592
Views
19
CrossRef citations to date
0
Altmetric
Review

Nerve growth factor and chronic daily headache: a potential implication for therapy

&
Pages 115-127 | Published online: 10 Jan 2014

References

  • Pascual J, Colas R, Castillo J. Epidemiology of chronic daily headache. CUI7: Pain Headache Rep. 5(6), 529–536 (2001).
  • Welch KM, Goadsby PJ. Chronic daily headache: nosology and pathophysiology. Curl: Opin. ATeumI. 15 (3), 287–295 (2002).
  • Headache Classification Committee of the International Headache Society. Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain. Cephalalgia 8\(Suppl. 7), 1–96 (1988).
  • Olesen J, Rasmussen BK. The International Headache Society classification of chronic daily and near-daily headaches: a critique of the criticism. Cephalalgia 16(6), 407–411 (1996).
  • Manzoni GC, Granella F, Sandrini G, Cavallini A, Zanferrari C, Nappi G. Classification of chronic daily headache by International Headache Society criteria: limits and new proposals. Cephalalgia 15(1), 37–43 (1995).
  • Rothrock J, Patel M, Lyden P, Jackson C. Demographic and clinical characteristics of patients with episodic migraine versus chronic daily headache. Cephalalgia 16(1), 44–49 (1996).
  • Srikiatkhachorn A, Phanthumchinda K. Prevalence and clinical features of chronic daily headache in a headache clinic. Headache 37(5), 277–280 (1997).
  • Mathew NT, Stubits E, Nigam MP. Transformation of episodic migraine into daily headache: analysis of factors. Headache 22(2), 66–68 (1982).
  • Silberstein SD, Lipton RB, Solomon S, Mathew NT Classification of daily and near-daily headaches: proposed revisions to the IHS Criteria. Headache 34, 1–7 (1994).
  • Silberstein SD, Lipton RB, Sliwinski M. Classification of daily and near-daily headaches : field trial of revised IHS Criteria. Neurology47(4), 871–875 (1996).
  • Bigal ME, Sheftell FD, Rapoport AM, Lipton RB, Tepper SJ. Chronic daily headBrhe in a tertiary care population: correlation between the International Headache Society diagnostic criteria and proposed revisions of criteria for chronic daily headache. Cephalalgia 22(6), 432–438 (2002).
  • Mathew NT, Kurman R, Perez E Drug induced refractory headache — clinical features and management. Headache 30(10), 634–638 (1990).
  • Stewart J, Tepper MD. Debate: analgesic overuse is a cause, not consequence, of chronic daily headache. Headache 42, 543–554 (2002).
  • Linton-Dahlöf P, Linde M, Dahlöf C. Withdrawal therapy improves chronic daily headache associated with long-term misuse of headache medication: a retrospective study. Cephalalgia20(7), 658–662 (2000).
  • Katsarava Z, Fritsche G, Muessig M, Diener HC, Limmroth V. Clinical features of withdrawal headache following overuse of triptans and other headache drugs. Neurology57(9), 1694–1698 (2001).
  • Srikiatkhachorn A. Chronic daily headache: a scientist's perspective.Headache 42(6), 532–537 (2002).
  • •Treats molecular mechanisms underlying central sensitization and biochemical abnormalities found in chronic daily headache patients.
  • Milan MJ. The induction of pain: an integrative view. Pro& Neumbial 57(1), 1–164 (1999).
  • Sessle BJ. Neural mechanisms and pathways in craniofacial pain. Can. Neural. Sci. 26\(Suppl. 3), S7—S11 (1999).
  • Urban MO, Gebhart GE Central mechanisms in pain. Med. Clin. North Am. 83(3), 585–596 (1999).
  • Baranauskas G, Nistri A. Sensitization of pain pathways in the spinal cord: cellular mechanisms. Frog: Neurobial 54(3), 349–365 (1998).
  • Mendell LM, Wall PD. Responses of single dorsal cord cells to peripheral cutaneous unmyelinated fibres. Nature 206,97–99 (1965).
