11
Views
0
CrossRef citations to date
0
Altmetric
Review

Prospects for the treatment of stroke using gene therapy

, , &
Pages 357-372 | Published online: 10 Jan 2014

References

  • Mulligan RC. The basic science of gene therapy. Science 260 (5110), 926–932 (1993).
  • Wade DT, Langton Hewer R, Skilbeck CE, David RM. Stroke, A Critical Approach to Diagnosis Treatment and Management. Year book medical publishers Inc., Chicago, IL, USA 5–7 (1985)
  • Gunnett CA, Heistad DD. Virally mediated gene transfer to the vasculature. Mcrociradation 9(1), 23–33 (2002).
  • Dominiczak AF, Negrin DC, Clark JS, Brosnan1 MJ, Mcbride MW Alexander MY. Genes and hypertension: from gene mapping in experimental models to vascular gene transfer strategies. Hypertension 35(1 Pt 2), 164–172 (2000).
  • Gelband CH, Katovich MJ, Raizada MK. Current perspectives on the use of gene therapy for hypertension. Circ. Res. 87(12), 1118–1122 (2000).
  • Lin KF, Chao J, Chao L. Atrial natriuretic peptide gene delivery reduces stroke-induced mortality rate in Dahl salt-sensitive rats. Hypertension 33(1 Pt. 2), 219–224 (1999).
  • Friedmann T, Roblin R. Gene therapy for human genetic disease? Science 175 (25), 949–955 (1972).
  • Pfeifer A, Verma I M. Gene therapy: promises and problems. Ann. Rev. Genomics Hum. Gen. 2,177–211 (2001)
  • •Superb review of the construction, advantages and disadvantages of various viral vectors.
  • Yang T, Zhang GR, Zhang W Sun M, Wang X, Geller AI. Enhanced reporter gene expression in the rat brain from helper virus- free HSV-1 vectors packaged in the presence of specific mutated HSV-1 proteins that affect the virion. Brain Res. Mal Brain Res. 90(1), 1–16 (2001).
  • Tsai DJ, Ho JJ, Ozawa CR, Sapolsky RM. Long-term expression driven by herpes simplex virus type-1 amplicons may fail due to eventual degradation or extrusion of introduced transgenes. Exp. Neural 165(1), 58–65 (2000).
  • Priller J, Flugel A, Wehner T etal Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat. Med. 7(12), 1356–1361 (2001).
  • Blomer U, Naldini L, Kafri T, Trono D, Verma IM, Gage PH. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Viral. 71(9), 6641–6649 (1997).
  • Trono D. Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Ther 7(1), 20–23 (2000).
  • Naldini L. Lentiviruses as gene transfer agents for delivery to nondividing cells. CUE Opin. Biotechnol 9(5), 457–463 (1998).
  • Costantini LC, Bakowska JC, Breakefield XO, Isacson 0. Gene therapy in the CNS. Gene Ther 7(2), 93–109 (2000).
  • Kordower JH, Emborg ME, Bloch J etal Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 290(5492), 767–773 (2000).
  • Simonato M, Manservigi R, Marconi P, Glorioso J. Gene transfer into neurons for the molecular analysis of behaviour: focus on herpes simplex vectors. Trends Neurosci. 23(5), 183–190 (2000).
  • Antonawich FJ, Federoff HJ, Davis JN. Bc1-2 transduction, using a herpes simplex virus amplicon, protects hippocampal neurons from transient global ischemia. Exp. Neural 156 (1), 130–137 (1999).
  • Linnik MD, Zahos P, Geschwind MD, Federoff HJ. Expression of Bet 2 from a defective herpes simplex virus-1 vector limits neuronal death in focal cerebral ischemia. Stroke 26(9), 1670–1674, discussion 1675 (1995).
  • Lawrence MS, Ho DY, Dash R, Sapolsky RM. Herpes simplex virus vectors overexpressing the glucose transporter gene protect against seizure-induced neuron loss. Proc. Nat. Acad. Li. USA 92(16), 7247–7251 (1995).
  • Ho DY, Fink L, Lawrence MS eta]. Herpes simplex virus vector system: analysis of its in vivo and in vitro cytopathic effects. J. Neurosci. Methods 57(2), 205-21(1995).
  • Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5.1 Gen. Viml. 36(1), 59–74 (1977).
