12
Views
0
CrossRef citations to date
0
Altmetric
Review

Immunotherapy of glioblastoma multiforme

, , &
Pages 511-523 | Published online: 10 Jan 2014

References

  • Mayhan WG. Regulation of blood—brain barrier permeability. Nlicrochrulation 8(2), 89–104 (2001).
  • Rascher G, Fischmann A, Kroger S, Duffner F, Grote EH, Wolburg H. Extracellular matrix and the blood—brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin. Acta Neuropathol (Ben) 104(1), 85–91 (2002).
  • Debinski W, Slagle B, Gibo DM, Powers SK, Gillespie GY. Expression of a restrictive receptor for interleukin-13 is associated with glial transformation. J: Neurooncol 48(2), 103–111 (2000).
  • Debinski W An immune regulatory cytokine receptor and glioblastoma multiforme: an unexpected link. Grit. Rev 017C0g. 9(3–4), 255-268(1998).
  • •Details the relationship between the IL-13 receptor and glioblastoma multiforme.
  • Debinski W, Gibo DM. Molecular expression analysis of restrictive receptor for interleukin-13, a brain tumor-associated cancer/testis antigen. Mol. Med 6(5), 440–449 (2000).
  • Mintz A, Debinski W Cancer genetics/ epigenetics and the X chromosome: possible new links for malignant glioma pathogenesis and immune-based therapies. Grit. Rev Oncog. 11(1), 77–95 (2000).
  • Okano F, Storkus WJ, Chambers WH, Pollack IF, Okada H. Identification of a novel HLA-A*0201-restricted, cytotoxic T- lymphocyte epitope in a human glioma-associated antigen, interleukin-13 receptor a2 chain. Gun. Cancer Res. 8(9), 2851–2855 (2002).
  • Struss AK, Romeike BF, Munnia A et al PHF3-specific antibody responses in over 60% of patients with glioblastoma multiforme. Oncogene 20(31), 4107–4114 (2001).
  • •Describes the discovery of the new glioblastoma multiforme antigen, PHF-3.
  • Fischer U, Struss AK, Hemmer D, Pallasch CP, Steudel WI, Meese E. Glioma-expressed antigen 2 (GLEA2): a novel protein that can elicit immune responses in glioblastoma patients and some controls. Gun. Exp. Immunol 126(2), 206–213 (2001).
  • Higuchi M, Ohnishi T, Arita N, Hiraga S, Hayakawa T Expression of tenascin in human gliomas: its relation to histological malignancy, tumor dedifferentiation and angiogenesis . Acta Neuropathol 85 (5), 481–487(1993)
  • Sasaki M., Nakahira K, Kawano Y et al MAGE-E1, a new member of the melanoma-associated antigen gene family and its expression in human glioma. Cancer Res. 61(12), 4809–4814 (2001).
  • Comtesse N, Niedermayer I, Glass B et al MGEA6 is tumor-specific overexpressed and frequently recognized by patient-serum antibodies. Oncogene 21(2), 239–247 (2002).
  • Falchetti ML, Pallini R, D'Ambrosio E et al in situ detection of telomerase catalytic subunit mRNA in glioblastoma multiforme. Int.j Cancer 88(6), 895–901 (2000).
  • Scarcella DL, Chow CW, Gonzales MF, Economou C, Brasseur F, Ashley DM. Expression of MAGE and GAGE in high-grade brain tumors: a potential target for specific immunotherapy and diagnostic markers. Clin. Cancer Res. 5(2), 335–341 (1999).
  • Van den Eynde B, Peeters 0, De Backer 0, Gaugler B, Lucas S, Boon T A new family of genes coding for an antigen recognized by autologous cytolytic T-lymphocytes on a human melanoma. j Exp. Med 182(3), 689–698 (1995).
  • Vonderheide RII. Telomerase as a universal tumor-associated antigen for cancer immunotherapy. Oncogene 21 (4), 674–679 (2002).