  • Burstein R, Cutrer ME, Yarnitsky D. The development of cutaneous allodynia during a migraine attack. Clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain 123\(Pt. 8), 1703–1709 (2000).
  • Burstein R, Yarnitsky D, Goor-Aryeh I, Ransil BJ, Bajwa ZH. An association between migraine and cutaneous allodynia. Ann. Neural 47(5), 614–624 (2000).
  • Post RM, Silberstein SD. Shared mechanisms in affective illness, epilepsy and migraine. Neurology 44(10 Suppl. 7), S37—S47 (1994).
  • Jensen R. Mechanisms of tension-type headache. Cephalalgia 21 (7), 786–789 (2001).
  • Jensen R. Mechanisms of spontaneous tension-type headaches: an analysis of tenderness, pain thresholds and EMG. Pain 64(2), 251–256 (1996).
  • Bendtsen L. Central sensitization in tension-type headache — possible pathophysiological mechanisms. Cephalalgla 20(5), 486–508 (2000).
  • Lipchik GL, Holroyd KA, France CR et al Central and peripheral mechanisms in chronic tension-type headache. Pain 64 (3), 467–475 (1996).
  • Fields HL, Basbaum AL Central nervous system mechanisms of pain modulation. In: Textbook of Pain. Wall PD, Melzack R (Eds). Churchill Livingstone, Edinburgh, UK, 243–257 (1994).
  • Weiller C, May A, Limmroth V et al Brain stem activation in spontaneous human migraine attacks. Nature Med. 1(7), 658–660 (1995).
  • Welch KM, Nagesh V, Aurora SK, Gelman N. Periacqueductal gray matter dysfunction in migraine: cause or the burden of illness? Headache 41 (7), 629–637 (2001) .
  • Srikiatkhachorn A, Tarasub N, Govitrapong P. Effect of chronic analgesic exposure on the central serotonin system: a possible mechanism of analgesic abuse headache. Headache 40 (5), 343–350 (2000).
  • Gallai V, Sarchielli P, Genco S, Alberti A, D'Andrea G. Chronic daily headache: biochemical and neurotransmitter abnormalities. .1. Headache Painl, S71—S79 (2001).
  • Khasabov SG, Rogers SD, Ghilardi JR, Peters CM, Mantyh PW, Simone DA. Spinal neurons that possess the substance P receptor are required for the development of central sensitization. j Neurosci. 22 (20), 9086–9098 (2002).
  • Li P, Zhuo M. Substance P and neurokinin A mediate sensory synaptic transmission in young rat dorsal horn neurons. Brain Res. Bull 55(4), 521–531 (2001).
  • Gao Z, Peet NP. Recent advances in neurokinin receptor antagonists. Cum Med. Chem. 6(5), 375–388 (1999).
  • May A, Goadsby PJ. Substance P receptor antagonists in the therapy of migraine. Expert Opin. Investig. Drugs10(4), 673–678 (2001).
  • Doods H. Development of CGRP antagonists for the treatment of migraine. Curr Opin. Investig Drugs 2 (9), 1261–1268 (2001).
  • Liu H, Mantyh PW, Basbaum Pd. NMDA-receptor regulation of substance P release from primary afferent nociceptors. Nature 386(6626), 721–724 (1997).
  • Urban MO, Gebhart GF. The glutamate synapse: a target in the pharmacological management of hyperalgesic pain states. Frog. Brain Res. 116,407–420 (1998).
  • Willis WD. Role of neurotransmitters in sensitization of pain responses. Ann. NY Acad. Sci. 933,142–156 (2001).
  • Dickenson AH, Chapman V, Green GM. The pharmacology of excitatory and inhibitory amino acid-mediated events in the transmission and modulation of pain in the spinal cord. Cen. Marmara' 28(5), 633–638 (1997).
  • Chizh BA. Novel approaches to targeting glutamate receptors for the treatment of chronic pain: review article. Amino Acids 23(1-3), 169–176 (2002).