  • Kilic E, Hermann DM, Kugler S etal Adenovirus-mediated Bc/-X(L) expression using a neuron-specific synapsin-1 promoter protects against disseminated neuronal injury and brain infarction following focal cerebral ischemia in mice. Neurobiol Dis. 11(2), 275–284 (2002).
  • Zhu Y, Yang GY, Ahlemeyer B etal Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage. I Neurosci 22(10), 3898–3909 (2002).
  • Larsson E, Mandel RJ, Klein RL, Muzyczka N, Lindvall 0, Kokaia Z. Suppression of insult-induced neurogenesis in adult rat brain by brain-derived neurotrophic factor. Exp. Neural 177(1), 1–8 (2002).
  • Tsai TH, Chen SL, Chiang YH etal Recombinant adeno-associated virus vector expressing glial cell line-derived neurotrophic factor reduces ischemia-induced damage. Exp Neural. 166(2), 266–275 (2000).
  • Lasic DD, Papahadjopoulos D. Liposomes revisited. Science 267 (5202), 1275–1276 (1995).
  • Yang K, Clifton GL, Hayes RL. Gene therapy for central nervous system injury: the use of cationic liposomes: an invited review. J. Ahrotrauma 14(5), 281–297 (1997).
  • •Excellent review of liposome vectors.
  • Cao YJ, Shibata T, Rainov NG. Liposome-mediated transfer of the Bc/-2 gene results in neuroprotection after in vivo transient focal cerebral ischemia in an animal model. Gene Ther. 9(6), 415–419 (2002).
  • Yoshimura S, Morishita R, Hayashi K eta]. Gene transfer of hepatocyte growth factor to subarachnoid space in cerebral hypoperfusion model. Hypertension 39(5), 1028–1034 (2002).
  • Zum AD, Widmer HR, Aebischer Sustained delivery of GDNF: towards a treatment for Parkinson's disease. Brain Res. Rev 36(2-3), 222–229 (2001).
  • Blesch A and Tuszynski M. Ex vivo gene therapy for Alzheimer's disease and spinal cord injury. Clin. Neurosci 3(5), 268–274 (1995).
  • Galpem WR, Prim DM, Tatter SB, Altar CA, Beal WIF, Isacson 0. Cell-mediated delivery of brain-derived neurotrophic factor enhances dopamine levels in an IVIPP+ rat model of substantia nigra degeneration. Cell Transplant 5(2), 225–232 (1996).
  • Kordower JH, Isacson 0, Leventhal L, Emerich DE Cellular delivery of trophic factors for the treatment of Huntington's disease: is neuroprotection possible? Frog: Brain Res. 127,414–430 (2000).
  • Philips MF, Mattiasson G, Wieloch T et al Neuroprotective and behavioral efficacy of nerve growth factor- transfected hippocampal progenitor cell transplants after experimental traumatic brain injury. Neurosurg. 94(5), 765–774 (2001).
  • Martinez-Serrano A, Bjorldund A. Immortalized neural progenitor cells for CNS gene transfer and repair. Wends Neurosci 20(11), 530–538 (1997).
  • Nakano K, Migita M, Mochizuki H, Shimada T Differentiation of transplanted bone marrow cells in the adult mouse brain. Transplantation 71(12), 1735–1740 (2001).
  • Doran SE, Ren XD, Betz AL etal Gene expression from recombinant viral vectors in the central nervous system after blood—brain barrier disruption. Neurosurgery 36(5), 965–970 (1995).
  • Han Z, Zhang S, Li H etal Expression of recombinant adeno-associated virus in the brain of rats with a focal embolic stroke via carotid artery. Chin. Medflg-1). 115(8),1170-1174 (2002).
  • Betz AL, Yang GY, Davidson BL. Attenuation of stroke size in rats using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist in brain. I Cerra Blood Flow Metab. 15(4), 547–551 (1995).
  • •Reports one of the earliest demonstrations that a vector overexpressing a secreted protein can reduce infarct size.
  • Lin H, Lin TN, Cheung WM eta]. Cyclooxygenase-1 and bicistronic cyclooxygenase- liprostacyclin synthase gene transfer protect against ischemic cerebral infarction. Circulation 105(16), 1962-1969 (2002).
  • ••Only report in which one vectorexpressing two genes was designed to target consecutive damaging events after stroke.