  • Kuan CT, Wikstrand CJ, Bigner DD. EGF mutant receptor vIII as a molecular target in cancer therapy. Endocc Relat. Cancer 8(2), 83–96 (2001).
  • Bigner SH, Humphrey PA, Wong AJ et al Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts. Cancer Res. 50(24), 8017–8022 (1990).
  • Sprent J, Kishimoto H. The thymus and central tolerance. Philos. Trans R. Soc. Land B. Biol. Li. 356(1409), 609–616 (2001).
  • Lechler R, Chai JG, Marelli-Berg F, Lombardi G. T-cell anergy and peripheral T-cell tolerance. Philos. Trans. R. Soc. Land B. Biol. Sci. 356(1409), 625–637 (2001).
  • Shevach EM. Certified professionals: CD4(+)CD25(+) suppressor T-cells. j Exp. Med. 193(11), F41-46 (2001).
  • Shevach EM. CD4+ CD25+ suppressor cells: more more questions than answers. Nat. Rev Immunol 2(6), 389–400 (2002).
  • Dix AR, Brooks WH, Roszman TL, Morford LA. Immune defects observed in patients with primary malignant brain tumors. Neumimmund 100(1–2), 216–232 (1999). Many immune defects exist in glioblastoma. This reviews, in great detail, the defect that have been well characterized.
  • Morford LA, Elliott LH, Carlson SL, Brooks WH, Roszman 11. T-cell receptor-mediated signaling is defective in T-cells obtained from patients with primary intracranial tumors. j Immunol 159(9), 4415–4425 (1997).
  • Ashkenazi E, Deutsch M, Tirosh R, Weinreb A, Tsukerman A, Brodie C. A selective impairment of the IL-2 system in lymphocytes of patients with glioblastomas: increased level of soluble IL-2R and reduced protein tyrosine phosphorylation. Neuroimmunomodulation 4 (1), 49–56 (1997).
  • Joss A, Akdis M, Faith A, Blaser K, Akdis CA. IL-10 directly acts on T-cells by specifically altering the CD28 co-stimulation pathway. Eur: j Immunol 30, 1683–1690 (2000).
  • Akdis CA, Blaser K. Mechanisms of interleukin-10-mediated immune suppression. Immunology 103 (2), 131–136 (2001).
  • ••Summary of important roles of IL-10 inimmunoregulation.
  • Fumeaux T, Pugin J. Role of interleukin-10 in the intracellular sequestration of human leukocyte antigen-DR in monocytes during septic shock. Am. Respir. Crit. Care Ned. 166(11), 1475–1482 (2002).
  • Koppelman B, Neefjes JJ, de Vries JE, de Waal Malefyt R. Interleukin-10 downregulates MHC class II alphabeta peptide complexes at the plasma membrane of monocytes by affecting arrival and recycling. Immunity 7(6), 861–871 (1997).
  • McBride JM, Jung T, de Vries JE, Aversa G. IL-10 alters DC function via modulation of cell surface molecules resulting in impaired T-cell responses. Cell. Immunol 215(2), 162–172 (2002).
  • Nitta T, Hishii M, Sato K, Okumura K. Selective expression of interleukin-10 gene within glioblastoma multiforme. Brain Res. 649(1–2), 122–128 (1994).
  • Hishii M, Nitta T, Ishida H et al Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 37 (6), 1160–1167 (1995).
  • Huettner C, Paulus W, Roggendorf VV. Messenger RNA expression of the immunosuppressive cytokine IL-10 in human gliomas. Am. j Pathol 146(2), 317–322 (1995).
  • Huettner C, Czub S, Kerkau S, Roggendorf W, Tonn JC. interleukin-10 is expressed in human gliomas in vivo and increases glioma cell proliferation and motility in vitro. Anticancer Res. 17 (5A), 3217–3224 (1997).
  • von Bemstorff W, Voss M, Freichel S et al Systematic and local immunosuppression in pancreatic cancer patients. Clin. Cancer Res. 7, S925—S932 (2001).