  • Kristensen JD, Svensson BA, Gordh T Jr. The NMDA-receptor antagonist CPP abolishes neurogenic wind-up pain after it. administration in humans. Pain 51 (2), 249–253 (1992).
  • Zahn PK, Umali EF, Brennan TJ. Intrathecal nonNWIDA excitatory amino acid receptor antagonists inhibit pain behaviors in a rat model of postoperative pain. Pain 74(2-3), 213–223 (1998).
  • Nicolodi M, Sicuteri E Negative modulators of excitatory amino acids in episodic and chronic migraine: preventing and reverting chronic migraine. int. J. Gun. Pharmacol Res. 18(2), 93–100 (1997).
  • Fusco BM, Colantoni 0, Giacovazzo M. Alteration of central excitation circuits in chronic headache and analgesic abuse. Headache 37(8), 486–491 (1997).
  • Sang C, Hostetter MP, Gracely RII et al. AMPA/kainate antagonist LY-293558 reduces capsaicin-evoked hyperalgesia but not pain in normal skin in humans. Anesthesiology 89 (5), 1060–1067 (1998).
  • Kawamata T, Omote K. Activation of spinal N-methyl-D-aspartate receptors stimulates a nitric oxide/cyclic guanosine 3-,5 --monophosphate/glutamate release cascade in nociceptive signaling. Anesthesiology 91 (5), 1415–1424 (1999).
  • Sandkahler J. Learning and memory in pain pathways. Pain 88(2), 113–118 (2000).
  • Ashina M, Bendtsen L, Jensen R, Lassen NH, Sakai F, Olesen J. Possible mechanisms of action of nitric oxide synthase inhibitors in chronic tension-type headache. Brain 122 (Pt. 9), 1629–1635 (1999).
  • Ashina M, Bendtsen L, Jensen R, Olesen J. Nitric oxide-induced headache in patients with chronic tension-type headache. Brain 123(Pt 9), 1830–1837 (2000).
  • Srikiatkhachorn A, Maneesri S, Govitrapong P, Kasantikul V. Derangement of serotonin system in migrainous patients with analgesic abuse headache: clues from platelets. Headache 38(1), 43–49 (1998).
  • Hering R, Gardiner I, Catarci T, Whitmarsh T, Steiner T, de Belleroche J. Cellular adaptation in migraineurs with chronic daily headache. Cephalalgla 13 (4), 261–266 (1993).
  • Srikiatkhachorn A, Puangniyom S, Govitrapong P. Plasticity of 5-HT2A serotonin receptor in patients with analgesic-transformed migraine. Headache 38,534–539 (1998).
  • Genazzani AR, Nappi G, Facchinetti F et al Progressive impairment of CSF 3-EP levels in migraine sufferers. Pain 18(2), 127–133 (1984).
  • Langemark M, Bach FVV, Ekman R, Olesen J. Increased cerebrospinal fluid Met-enkephalin immunoreactivity in patients with chronic tension-type headache. Pain 63(1), 103–107 (1995).
  • Sarchielli P, Alberti A, Russo S et al Nitric oxide pathway, Ca2+ and serotonin content in platelets from patients suffering from chronic daily headache. Cephalalgia 19(9), 810–816 (1999).
  • Sarchielli P, Alberti A, Floridi A, Gallai V L-arginine/nitric oxide pathway in chronic tension-type headache: relationship with serotonin content and secretion and glutamate content.j Nemo'. Sci. 198(1-2), 9–15 (2002).
  • Gallai V, Alberti A, Coppola F, Floridi A, Sarchielli P. Glutamate and nitric oxide pathway in chronic daily headache: evidence from cerebrospinal fluid. Cephalalgia 23 (3), 166–174 (2003).
  • Apfel SC. Neurotrophic factors and pain. CIin.j Pain 16(2 Suppl.), S7—S11 (2000). Focuses on the involvement of neurotrophins in several human painful conditions and potential implication for treatment.