  • Aldi S, Caillaud C, Vigne E eta]. Transfer of a foreign gene into the brain using adenovirus vectors. Nat. Genet. 3(3), 224–228 (1993).
  • Bajocchi G, Feldman SH, Crystal RG, Mastrangeli A. Direct in vivo gene transfer to ependymal cells in the central nervous system using recombinant adenovirus vectors. Nat. Genet. 3(3), 229–234 (1993).
  • Yang GY, Zhao YJ, Davidson BL, Betz AL. Overexpression of interleukin-1 receptor antagonist in the mouse brain reduces ischemic brain injury. Brain Res. 751(2), 181–188 (1997).
  • Yang GY, Mao Y, Zhou LF etal. Attenuation of temporary focal cerebral ischemic injury in the mouse following transfection with interleukin-1 receptor antagonist. Brain Res. Mil. Brain Res 72(2), 129–137 (1999).
  • Ooboshi H, Welsh MJ, Rios CD, Davidson BL, Heistad DD. Adenovirus-mediated gene transfer in vivo to cerebral blood vessels and perivascular tissue. Cur. Res. 77(1), 7–13 (1995).
  • Muhonen MG, Ooboshi H, Welsh MJ, Davidson BL, Heistad DD. Gene transfer to cerebral blood vessels after subarachnoid hemorrhage. Stroke 28 (4), 822–828, discussion 828–829 (1997).
  • Stoodley M, Weihl CC, Zhang ZD eta]. Effect of adenovirus-mediated nitric oxide synthase gene transfer on vasospasm after experimental subarachnoid hemorrhage. Neurosurgery 46 (5), 1193–1202, discussion 1202–1193 (2000).
  • Luders JC, Weihl CC, Lin G et al Adenoviral gene transfer of nitric oxide synthase increases cerebral blood flow in rats. Neurosurgery 47 (5), 1206–1214, discussion 1214–1205 (2000).
  • Hayashi K, Morishita R, Nakagami H etal. Gene therapy for preventing neuronal death using hepatocyte growth factor: in vivogene transfer of HGF to subarachnoid space prevents delayed neuronal death in gerbil hippocampal CA1 neurons. Gene Ther 8(15), 1167–1173 (2001).
  • Zhang WR, Sato K, Iwai M, Nagano I, Manabe Y, Abe K. Therapeutic time window of adenovirus-mediated GDNF gene transfer after transient middle cerebral artery occlusion in rat. Brain Res. 947(1), 140–145 (2002).
  • Hermann D M, Kilic E, Kugler S, Isenmann S, Bahr M. Adenovirus-mediated GDNF and CNTF pretreatment protects against striatal injury following transient middle cerebral artery occlusion in mice. Neumbiol Dis. 8(4), 655–666 (2001).
  • Andsberg G, Kokaia Z, Klein RL, Muzyczka N, Lindvall 0, Mandel R J. Neuropathological and behavioral consequences of adeno-associated viral vector-mediated continuous intrastriatal neurotrophin delivery in a focal ischemia model in rats. Neumbiol Dis 9(2), 187–204 (2002).
  • •One of the few studies demonstrating that gene therapy can spare function after stroke.
  • Kelly S, Zhang ZJ, Zhao H etal. Gene transfer of HSP72 protects cornu ammonis 1 region of the hippocampus neurons from global ischemia: influence of BcI-2. Ann. Neural. 52 (2), 160–167 (2002).
  • Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Ann. Rev Neurosci. 13,171–182 (1990).
  • Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. Cereb. Blood Flow Metab. 21(1), 2–14 (2001).
  • Roy M, Sapolsky RM. Neuronal apoptosis in acute necrotic insults: why is this subject such a mess? Trends Neurosci. 22(10), 419–422 (1999).
  • Graham SH, Chen J. Programmed cell death in cerebral ischemia. j Cereb. Blood Flow Metab. 21(2), 99–109 (2001).
  • Ono S, Komuro T, Macdonald RL. Heme oxygenase-1 gene therapy for prevention of vasospasm in rats. J. Neurosurg. 96(6), 1094–1102 (2002).
  • Shin HK, Lee JH, Kim CD, Kim YK, Hong JY, Hong KW Prevention of impairment of cerebral blood flow autoregulation during acute stage of subarachnoid hemorrhage by gene transfer of Cu/Zn SOD-1 to cerebral vessels. J. Cereb. Blood Flow Metab. 23(1), 111–120 (2003).