  • Nemunaitis J, Fong T, Shabe P, Martineau D, Ando D. Comparison of serum interlukin-10 (IL-10) levels between normal volunteers and patients with advanced melanoma. Cancer Invest. 19, 239-247(2001).
  • Rempel SA, Dudas S, Ge S, Gutierrez JA. Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin. Cancer Res. 6(1), 102–111 (2000). SDF is implicated in the pathogenesis of glioblastoma multiforme and other cancers. It has important roles in suppressing immunity and tumor migration and metastasis.
  • Nagasawa T, Hirota S, Tachibana K et al Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382(6592), 635–638 (1996).
  • Oberlin E., Amara A., Bachelerie F et al The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell line-adapted HIV-1. Nature 382(6594), 833–835 (1996).
  • Herbein G, Mahlknecht U, Batliwalla F et al Apoptosis of CD8+ T-cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4. Nature 395 (6698), 189–194 (1998) .
  • Z011 W, Machelon V, Coulomb-L:Hermin A et al Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med. 7(12), 1339–1346 (2001).
  • Almand B, Clark JI, Nikitina E et al Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. j immund 166(1), 678–689 (2001).
  • Muller A, Homey B, Soto H et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824), 50–56 (2001).
  • Geminder H, Sagi-Assif 0, Goldberg L et al. A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. Immunal 167 (8), 4747–4757 (2001).
  • Phillips RJ, Burdick MD, Lutz M, Belperio JA, Keane MP, Strieter RM. The SDF-1/ CXCL12/CXCR4 Biological Axis in Non-Small Cell Lung Cancer Metastases. Am. Respir. Grit. Carr Med. 5,5(2003).
  • Bhondeley MK, Mehra RD, Mehra NK et al. Imbalances in T-cell subpopulations in human gliomas. Neumsurg 68(4), 589–593 (1988).
  • Morford LA, Dix AR, Brooks WH, Roszman TL. Apoptotic elimination of peripheral T-lymphocytes in patients with primary intracranial tumors. j Neurosurg. 91(6), 935–946 (1999).
  • Song E, Chen J, Ouyang N, Su F, Wang M, Heemann U. Soluble Fas ligand released by colon adenocarcinoma cells induces host lymphocyte apoptosis: an active mode of immune evasion in colon cancer. BE Cancer85(7), 1047–1054 (2001).
  • Weller M, Frei K, Groscurth P, Krammer PH, Yonekawa Y, Fontana A. AntiFas/ APO-1 antibody-mediated apoptosis of cultured human glioma cells. Induction and modulation of sensitivity by cytokines. Gun. Invest. 94(3), 954–964 (1994).
  • Tachibana 0, Nakazawa H, Lampe J, Watanabe K, Kleihues P, Ohgaki H. Expression of Fas/APO-1 during the progression of astrocytomas. Cancer Res. 55(23), 5528–5530 (1995).
  • Didenko VV, Ngo HN, Minchew C, Baskin DS. Apoptosis of T-lymphocytes invading glioblastomas multiforme: a possible tumor defense mechanism. Neurosurg. 96(3), 580–584 (2002).
  • Nano R, Capelli E, Civallero M et al Activated lymphoid cells in human gliomas: morphofunctional and cytochemical evidence. Anticancer Res. 17(1A), 107–111 (1997).
  • Prins RM, Graf MR, Merchant RE. Cytotoxic T-cells infiltrating a glioma express an aberrant phenotype that is associated with decreased function and apoptosis. Cancer Immunal Immunother. 50(6), 285–292 (2001).
  • Saito T, Tanaka R, Yoshida S, Washiyama K, Kumanishi T Immunohistochemical analysis of tumor-infiltrating lymphocytes and major histocompatibility antigens in human gliomas and metastatic brain tumors. Surg. Neural. 29(6), 435–442 (1988).
  • Sawamura Y, Abe H, Aida T, Hosokawa M, Kobayashi H. Isolation and in vitro growth of glioma-infiltrating lymphocytes and an analysis of their surface phenotypes. Neurosurg. 69(5), 745–750 (1988).