  • Levi-Montakini R, Dal Toso R, della Valle F, Skaper SD, Leon A. Update of the NGF saga. Neural Sci. 130 (2), 119–127 (1995).
  • Barbacid M. The TrK family of neurotrophin receptors. I Neurobiol 25(11), 1386–1403 (1994).
  • Davies AM. The role of neurotrophins in the developing nervous system. Neurobiol 25(11), 1334–1348 (1994).
  • Koltzenburg M. The changing sensitivity in the life of the nociceptor. Pain (Suppl. 6), S93—S102 (1999).
  • Ritter AM, Lewin GR, Kremer NE, Mendell LM. Requirement for nerve growth factor in the development of myelinated nociceptors in vivo. Nature 350(6318), 500–502 (1991).
  • Shu XQ, Mendell LM. Neurotrophins and hyperalgesia. Proc. Natl Acad. Sci. USA 96(14), 7693–7696 (1999).
  • Lewin GR, Mendell LM. Nerve growth factor and nociception. Bends Neurosci. 16(9), 353–359 (1993).
  • Lewin GR, Ritter AM, Mendell LM. Nerve growth factor-induced hyperalgesia in the neonatal and adult rat. J. Neumsci. 13(5), 2136–2148 (1993).
  • Lewin GR, Rueff A, Mendell LM. Peripheral and central mechanisms of NGF-induced hyperalgesia. Eur. Neurosci. 6(12), 1903–1912 (1994).
  • Schuligoi R, Amann R. Differential effects of treatment with nerve growth factor on thermal nociception and on calcitonin gene-related peptide content of primary afferent neurons in the rat. Neurosci. Lett. 252(2), 147–149 (1998).
  • Ro LS, Chen ST, Tang LM, Jacobs JM. Effect of NGF and antiNGF on neuropathic pain in rats following chronic constriction injury of the sciatic nerve. Pain 79(2-3), 265–274 (1999).
  • Woolf CJ, Safieh-Garabedian B, Ma Q-P, Crilly P, Winter J. Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience 62 (2), 327–331 (1994) .
  • Woolf CJ. Phenotypic modification of primary sensory neurons: the role of nerve growth factor in the production of persistent pain. Philos. Trans. R. Soc. Land. B. Biol. Li. 351(1338), 441–448 (1996).
  • Baranauskas G, Nistri A. Sensitization of pain pathways in the spinal cord: cellular mechanisms. Frog: Neumbiol 54(3), 349–365 (1998).
  • Often U. Nerve growth factor and the peptidergic sensory neurons. Trends Pharmacol 5,307–310 (1984).
  • Lindsay RM, Harmar AJ. Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature 337(6205), 362–364 (1989).
  • Makangio M, Ramedr MS, Boucher TJ, McMahon SB. Intrathecally injected neurotrophins and the release of substance P from the rat isolated spinal cord. Eur Neurosci. 12(1), 139–144 (2000).
  • Lindsay RM, Lockett C, Sternberg J, Winter J. Neuropeptide expression in cultures of adult sensory neurons: modulation of substance P and calcitonin gene-related peptide levels by nerve growth factor. Neuroscience33(1), 53–65 (1989).
  • Woolf CJ, Costigan M. Transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proc. Natl Acad. Sci. USA 96(14), 7723–7730 (1999).
  • Nilsson G, Forsberg-Nilsson K, Xiang Z, Hallbook F, Nilsson K, Metcalfe DD. Human mast cells express functional TrkA and are a source of nerve growth factor. Eur. Immunol 27(9), 2295–2301 (1997).
  • Sawada J, Itakura A, Tanaka A, Furusaka T, Matsuda H. Nerve growth factor functions as a chemoattractant for mast cells through both mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways. B/ooc/95 (6), 2052-2058 (2000).
  • Dimitriadou V, Buzzi MG, Theoharides TC, Moskowitz MA. Ultrastructural evidence for neurogenically mediated changes in blood vessels of the rat dura mater and tongue following antidromic trigeminal stimulation. Neuroscience 48(1), 187–203 (1992).