  • Ho DY, Mocarski ES, Sapolsky RM. Altering central nervous system physiology with a defective herpes simplex virus vector expressing the glucose transporter gene. Proc. Natl. Acad. Sc]. USA. 90(8), 3655–3659 (1993).
  • Ho DY, Saydam TC, Fink SL, Lawrence MS, Sapolsky RM. Defective herpes simplex virus vectors expressing the rat brain glucose transporter protect cultured neurons from necrotic insults. J. Neurochem. 65(2), 842–850 (1995).
  • Fink SL, Ho DY, Mclaughlin J, Sapolsky RM. An adenoviral vector expressing the glucose transporter protects cultured striatal neurons from 3 -nitro propi onic acid. Brain Res. 859 (1), 21–25 (2000).
  • Lawrence MS, Ho DY, Sun GH, Steinberg GK, Sapolsky RM. Overexpression of Bet 2 with herpes simplex virus vectors protects CNS neurons against neurological insults in vitro and in vivo. Neurosci 16(2), 486–496 (1996).
  • •Early study shows that gene therapy using Bc1–2 inhibits necrotic insults in vivo and in vitro, including stroke.
  • Dash R, Lawrence M, Ho D, Sapolsky RM. A herpes simplex virus vector overexpressing the glucose transporter gene protects the rat dentate gyrus from an antimetabolite toxin. Exp. Neural 137(1), 43–48 (1996).
  • Gupta A, Ho DY, Brooke S etal Neuroprotective effects of an adenoviral vector expressing the glucose transporter: a detailed description of the mediating cellular events. Brain Res. 908(1), 49–57 (2001).
  • Robert JJ, Bouilleret V, Ridoux V et al Adenovirus-mediated transfer of a functional GAD gene into nerve cells: potential for the treatment of neurological diseases. Gene Thec 4(11), 1237–1245 (1997).
  • Meier TJ, Ho DY, Park TS, Sapolsky RM. Gene transfer of calbindin D28k cDNA via herpes simplex virus amplicon vector decreases cytoplasmic calcium ion response and enhances neuronal survival following glutamatergic challenge but not following cyanide. Neurochem. 71 (3), 1013–1023 (1998).
  • Meier TJ, Ho DY, Sapolsky RM. Increased expression of calbindin D28k via herpes simplex virus amplicon vector decreases calcium ion mobilization and enhances neuronal survival after hypoglycemic challenge. Neurochem. 69 (3), 1039–1047 (1997).
  • Yenari MA, Minami M, Sun GH etal Calbindin D28k overexpression protects striatal neurons from transient focal cerebral ischemia. Stroke 32(4), 1028–1035 (2001).
  • Phillips RG, Meier TJ, Giuli LC, Mclaughlin JR, Ho DY, Sapolsky RM. Calbindin D28K gene transfer via herpes simplex virus amplicon vector decreases hippocampal damage in vivo following neurotoxic insults. J. Neurochem. 73(3), 1200–1205 (1999).
  • Chard PS, Jordan J, Marcuccilli CJ etal Regulation of excitatory transmission at hippocampal synapses by calbindin D28k. Proc. Nati Acad. ScL USA. 92(11), 5144–5148 (1995).
  • Chan PH, Epstein CJ, Li Yet al Transgenic mice and knockout mutants in the study of oxidative stress in brain injury. Neurotrauma 12(5), 815–824 (1995).
  • Mates M. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153 (1-3), 83–104 (2000).
  • Melov S. Therapeutics against mitochondrial oxidative stress in animal models of aging. Ann. NY Acad. Sci. 959, 330–340 (2002).
  • Hoehn B, Yenari M, Sapolsky R, Steinberg GK. overexpression of glutathione peroxidase by gene therapy protects striatal neurons after experimental stroke. J. Neurosurg. 96,182A (2002).
  • Duan H, Wang Y, Aviram M etal SAG, a novel zinc RING finger protein that protects cells from apoptosis induced by redox agents. Mal Cell Biol. 19(4), 3145–3155 (1999).
  • Swaroop M, Bian J, Aviram M etal Expression, purification and biochemical characterization of SAG, a ring finger redox-sensitive protein. Free Radic. Med. 27(1-2), 193–202 (1999).