  • Giometto B, Bozza F, Faresin F, Alessio L, Mingrino S, Tavolato B. Immune infiltrates and cytokines in gliomas. Acta Neurochir 138(1), 50–56(1996).
  • Kuppner MC, Hamou ME, de Tribolet N. Immunohistological and functional analyses of lymphoid infiltrates in human glioblastomas. Cancer Res. 48(23), 6926–6932 (1988).
  • Yee C, Thompson JA, Byrd D et al. Adoptive T-cell therapy using antigen-specific CD8+ T-cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration and antitumor effect of transferred T-cells. Proc. Natl Acad. Sci. USA 99(25), 16168–16173 (2002).
  • Dudley ME, Wunderlich J, Nishimura MI et al Adoptive transfer of cloned melanoma-reactive T-lymphocytes for the treatment of patients with metastatic melanoma. j Immunother 24(4), 363–373 (2001).
  • Kalams SA, Walker BD. The critical need for CD4 help in maintaining effective cytotoxic T-lymphocyte responses. I Exp. Med. 188(12), 2199–2204 (1998).
  • Surman DR, Dudley ME, Overwijk WW, Restifo NP. Cutting edge: CD4+ T-cell control of CD8+ T-cell reactivity to a model tumor antigen. I Immunal 164(2), 562–565 (2000).
  • Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H. The central role of CD4(+) T-cells in the antitumor immune response. I Exp. Med 188(12), 2357-2368(1998).
  • Zeng G. MHC Class II-restricted tumor antigens recognized by CD4+ T-cells: new strategies for cancer vaccine design. Immunother. 24(3), 195–204 (2001).
  • Steinman RM, Dhodapkar M. Active immunization against cancer with dendritic cells: the near future. Int. I Cancer 94(4), 459–473 (2001).
  • Esche C, Cai Q, Peron JM et al. Interleukin-12 and F1t3 ligand differentially promote dendropoiesis in vivo. Eur. 'minimal 30(9), 2565–2575 (2000).
  • Fiebiger E, Meraner P, Weber E et al Cytokines regulate proteolysis in major histocompatibility complex class II-dependent antigen presentation by dendritic cells. I Exp. Med. 193(8), 881–892 (2001).
  • Josien R, Li HL, Ingulli E et al. TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. I Exp. Med. 191(3), 495–502 (2000).
  • Kim CH, Pelus LM, White JR, Applebaum E, Johanson K, Broxmeyer HE. CK beta-11/macrophage inflammatory protein-3 beta/EBIl-ligand chemokine is an efficacious chemoattractant for T and B-cells. Immunol 160 (5), 2418–2424 (1998).
  • Lynch DH, Andreasen A, Maraskovsky E, Whitmore J, Miller RE, Schuh JC. F1t3 ligand induces tumor regression and antitumor immune responses in vivo. Nat. Med. 3(6), 625-631(1997).
  • Brunda MJ, Luistro L, Warner RR et al Antitumor and antimetastatic activity of interleukin-12 against murine tumors. Exp. Med. 178(4), 1223-1230(1993).
  • Sivori S, Vitale M, Bottino C et al CD94 functions as a natural killer cell inhibitory receptor for different HLA class I alleles: identification of the inhibitory form of CD94 by the use of novel monoclonal antibodies. Eur Immunal 26 (10), 2487–2492 (1996).
  • Moretta L, Bottino C, Pende D, Mingari MC, Biassoni R, Moretta A. Human natural killer cells: their origin, receptors and function. Eur I Immunal 32(5), 1205–1211 (2002).
  • Shi F, Ljunggren HG, Sarvetnick N. Innate immunity and autoimmunity: from self- protection to self-destruction. 7i-ends Immunal 22(2), 97–101 (2001).
  • Campanella R. Membrane lipids modifications in human gliomas of different degree of malignancy. Neurosurg. Li. 36(1), 11–25 (1992).
  • Boismenu R, Havran WL. Gammadelta T- cells in host defense and epithelial cell biology. Clin. Immunal Immunopathol 86(2), 121–133 (1998).