  • Kawamoto K, Aoki J, Tanaka A et al. Nerve growth factor activates mast cells through the collaborative interaction with lysophosphatidylserine expressed on the membrane surface of activated platelets. Immunol 168(12), 6412–6419 (2002).
  • Ferjan I, Carman-Krzan M, Eijavec Comparison of histamine and serotonin release from rat peritoneal mast cells induced by nerve growth factor and compound 48/80. Intlamm. Res. 46\(Suppl. 1), S23—S24 (1997).
  • Horigome K, Pryor JC, Bullock ED, Johnson EM Jr. Mediator release from mast cells by nerve growth factor. Neurotrophin specificity and receptor mediation. I Biol. Chem. 268(20), 14881–14887 (1993).
  • &caper SD, Pollock M, Facci L. Mast cells differentially express and release active high molecular weight neurotrophins. Brain Res. Mol Brain Res. 97(2), 177–185 (2001).
  • Theodosiou M, Rush RA, Zhou XF, Hu D, Walker JS, Tracey DJ. Hyperalgesia due to nerve damage: role of nerve growth factor. Pain 81(3), 245–255 (1999).
  • MA QP, Woolf CJ. The progressive tactile hyperalgesia induced by peripheral inflammation is nerve growth factor dependent. Neuroreport 8 (4), 807–810 (1997).
  • Djouhri L, Dawbarn D, Robertson A, Newton R, Lawson SN. Time course and nerve growth factor dependence of inflammation-induced alterations in electrophysiological membrane properties in nociceptive primary afferent neurons. Neurosci 21(22), 8722–8733 (2001).
  • Woolf CJ, Allchome A, Safieh-Garabedian B, Poole S. Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor a. Brj Phannacol 121(3), 417–424 (1997).
  • Hou M, Uddman R, Tajti J, Kanje M, Edvinsson L. Capsaicin receptor immunoreactivity in the human trigeminal ganglion. Neurosci Lett. 330(3), 223–226 (2002).
  • Shu X, Mendell LM. Nerve growth factor acutely sensitizes the response of adult rat sensory neurons to capsaicin. Neurosci Lett. 274(3), 159–162 (1999).
  • Priestley JV, Michael GJ, Averill S, Liu M, Willmott N. Regulation of nociceptive neurons by nerve growth factor and glial cell line derived neurotrophic factor. Can. J. Physiol Pharmacol 80(5), 495–505 (2002).
  • Dobrowsky RT, Werner MET, Castellino AM, Chao MV, Hannun YA. Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science 265(5178), 1596–1599 (1994).
  • Zhang YH, Vasko MR, Nicol GD. Ceramide, a putative second messenger for nerve growth factor, modulates the TTX-resistant Na + current and delayed rectifier K+ current in rat sensory neurons. J. Physiol 544\(Pt. 2), 385–402 (2002).
  • Hao J, Ebendal T, Xu X, Wiesenfeld-Hallin Z, Eriksdotter Jonhagen M. Intracerebroventricular infusion of nerve growth factor induces pain-like response in rats. Neumsci Lett. 286(3), 208–212 (2000).
  • Zur KB, Oh Y, Waxman SG, Black JA. Differential upregulation of sodium channel alpha- and betal-subunit mRNAs in cultured embryonic DRG neurons following exposure to NGE Brain Res. Mal. Brain Res. 30(1), 97–105 (1995).
  • Gould H III, Gould TN, England JD, Paul D, Liu ZP, Levinson SR. A possible role for nerve growth factor in the augmentation of sodium channels in models of chronic pain. Brain Res. 854(1-2), 19–29 (2000).
  • Shafer AJ, Crutcher IKA, Isaacson LG. Remodeling of adult sensory axons in the superior cervical ganglion in response to exogenous nerve growth factor. Brain Res. 864(2), 252–262 (2000).
  • Pezet S, Onteniente B, Grannec G, Calvin° B. Chronic pain is associated with increased TrkA immunoreactivity in spinoreticular neurons. j Ai'1111:6Ci. 19(13), 5482–5492 (1999).