  • Yang GY, Pang L, Ge HL etal Attenuation of ischemia-induced mouse brain injury by SAG, a redox- inducible antioxidant protein. J. Cereb. Blood Flow Metab. 21 (6), 722–733 (2001).
  • Minn AJ, Velez P, Schendel SL etal BcI-xL forms an ion channel in synthetic lipid membranes. Nature 385 (6614), 353–357 (1997).
  • Parsadanian AS, Cheng Y, Keller-Peck CR, Holtzman DM, Snider WD. &l-xL is an antiapoptotic regulator for postnatal CNS neurons. Neurosci 18 (3), 1009–1019(1998).
  • Israels LG, Israels ED. Apoptosis. Stem Cells. 17(5), 306–313 (1999).
  • Schulz JB, Weller M, Moskowitz MA. Caspases as treatment targets in stroke and neurodegenerative diseases. Ann. Neural 45(4), 421–429 (1999).
  • Kane DJ, Sarafian TA, Anton R etal BcI-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262(5137), 1274–1277 (1993).
  • Kane DJ, Ord T, Anton R, Bredesen DE. Expression of Bet 2 inhibits necrotic neural cell death. J. NeumscL Res. 40(2), 269–275 (1995).
  • Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bet 2 regulation of apoptosis. Science 275(5303), 1132–1136 (1997).
  • Chen J, Graham SH, Chan PH, Lan J, Zhou RL, Simon RP. bc1-2 is expressed in neurons that survive focal ischemia in the rat. Neuroreport 6(2), 394–398 (1995).
  • Gillardon F, Lenz C, Waschke KF et al. Altered expression of BcI-2, Bcl-X, Bax and c-Fos colocalizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats. Mal Brain Res. 40(2), 254–260 (1996).
  • Ferrer I, Pozas E, Lopez E, Ballabriga J. Bet 2, Bax and Bcfx expression following hypoxia-ischemia in the infant rat brain. Acta Neumpathol (Fen). 94(6), 583–589 (1997).
  • Lawrence M S, Ho D Y, Sun G H, Steinberg G K, Sapolsky R M. Overexpression of Bc/-2 with herpes simplex virus vectors protects CNS neurons against neurological insults in vitro and in vivo. .1. Neurosci. 16(2), 486–496 (1996).
  • Lawrence MS, Mclaughlin JR, Sun GH et al Herpes simplex viral vectors expressing Bc/-2 are neuroprotective when delivered after a stroke. J. Cereb. Blood Flow Metab. 17(7), 740–744 (1997).
  • Dumas TC, Mclaughlin JR, Ho DY, Lawrence MS, Sapolsky RM. Gene therapies that enhance hippocampal neuron survival after an excitotoxic insult are not equivalent in their ability to maintain synaptic transmission. Exp. Neural. 166(1), 180–189 (2000).
  • Phillips RG, Lawrence MS, Ho DY, Sapolsky RM. Limitations in the neuroprotective potential of gene therapy with Bc/-2. Brain Res. 859(2), 202–206 (2000).
  • Zhao H, Yenari MA, Sapolsky RM, Steinberg GK. Bc/-2 overexpression Protects Against neuron Loss in Pen-infarct Regins Following Experimental Stroke. Stroke 32, 326–327 (2001).
  • Zhao H, Yenari MA, Cheng D, Sapolsky RM, Steinberg GM. HSV-mediated Bc1-2 transfection blocks apoptosis inducing factor (AIF) translocation after focal ischemia in rat. Stroke 34,241 (2003).
  • Xu L, Lee JE, Giffard RG. Overexpression of bc1-2, bcl-XL or hsp70 in murine cortical astrocytes reduces injury of co-cultured neurons. Neurosci. Lett. 277(3), 193–197 (1999).
  • Xu L, Koumenis IL, Tilly JL, Giffard RG. Overexpression of bc1-xL protects astrocytes from glucose deprivation and is associated with higher glutathione, ferritin and iron levels. Anesthesiology91 (4), 1036–1046 (1999).
  • Simons M, Beinroth S, Gleichmann M etal Adenovirus-mediated gene transfer of inhibitors of apoptosis protein delays apoptosis in cerebellar granule neurons. J. Neurochem. 72(1), 292–301 (1999).