  • Choudhary A, Davodeau F, Moreau A, Peyrat MA, Bonneville M, Jotereau Selective lysis of autologous tumor cells by recurrent gamma delta tumor-infiltrating lymphocytes from renal carcinoma. Immunal 154(8), 3932–3940 (1995).
  • Yu S, He W, Chen J, Zhang F, Ba D. Expansion and immunological study of human tumor infiltrating gamma/delta T-lymphocytes in vitro. Int. Aith. Allergy Immunal 119(1), 31–37 (1999).
  • Watanabe N, Hizuta A, Tanaka N, Orita K. Localization of T-cell receptor (TCR)-gamma delta + T-cells into human colorectal cancer: flow cytometric analysis
  • •• of TCR-gamma delta expression in tumour-infiltrating lymphocytes. Clin. Exp. Immunol 102(1), 167–173 (1995).
  • Bachelez H, Flageul B, Degos L, Boumsell L, Bensussan A. TCR gamma delta bearing T-lymphocytes infiltrating human primary cutaneous melanomas. j Invest. Dermatol 98(3), 369–374 (1992).
  • Rajan AJ, Gao YL, Raine CS, Brosnan CF. A pathogenic role for gamma delta T-cells in relapsing-remitting experimental allergic encephalomyelitis in the SJL mouse. Immunol 157(2), 941–949 (1996).
  • Yamaguchi T, Suzuki Y, Katakura R, Ebina T, Yokoyama J, Fujimiya Y. Interleukin-15 effectively potentiates the in vitro tumor-specific activity and proliferation of peripheral blood gammadeltaT cells isolated from glioblastoma patients. Cancer humunol. Irninurrother 47(2), 97–103 (1998).
  • Cheever MA, Chen W Therapy with cultured T-cells: principles revisited. Immunol Rev 157,177–194 (1997).
  • Drake CG, Pardoll DM. Tumor immunology-towards a paradigm of reciprocal research. Semin. Cancer Biol. 12(1), 73–80 (2002).
  • Perales MA, Blachere NE, Engelhorn ME et al Strategies to overcome immune ignorance and tolerance. Semin. Cancer Biol. 12(1), 63–71 (2002).
  • Disis ML, Bernhard H, Shiota FM et al Granulocyte-macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines. Blood 88(1), 202–210 (1996).
  • Disis ML, Gooley TA, Rinn K et al Generation of T-cell immunity to the her-2/neu protein after active immunization with her-2/neu Peptide-based vaccines. Clin. Oncol 20(11), 2624–2632 (2002).
  • •Demonstrates that patients with advanced cancer can be actively immunized against tumor antigens. This was a Phase I study in breast cancer patients.
  • Banchereau J, Schuler-Thumer B, Palucka AK, Schuler G. Dendritic cells as vectors for therapy. Ce11106(3), 271–274 (2001).
  • Yu JS, Wheeler CJ, Zeltzer PM et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 61(3), 842–847 (2001).
  • Riker A, Cormier J, Panelli M et al Immune selection after antigen-specific immunotherapy of melanoma. Surgery 126(2), 112–120 (1999).
  • Jager E, Ringhoffer M, Altmannsberger M et al Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. int. Cancer71 (2), 142–147(1997).
  • Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat. Rev Immunol 2(2), 85–95 (2002).
  • Vanderlugt CJ, Miller SD. Epitope spreading. Cum Opin. Immunol. 8(6), 831–836 (1996).
  • Schneider T, Gerhards R, Kirches E, Firsching R. Preliminary results of active specific immunization with modified tumor cell vaccine in glioblastoma multiforme. Neurooncol 53(1), 39–46 (2001).
  • Hellstrom KE, Hellstrom I. Therapeutic vaccination with tumor cells that engage CD137. j Mol Med. 81(2), 71–86 (2003).
  • Baselga J. Clinical trials of Herceptin(R) (trastuzumab). Eur. Cancer 37 (Suppl. 1), 18–24 (2001).
