23
Views
15
CrossRef citations to date
0
Altmetric
Review

Chemokine network in multiple sclerosis: role in pathogenesis and targeting for future treatments

, &
Pages 439-453 | Published online: 10 Jan 2014

  • Martino G, Hartung HP Immunopathogenesis of multiple sclerosis: the role of T-cells. CUI7: Opin. Neural. 12, 309–321 (1999).
  • Miller A, Galboiz Y. Multiple sclerosis: from basic immunopathology to immune intervention. Clin. Neural. Neurosurg. 104, 172–176 (2002).
  • Battistini L, Piccio L, Rossi B et al. CD8+ T-cells from acute multiple sclerosis patients display selective increase of adhesiveness in brain venules: a critical role for P-selectin glycoprotein ligand-1. Blood 101,4775–4782 (2003).
  • Opdenakker G, Nelissen I, Van Damme J. Functional roles and therapeutic targeting of gelatinase B and chemokines in multiple sclerosis. Lancet Neural. 2,747–756 (2003).
  • Becker KG, Mattson DH, Powers JM, Gado AM, Biddison WE. Analysis of a sequenced cDNA library from multiple sclerosis lesions. j Neuroimmunal 77, 27–38 (1997).
  • Whitney LW, Becker KG, Tresser NJ et al Analysis of gene expression in multiple sclerosis lesions using cDNA microarrays. Ann. Neural 46,425–428 (1999).
  • Baranzini SE, Elfstrom C, Chang SJ et al. Transcriptional analysis of multiple sclerosis brain lesions reveals a complex pattern of cytokine expression. j Immunal 165,6576–6582(2000).
  • Chabas D, Baranzini SE, Mitchell D et al. The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294, 1731–1735 (2001).
  • Wandinger KP. Sturzebecher CS, Bielekova B et al Complex immunomodulatory effects of interferon-0 in multiple sclerosis include the upregulation of T-helper 1-associated marker genes. Ann. Neural. 50, 349–357 (2001).
  • Whitney LW, Ludwin SK, Mc Farland HF, Biddison WE. Microarray analysis of gene expression in multiple sclerosis and EAE identifies 5-lipoxygenase as a component of inflammatory lesions. j Neuroimmunal 121,40–48 (2001).
  • Lock C, Hermans G, Pedotti R et al. Gene- microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Med. 8,500–508 (2002).
  • Mycko MP, Papoian R, Boschert U, Raine CS, Selmaj KW cDNA microarray analysis in multiple sclerosis lesions: detection of genes associated with disease activity. Brain 126,1048–1057 (2003).
  • Biddison WE, Kruikshank WW, Center DM et al CD8+ myelin peptide specific T-cells can chemoattract CD4+ myelin peptide-specific T-cells: importance of IFN-inducible protein 10.1 Immunal 160,444–448 (1998).
  • Calabresi PA, Tranquilli LR, McFarland HF, Cowan EP. Cytokine gene expression in cells derived from CSF of multiple sclerosis patients. I Neuroimmunal 89, 198–205 (1998).
  • Mennicken F, Maki R, de Souza EB, Quirion R. Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. TIPS 20,73–78 (1999).
  • Glabinski AR, Tani M, Strieter RM, Tuohy VK, Ransohoff RM. Synchronous synthesis of a- and 0-chemokines by cells of diverse lineage in the central nervous system of mice with relapses of chronic experimental autoimmune encephalomyelitis. Am. j Pathol 150, 617–630 (1997).
  • Hvas J, McLean C, Justesen J et al. Perivascular T-cells express the proinflammatory chemokine RANTES mRNA in multiple sclerosis lesions. Scand Immunal 46,195–203 (1997).
  • Mc Manus C, Berman JW, Brett FM, Staunton H, Farrell M, Brosnan CE MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. I Neuroimmunal 86, 20–29 (1998).
  • Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN. Expression of monocyte chemoattractant protein-1 and other fi-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. j Neuroimmunal 84,238–249 (1998).
  • Sorensen T, Tani M, Jensen J et al Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J. Clin. Invest. 103,807–815 (1999).
  • •Interesting article describing the pattern of chemokine expression in the cerebrospinal fliud from relapsing-remitting multiple sclerosis patients.
  • Franciotta D, Martino G, Zardini E et al. Serum and CSF levels of MCP-1 and IP-10 in multiple sclerosis patients with acute and stable disease undergoing immunomodulatory therapies. Neuroimmunal 115,192–198 (2001).
  • Scarpini E, Galimberti D, Baron PL et al. IP-10 and MCP-1 levels in CSF and serum from multiple sclerosis patients with different clinical subtypes of the disease. Neural. Sc]. 195,41-46 (2002).
  • Simpson J, Rezaie P, Newcombe J, Cuzner ML, Male D, Woodroofe MN. Expression of the 3-chemokine receptors CCR2, CCR3 and CCR5 in multiple sclerosis central nervous system tissue. Neuroimmunal 108,192–200 (2000).
  • Misu T, Onodera H, Fujihara K et al Chemokine receptor expression on T-cells in blood and cerebrospinal fluid at relapse and remission of multiple sclerosis: imbalance of Thl/Th2-associated chemokine signaling. I Neuroimmunal 114,207–212 (2001).
