Bipolar Disonl 3(6), 299–317 (2001).
  • Motulsky AG. Jewish diseases and origins [news]. Nat. Genet. 9(2), 99–101 (1995).
  • Wijsman EM. Techniques for estimating genetic admixture and applications to the problem of the origin of the Icelanders and the Ashkenazi Jews. Hum. Genet. 67(4), 441–448 (1984).
  • Palmatier MA, Kang AM, Kidd KK. Global variation in the frequencies of functionally different catechol- 0-methyltransferase alleles. Biol. Psychiatry 46(4), 557–567 (1999).
  • Shalom A, Darvasi A. High-throughput single nucleotide polymorphism genotyping. In: Pharmacogenetics of psychotropic drugs. Lerer B (Ed.), Cambridge University Press, 418–436 (2002).
  • Kwok PY. Methods for genotyping single nucleotide polymorphisms. Ann. Rev Genomics Hum. Genet. 2,235–258 (2001).

Websites

  • dbSNP homepage: www.ncbi.nlm.nih.gov/SNP/
  • Online Mendelian Inheritance in Man (OMIM): www.ncbi.nlm.nih.gov/OMIM/ (for Schizophrenia [MIM 1815001, VCFS [192430], COMT [1167901)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.