  • King KM, Younes A. Rituximab: review and clinical applications focusing on non-Hodgkin's lymphoma. Expert Rev Anticancer Thec 1(2), 177–186 (2001).
  • Carter P Improving the efficacy of antibody-based cancer therapies. Nat. Rev Cancer1(2), 118–129 (2001).
  • Cragg MS, French RR, Glennie MJ. Signaling antibodies in cancer therapy. CL117: Opin. Immunall (5), 541–547 (1999).
  • Baselga J, Albanell J, Molina MA, Arribas J. Mechanism of action of trastuzumab and scientific update. Semin. Oncol 28(5Suppl. 16), 4-11(2001).
  • Sondel PM, Hank JA. Antibody-directed, effector cell-mediated tumor destruction. Hematol arca Clin. North Am. 15(4), 703–721 (2001).
  • Cokgor I, Akabani G, Kuan CT et al Phase I trial results of iodine-131-labeled antitenascin monoclonal antibody 8106 treatment of patients with newly diagnosed malignant gliomas. j Clin. Oncol 18(22), 3862–3872 (2000).
  • Reardon DA, Akabani G, Coleman RE et al Phase II trial of murine (131)1-labeled antitenascin monoclonal antibody 8106 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. j Clin. 017C0i 20(5), 1389–1397 (2002).
  • Ada G. The coming of age of tumour immunotherapy. Immunol Cell Biol. 77(2), 180–185 (1999).
  • Agrawal B, Krantz MJ, Reddish MA, Longenecker BM. Cancer-associated MUC1 mucin inhibits human T-cell proliferation, which is reversible by IL-2. Nat. Med. 4(1), 43–49 (1998).
  • Jager D, Jager E, Knuth A. Immune responses to tumour antigens: implications for antigen specific immunotherapy of cancer. j Clin Athol 54(9), 669–674 (2001).
  • Knutson KL, Almand B, Mankoff DA, Schiffman K, Disis ML. Adoptive T-cell therapy for the treatment of solid tumours. Expert OpirzTiler 2(1), 55–66 (2002).
  • Dudley ME, Wunderlich JR, Robbins PF et al Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594), 850–854 (2002).
  • ••Adoptive T-cell therapy is efficaciuosagainst existing malignancy Describes a recent melanoma T cell trial.
  • Knutson KL, Disis ML. Expansion of HER-2/neu specific T-cells ex vivo following immunization with a HER-2/neu peptide-based vaccine. Clin. Breast Ca. 2, 73–79 (2001).
  • Plautz GE, Barnett GH, Miller DW et al Systemic T-cell adoptive immunotherapy of malignant gliomas, (1998).
  • Plautz GE, Miller DW, Barnett GH et al. T-cell adoptive immunotherapy of newly diagnosed gliomas. Clin. Cancer Res. 6(6), 2209–2218 (2000). iii Hayes RL, Koslow M, Hiesiger EM et al. Improved long-term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. Cancer 76(5), 840–852 (1995).
  • Kruse CA, Cepeda L, Owens B, Johnson SD, Steam J, Lillehei KO. Treatment of recurrent glioma with intracavitary alloreactive cytotoxic T-lymphocytes and interleukin-2. Cancer Immunol Immunother. 45(2), 77–87 (1997).
  • Hornick JL, Sharifi J, Khawli LA et al. A new chemically modified chimeric TNT-3 monoclonal antibody directed against DNA for the radioimmunotherapy of solid tumors. Cancer Blather. Radiopharm. 13(4), 255–268 (1998).
  • Miller GK, Naeve GS, Gaffar SA, Epstein AL. Immunologic and biochemical analysis of TNT-1 and TNT-2 monoclonal antibody binding to histones. Hybridoma 12(6), 689–698 (1993).
  • Debinski W, Gibo DM, Slagle B, Powers SK, Gillespie GY. Receptor for interleukin-13 is abundantly and specifically over-expressed in patients with glioblastoma multiforme. Int. Oncol 15(3), 481–486 (1999).
  • Libermann TA, Nusbaum HR, Razon N et at Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313 (5998), 144–147 (1985).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.