  • Liston P, Roy N, Tamai K etal Suppression of apoptosis in mammalian cells by NAIP and a related family of TAP genes. Nature 379(6563), 349–353 (1996).
  • Perrelet D, Ferri A, Mackenzie AE eta]. TAP family proteins delay motoneuron cell death in vivo. Eur Neurosci. 12(6), 2059–2067 (2000).
  • Maier JK, Lahoua Z, Gendron NH et al. The neuronal apoptosis inhibitory protein is a direct inhibitor of caspases 3 and 7. J. Neurosci. 22(6), 2035–2043 (2002).
  • Xu DG, Crocker SJ, Doucet JP etal Elevation of neuronal expression of NAIP reduces ischemic damage in the rat hippocampus. Nat. Med. 3(9), 997–1004 (1997).
  • Wang CX, Shuaib A. Involvement of inflammatory cytokines in central nervous system injury. Frog: Neumbial 67(2), 161–172 (2002).
  • Touzani 0, Boutin H, Chuquet J, Rothwell N. Potential mechanisms of interleukin-1 involvement in cerebral ischemia. Neuroimmunal 100(1–2), 203–215 (1999).
  • Yang GY, Liu XH, Kadoya C etal Attenuation of ischemic inflammatory response in mouse brain using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist. Cemb. Blood Flow Metab. 18(8), 840-847(1998) .
  • Masada T, Hua Y, Xi G, Yang GY, Hoff JT, Keep RE Attenuation of intracerebral hemorrhage and thrombin-induced brain oedema by overexpression of interleukin-1 receptor antagonist. I Neurosurg 95(4), 680–686 (2001).
  • Iadecola C, Niwa K, Nogawa S et al. Reduced susceptibility to ischemic brain injury and N-methyl-D-aspartate-mediated neurotoxicity in cyclooxygenase-2-deficient mice. Proc. Natl. Acad. Sci. USA 98(3), 1294–1299 (2001).
  • Iadecola C, Sugimoto K, Niwa K, Kazama K, Ross ME. Increased susceptibility to ischemic brain injury in cyclooxygenase-l-deficient mice. J. Cereb. Blood Flow Metab. 21(12), 1436–1441 (2001).
  • Dogan A, Temiz C, Turker R K, Egemen N, Baskaya M K. Effect of the prostacyclin analogue, iloprost, on infarct size after permanent focal cerebral ischemia. Gen Pharmacol 27(7), 1163–1166 (1996).
  • Moncada S. Biology and therapeutic potential of prostacyclin. Stroke 14(2), 157–168 (1983).
  • Nowak TS, Jr., Jacewicz M. The heat shock/stress response in focal cerebral ischemia. Brain Pathol 4(1), 67–76 (1994).
  • Chen J, Graham SH, Zhu RL, Simon RR Stress proteins and tolerance to focal cerebral ischemia. j Cereb. Blood Flow Metab. 16(4), 566–577 (1996).
  • Yenari MA, Fink SL, Sun GH etal Gene therapy with H5P72 is neuroprotective in rat models of stroke and epilepsy. Ann. New& 44(4), 584–591 (1998).
  • Fink SL, Chang LK, Ho DY, Sapolsky RM. Defective herpes simplex virus vectors expressing the rat brain stress- inducible heat shock protein 72 protect cultured neurons from severe heat shock. J. Neumchem. 68(3), 961–969 (1997).
  • Hoehn B, Ringer TM, Xu L et al Overexpression of H5P72 after induction of experimental stroke protects neurons from ischemic damage. J. Cereb. Blood. Flow Metab. 21(11), 1303–1309 (2001).
  • Vicario-Abejon C, Owens D, Mckay R, Segal M. Role of neurotrophins in central synapse formation and stabilization. Nat. Rev Neurosci. 3(12), 965–974 (2002).
  • Alberch J, Perez-Navarro E, Canals JM. Neuroprotection by neurotrophins and GDNF family members in the excitotoxic model of Huntington's disease. Brain Res. Bull. 57(6), 817–822 (2002).
  • Connor B. Adenoviral vector-mediated delivery of glial cell line-derived neurotrophic factor provides neuroprotection in the aged parkinsonian rat. Clin. Exp. Pharmacol Physiol 28(11), 896–900 (2001).
  • Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain and in Alzheimer's disease and Parkinson's disease. Pmg: Neurobiol 63(1), 71–124 (2001).
  • Blesch A, Lu P, Tuszynski MH. Neurotrophic factors, gene therapy and neural stem cells for spinal cord repair. Brain Res. Bull. 57(6), 833–838 (2002).
  • Hefti E Pharmacology of neurotrophic factors. Ann. Rev Pharmacol Toxicol. 37, 239-267(1997).
  • Henrich-Noack P, Prehn JH, Krieglstein J. TGF-beta 1 protects hippocampal neurons against degeneration caused by transient global ischemia. Dose-response relationship and potential neuroprotective mechanisms. Stroke 27(9), 1609–1614; discussion 1615 (1996).
  • Flanders KC, Ren RF, Lippa CE Transforming growth factor-betas in neurodegenerative disease. Pmg: Neurobiol. 54(1), 71–85 (1998).
  • Abe K. Therapeutic potential of neurotrophic factors and neural stem cells against ischemic brain injury. J. Cereb. Blood Flow Metab. 20(10), 1393–1408 (2000).
  • Wang Y, Chang CF, Morales M, Chiang YH, Hoffer J. Protective effects of glial cell line-derived neurotrophic factor in ischemic brain injury. Ann. NY Acad. Sci. 962,423–437 (2002).
  • Schabitz WR, Sommer C, Zoder W, Kiessling M, Schwaninger M, Schwab S. Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bc/-2 expression after temporary focal cerebral ischemia. Stroke 31(9), 2212–2217 (2000).
  • Kitagawa H, Hayashi T, Mitsumoto Y, Koga N, Itoyama Y, Abe K. Reduction of ischemic brain injury by topical application of glial cell line-derived neurotrophic factor after permanent middle cerebral artery occlusion in rats. Stroke 29 (7), 1417–1422 (1998).
  • Iwai M, Abe K, Kitagawa H, Hayashi T Gene therapy with adenovirus-mediated glial cell line-derived neurotrophic factor and neural stem cells activation after ischemic brain injury. Hum Celi. 14(1), 27–38 (2001).
  • Yagi T, Jikihara I, Fukumura M eta]. Rescue of ischemic brain injury by adenoviral gene transfer of glial cell line- derived neurotrophic factor after transient global ischemia in gerbils. Brain Res. 885(2), 273–282 (2000).
  • Unsicker K, Krieglstein K. Co-activation of TGF-ss and cytokine signaling pathways are required for neurotrophic functions. Cytokine Growth Factor Revll (1–2), 97–102 (2000).
  • Krieglstein K, Strelau J, Schober A, Sullivan A, Unsicker K. TGF-beta and the regulation of neuron survival and death. J. Physiol Paris 96(1–2), 25–30 (2002).
  • Prehn JH, Bindokas VP, Marcuccilli CJ, Krajewski S, Reed JC, Miller RJ. Regulation of neuronal BcI2 protein expression and calcium homeostasis by transforming growth factor type beta confers wide-ranging protection on rat hippocampal neurons. Proc. Natl Acad. Sci. USA. 91(26), 12599–12603 (1994).
  • Zhu Y, Ahlemeyer B, Bauerbach E, Krieglstein J. TGF-betal inhibits caspase-3 activation and neuronal apoptosis in rat hippocampal cultures. Neurochem. Int. 38(3), 227–235 (2001).
  • Pang L, Ye W, Che XM, Roessler BJ, Betz AL,Yang GY. Reduction of inflammatory response in the mouse brain with 552 (2001).
  • Nakamura T, Nishizawa T, Hagiya M eta].
  • •• Molecular cloning and expression of human hepatocyte growth factor. Nature 342(6248), 440–443 (1989).
  • Sun W, Funakoshi H, Nakamura T Overexpression of HGF retards disease progression and prolongs lifespan in a transgenic mouse model of ALS.
  • Jia WW, Wang Y, Qiang D, Tufaro F, Remington R, Cynader M. A bet 2 expressing viral vector protects cortical neurons from excitotoxicity even when administered several hours after the toxic insult. Bmin Res Nbi Bmin Res 42(2), 350–353 (1996).
  • Yenari MA, Lawrence MS, Sun GH et al Herpes simplex viral vectors expressing Bc/-2 are neuroprotective against focal cerebral ischemia. In: Pharmacology of Cerebral Ischaemia. Krieglstein J (Ed.). Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, Germany, 537–543 (1996).