  • Mosconi T, Snider WD, Jacquin ME Neurotrophin receptor expression in retrogradely labeled trigeminal nociceptors-comparisons with spinal nociceptors. Somatosens. Mot. Res. 18(4), 312–321 (2001).
  • Jarvis CR, Xiong ZG, Plant JR et al. Neurotrophin modulation of NMDA receptors in cultured murine and isolated rat neurons.J. Neurophysiol 78 (5), 2363–2371 (1997).
  • Michael GJ, Averill S, Nikunam A et al. Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J. Neurosci. 17(21), 8476–8490 (1997).
  • Kerr BJ, Bradbury EJ, Bennett DL et al. Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-evoked responses in the rat spinal cord. Neuroscl 19(12), 5138–5148 (1999).
  • Thompson SW, Bennett DL, Kerr BJ, Bradbury EJ, McMahon SB. Brain-derived neurotrophic factor is an endogenous modulator of nociceptive responses in the spinal cord. Proc. Natl Acad. Sci. USA 96(14), 7714–7718 (1999).
  • Zhou XF, Rush RA. Endogenous brain-derived neurotrophic factor is anterogradely transported in primary sensory neurons. Neuroscience 74 (4), 945–953 (1996).
  • Zhou XF, Chie ET, Deng YS et al Injured primary sensory neurons switch phenotype for brain-derived neurotrophic factor in the rat. Neuroscience 92 (3), 841–853 (1999) .
  • Lin SY, Wu K, Levine ES, Mount HT, Suen PC, Black TB. BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities. Brain Res. Mal Brain Res. 55(1), 20–27 (1998).
  • Giovengo SL, Russell IJ, Larson AA. Increased concentrations of nerve growth factor in cerebrospinal fluid of patients with fibromyalgia. j Rheumatol 26(7), 1564–1569 (1999).
  • Sarchielli P, Alberti A, Floridi A, Gallai V Levels of nerve growth factor in cerebrospinal fluid of chronic daily headache patients. Neurology 57 (1), 132–134 (2001).
  • Sarchielli P, Alberti A, Gallai B et al Brain-derived neurotrophic factor in cerebrospinal fluid of patients with chronic daily headache: relationship with nerve growth factor and glutamate levels. J. Headache Pain 3,129–135 (2002).
  • Quartu M, Setzu MD, Del Fiacco M. trk-like immunoreactivity in the human trigeminal ganglion and subnucleus caudalis. Neuroreport 7 (5), 1013–1019 (1996).
  • Suen PC, Wu K, Levine ES et al. Brain-derived neurotrophic factor rapidly enhances phosphorylation of the postsynaptic N-methyl-D-aspartate receptor subunit 1. Proc. Natl Acad. Sci USA 94(15), 8191–8195 (1997).
  • Levine ES, Crozier RA, Black JB, Plummer MR. Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-D-aspartic acid receptor activity. Proc. Natl Acad. Sci. USA 95,10235–10239 (1998).
  • Mendell LM, Albers KM, Davis BM. Neurotrophins, nociceptors and pain. Maosc. Res. Tech. 45(4–5), 252–261 (1999). Focuses on molecular mechanisms mediated by neurotrophins which play a pivotal role in nociception.
  • Shu XQ, Llinas A, Mendell LM. Effects of trk B and trk C neurotrophin receptor agonists on thermal nociception: a behavioral and electrophysiological study. Pain 80(3), 463–470 (1999).
  • Rueff A, Mendell LM. Nerve growth factor NT-5 induce increased thermal sensitivity of cutaneous nociceptors in vivo. J. Neumphysiol 76(5), 3593–3596 (1996).
  • Koltzenburg M, Bennett DL, Shelton DL, McMahon SB. Neutralization of endogenous NGF prevents the sensitization of nociceptors supplying inflamed skin. Eur Neurosci. 11(5), 1698–1704 (1999).