  • Sorensen T, Trebst C, Kivisäkk P et al Multiple sclerosis: a study of CXCL10 and CXCR3 colocalization in the inflamed central nervous system. I Neuroimmunal 127,59–68 (2002).
  • Jalonen TO, Pulkkinen K, Ukkonen M, Saarela M, Elovaara I. Differential intracellular expression of CCR5 and chemokines in multiple sclerosis subtypes. I Neural. 249,576-583 (2002).
  • Mahad DJ, Lawry J, Howell SJL, Woodroofe MN. Longitudinal study of chemokine receptor expression on peripheral lymphocytes in multiple sclerosis: CXCR3 upregulation is associated with relapse. Mult. Scler 9,189–198 (2003).
  • Alt C, Laschinger M, Engelhardt B. Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL21 (SLC) at the blood—brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur. I Immunal 32, 2133–2144 (2002).
  • Columba-Cabezas S, Serafini B, Ambrosini E, Aloisi E Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pallid 13, 38–51 (2003).
  • Jenh CH, Cox MA, Kaminski H et al. Cutting edge: species specificity of the CC chemokine 6Ckine signaling through the CXC chemokine receptor CXCR3: human 6Ckine is not a ligand for the human or mouse CXCR3 receptors. I Immunal 162, 3765–3769 (1999).
  • Pashenkov M, Söderström, Link H. Secondary lymphoid organ chemokines are elevated in the cerebrospinal fluid during central nervous system inflammation. Neuroimmunal 135,154–160 (2003).
  • Goodin DS, Frohman EM, Garmany GP et al Disease Modifying therapies in multiple sclerosis. Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the MS Council for Clinical Practice Guidelines. Neurology58, 169–178 (2002).
  • ••Important article from the MultipleSclerosis American Academy Committee. Gives the practice parameters of pharmacological treatment of MS on the basis of the review of a wide number of published studies.
  • Neuhaus 0, Archelos JJ, Hartung HP Immunomodulation in multiple sclerosis: from immunosuppression to neuroprotection. Trends Phalmacol. Sci. 24, 131–138 (2003).
  • Sorensen T, Sellebjerg F, Jensen CV, Strieter RM, Ransohoff RM. Chemokines CXCL10 and CCL2: differential involvement in it. inflammation in multiple sclerosis. Eur. Neural. 8,665-672 (2001).
  • Dhib-Jalbut S. Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis. Neurology58\(Suppl. 4), S3—S9 (2002).
  • Yong VW. Differential mechanisms of action of interferon beta and glatiramer acetate. Neurology59, 802–808 (2002).
  • ••Important article comparing the mechanisms of action of the two imrnunomodulators recommended for the long-term treatment of multiple sclerosis.
  • Karpusas M, Whitty A, Runkel L, Hochman P The structure of human interferon-3: implications for activity. Cell. Mal Life Sci. 54,1203-1216 (1998).
  • Stuve 0, Chabot S, Jung SS, Williams G, Yong VW. Chemokine-enhanced migration of human peripheral blood mononuclear cells is antagonized by interferon-13 through an effect on metalloproteinase-9. Neuroimmunal 80,38–46 (1997).
  • Duddy ME, Armstrong MA, Crockard AD, Hawkins SA. Changes in plasma cytokines induced by interferon-131 treatment in patients with multiple sclerosis. Neuroimmunal 101,98–109 (1999).
  • Comabella M, Imitala J, Weiner HL, Khoury SJ. Interferon-3 treatment alters peripheral blood monocytes chemokine production in MS patients. Neuroimmunal 126,205–212 (2002).
  • Salama HH, Kolar 0J, Zang YCQ, Zhang J. Effects of combination therapy of 3-interferon la and prednisone on serum immunologic markers in patients with multiple sclerosis. Mult. Scler. 9,28-31 (2003).
  • Teitelbaum D, Meshorer A, Hirshfeld T et al. Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide. Eur I Immunology l, 242–248 (1971).
  • Neuhaus 0, Farina C, Wekerle H, Hohlfeld R. Mechanisms of action of glatiramer acetate in multiple sclerosis. Neurology 56, 702–708 (2001).
  • Duda PW, Schmied MC, Cook SL, Krieger JI, Hailer DA. Glatiramer acetate (Copaxone°) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. I Clin. Invest. 105, 967–976 (2000).
  • Zang Y, Hong J, Robinson R, Li S, Rivera VM, Zhang JZ. Immune regulatory properties and interactions of copolymer-I and 3-interferon la in multiple sclerosis. Neuroimmunal 137,144–153 (2003).
  • Jain KK. Evaluation of mitoxantrone for the treatment of multiple sclerosis. Expert Opin. Investiff Drugs 9,1139–1149 (2000).
  • Hartung HP, Gonsette R, Konig N et al Mitoxantrone in Multiple Sclerosis Study Group (MIMS). Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360,2018–2025 (2002).
  • Weiner HL, Cohen GA. Treatment of multiple sclerosis with cyclophosphamide: critical review of clinical and immunologic effects. MuIt. Scler. 8,142–154 (2002).