  • Zhao H, Yenari MA, Sapolsky RM, Steinberg GK. Mild postischemic hypothermia prolongs the time window for Bet 2 gene therapy. Stroke 33,347 (2002).
  • Yenari MA, Giffard RG, Sapolsky RM, Steinberg GK The neuroprotective potential of heat shock protein 70 (HSP70)../1/b/ Med Today5(12), 525–531 (1999).
  • Sharp FR, Massa SM, Swanson RA. Heat-shock protein protection. Wends Neurosci 22(3), 97–99 (1999).
  • Jaattela M, Wissing D, Kokholm K, Kallunki T, Egeblad M. Hsp70 exerts its antiapoptotic function downstream of caspase-3-like proteases. Embo.J17 (21), 6124–6134 (1998).
  • Dumas T, Mclaughlin J, Ho D, Meier T, Sapolsky R. Delivery of herpes simplex virus amplicon-based vectors to the dentate gyrus does not alter hippocampal synaptic transmission in vivo. Gene Ther: 6(10), 1679–1684 (1999).
  • •One of the first studies to show that saving neurons is not equivalent to preserving their function.
  • Mclaughlin J, Roozendaal B, Dumas T etal Sparing of neuronal function postseizure with gene therapy. Proc. Nati Acad. Sci. USA 97(23), 12804–12809 (2000).
  • Sapolsky RM, Steinberg GK. Gene therapy using viral vectors for acute neurologic insults. Neurology53(9), 1922–1931 (1999).
  • ••Thorough review of gene therapy for a broad range of necrotic neurological insults. It proposes guidelines for future research.
  • Sapolsky RM. Neuroprotective gene therapy against acute neurological insults. Nat. Rev Neurosci 4(1), 61–69 (2003).
  • Yenari MA, Dumas TC, Sapolsky RM, Steinberg GK. Gene therapy for treatment of cerebral ischemia using defective herpes simplex viral vectors. Ann. NY Acad. Sci. 939(340–357 (2001).
  • •Extensive review focusing on HSV-mediated gene therapy against stroke.
  • Brooke SM, Wang H, Cheng E, Nimon, V, Sapolsky RM. Overexpression of antioxidant enzymes protects cultured hippocampal and cortical neurons from necrotic insults. Program No. 801.2. Abstract Viewerñtinerary Ranner. Washington, DC, USA: Society for Neuroscience, (2002). (CD-ROM 2002).
  • Krisky DM, Marconi PC, Oligino TJ et al. Development of herpes simplex virus replication-defective multigene vectors for combination gene therapy applications. Gene Ther 5(11), 1517–1530 (1998).
  • Ozawa CR, Ho JJ, Tsai DJ, Ho DY, Sapolsky RM. Neuroprotective potential of a viral vector system induced by a neurological insult. Proc. Natl Acad. Sc]. USA 97(16), 9270–9275 (2000).
  • Bottino CJ, Howard SA, Steinberg GK, Sapolsky RM. Model for examining neuroprotection in human brain tissue. Soc. Neurosci. Abs. 26,266 (2000).
  • Verwer RVV, Hermens WT, Dijkhuizen P eta]. Cells in human postmortem brain tissue slices remain alive for several weeks in culture. Faseb. 16(1), 54–60 (2002).
  • Tuszynski M H. Growth-factor gene therapy for neurodegeneartive disorders. Lancet Neurology1,51–57 (2002).
  • •Interesting review of gene therapy using growth factors for Alzheimer's disease.
  • During MJ, Kaplitt MG, Stem MB, Eidelberg D. Subthalamic GAD gene transfer in Parkinsoris disease patients who are candidates for deep brain stimulation. Hum. Gene Ther 12(12), 1589–1591 (2001).
  • Leone P, Janson CG, Mcphee SJ and During MJ. Global CNS gene transfer for childhood neurogenetic enzyme deficiency: canavan disease. Cum Opitz1Vb1 Tha,:1(4), 487–492 (1999).
  • Leone P, Janson CG, Bilaniuk L eta]. Aspartoacylase gene transfer to the mammalian central nervous system with therapeutic implications for Canavan disease. Ann. Neuml. 48(1), 27–38 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.