  • Chudler EH, Anderson LC, Byers MR. Nerve growth factor depletion by autoimmunization produces thermal hypoalgesia in adult rats. Brain Res. 765 (2), 327–330 (1997).
  • Gwak YS, Nam TS, Paik KS, Hulsebosch CE, Leem JW. Attenuation of mechanical hyperalgesia following spinal cord injury by administration of antibodies to nerve growth factor in the rat. Neurosci. Lett. 336(2), 117–120 (2003).
  • Saragovi HU, Gehring K. Development of pharmacological agents for targeting neurotrophins and their receptors. Trends Pharmacol Sci. 21(3), 93–98 (2000). Considers the drug options developed in the last few years against neurotrophins, some of them tested in animal pain models and with potential applications in humans.
  • Christensen MD, Hulsebosch CE. Spinal cord injury and antiNGF treatment results in changes in CGRP density and distribution in the dorsal horn in the rat. Exp. Neural. 147(2), 463–475 (1997).
  • Spiegel K, Agrafiotis D, Caprathe B et al. PD 90780, a nonpeptide inhibitor of nerve growth factor's binding to the P75 NGF receptor. Biochem. Biophys. Res. Commun. 217(2), 488–494 (1995).
  • Jaen JC, Laborde F, Bucsh RA et al. Kynurenic acid derivatives inhibit the binding of nerve growth factor (NGF) to the low-affinity p75 NGF receptor. J: Merl Chem. 38(22), 4439–4445 (1995).
  • Owolabi JB, Rizkalla G, Tehim A et al Characterization of antiallodynic actions of ALE-0540, a novel nerve growth factor receptor antagonist, in the rat. J: Pharmacol Exp. Ther. 289(3), 1271–1276 (1999).
  • LeSauteur L, Wei L, Gibbs BF, Saragovi HU. Small peptide mimics of nerve growth factor bind TrkA receptors and affect biological responses. J: Biol. Chem. 270(12), 6564–6569 (1995).
  • Debeir T, Saragovi HU, Cuello AC. A nerve growth factor mimetic TrkA antagonist causes withdrawal of cortical cholinergic boutons in the adult rat. Proc. Natl Acad. Sci. USA 96(7), 4067–4072 (1999).
  • Lewin GR, Barde YA. Physiology of the neurotrophins. Ann. Rev Neurosci. 19, 289–317 (1996).
  • Cuello AC. Effects of trophic factors on the CNS cholinergic phenotype. Pmg. Brain Res. 109,347–358 (1996).
  • Hu L, Cote SL, Cuello AC. Differential modulation of the cholinergic phenotype of the nucleus basalis magnocellularis neurons by applying NGF at the cell body or cortical terminal fields. Exp. Nemo'. 143(1), 162–171 (1997).
  • Berg MM, Sternberg DW, Parada LF, Chao MV K-252a inhibits nerve growth factor-induced trk proto-oncogene tyrosine phosphorylation and kinase activity. J: Biol. Chem. 267(1), 13–16 (1992).
  • Cattaneo A, Capsoni S, Margotti E et al. Functional blockade of tyrosine kinase A in the rat basal forebrain by a novel antagonistic antireceptor monoclonal antibody. Neurosci. 19 (22), 9687–9697 (1999).
  • Covaceuszach S, Cattaneo A, Lamba D. Purification, crystallization and preliminary x-ray analysis of the Fab fragment from MNAC13, a novel antagonistic antityrosine kinase A receptor monoclonal antibody. Acta Costallogr D Biol. Crystallogr. 57\(Pt 9), 1307–1309 (2001).
  • Khasar SG, Lin YH, Martin A et al A novel nociceptor signaling pathway revealed in protein kinase C epsilon mutant mice. Neuron 24(1), 253–260 (1999).
  • Pezet S, Cunningham J, Patel J et al. BDNF modulates sensory neurone synaptic activity by a facilitation of GABA transmission in the dorsal horn. Mal Cell Neurosci 21(1), 51–62 (2002).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.