  • Wiles CM, Brown P, Chapel H et al Intravenous immunoglobulin in neurological disease: a specialist review. Neurosurg. Pwchiatry72, 440–448 (2002).
  • Archelos JJ, Previtali SC, Hartung HP. The role of integrins in immune-mediated diseases of the nervous system. Bends Neurosci. 22,30–38 (1999).
  • Polman CH, Uitdehaag BMJ. New and emerging treatment options for multiple sclerosis. Lancet Neural. 2,563–556 (2003).
  • Miller DH, Khan OA, Sheremata WA et al A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl. I Med. 348,15–23 (2003).
  • •Interesting article demonstrating the first results on the efficacy of antibodies against adhesion molecules.
  • Paolillo A, Coles AJ, Molyneux PD et al Quantitative MRI in patients with secondary-progressive MS treated with monoclonal antibody Campath 1H. Neurology53, 751–757 (1999).
  • Coles AJ, Wing M, Smith S et al Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet 354,1691–1695 (1999).
  • Kwak B, Mulhaupt F, Myit S, Mach F. Statins as a newly recognized type of immunomodulators. Nature Med. 6, 1399–1402 (2000).
  • Pruefer D, Scalia R, Lefer AM. Simvastatin inhibits leukocyte-endothelial cell interactions and protects against inflammatory processes in normocholesterolemic rats. Arterioscler. Thmmb. Vasc. Biol. 19,2894–2900 (1999).
  • Weitz-Schmidt G, Walzenbach K, Brinkmann V et al. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nature Med. 7,687–692 (2001).
  • Pahan K, Sheikh FG, Namboodiri AMS, Singh I. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia and macrophages. Clin. Invest. 100,2671–2679 (1997).
  • Stanislaus R, Pahan K, Singh AK, Singh I. Amelioration of experimental allergic encephalomyelitis in Lewis rats by lovastatin. Neurosci. Lett. 269,71–74 (1999).
  • Neuhaus 0, Strasser-Fuchs S, Fazekas F et al Statins as immunomodulators. Comparison with interferon 13-lb in MS. Neurology59, 990–997 (2002).
  • Vollmer T, Durkalski V, Tyor W et al. An open-label, single arm study of simvastatin as a therapy for multiple sclerosis (MS). Neurology 60 (Supp1.1), A84 (2003) .
  • Confavreux C, Hutchinson M, Hours MM, Cortinovis-Tourniaire P, Moreau T Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N Engl. I Med. 339, 285–291 (1998).
  • Subramanian S, Matejuk A, Zamora A, Vandenbark AA, Offner H. Oral feeding with ethinyl estradiol suppresses and treats experimental autoimmune encephalomyelitis in SJL mice and inhibits recruitment of inflammatory cells into the central nervous system. I Immunal 170, 1548–1555 (2003).
  • Sicotte NL, Liva SM, Klutch R et al Treatment of multiple sclerosis with the pregnancy hormone estriol. Ann. Neural. 52,421–428 (2002).
  • Berdyshev EV, Boichot E, Germain N, Allain N, Anger JP, Lagente V. Influence of fatty acid ethanolamides and 89tetrahydrocannabinol on cytokine and arachidonate release by mononuclear cells. Eur. Pharmacol 330,231–240 (1997).
  • Klein TW, Newton CA, Nakachi N, Friedman H. 89-tetrahydrocannabinol treatment suppresses immunity and early IFN-y, IL-12 and IL-12 receptor 3 2 responses to Legionella pneumophila infection. j Immunal 164,6461–6466 (2000).
  • Zhu LX, Sharma S, Stolina M et al. 89- tetrahydrocannabinol inhibits antitumor immunity by a CB2 receptor-mediated, cytokine-dependent pathway. I Immunal 165,373–380 (2000).
  • Sanchez C, Velasco G, Guzman M. Metabolic stimulation of mouse spleen lymphocytes by low doses of 89-tetrahydrocannabinol. Life Sri. 60, 1709–1717 (1997).
  • Achiron A, Miron S, Lavie V, Margalit R, Biegon A. Dexanabinol (HU-211) effect on experimental autoimmune encephalomyelitis: implications for the treatment of acute relapses of multiple sclerosis. I Neuroimmunal 102,26–31 (2000).
  • Killestein J, Hoogervorst EL, Reif M et al Safety, tolerability and efficacy of orally administered cannabinoids in MS. Neurology58, 1404–1407 (2002).
  • Killestein J, Hoogervorst ELJ, Reif M et al Immunomodulatory effects of orally administered cannabinoids in multiple sclerosis. I Neuroimmunal 137,140–143 (2003).
  • Thoenen H, Sendtnder M. Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nature Neumsci. 5,1046–1050 (2002).
  • Villoslada P, Hauser SL, Bartke I et al Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of T-helper cell Type 1 and 2 cytokines within the central nervous system. I Exp. Med. 191,1799-1806 (2000).
  • Linker RA, Maurer M, Gaupp S et al CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation. Nature Med. 8, 620–624 (2002).
  • Fife BT, Huffnagle GB, Kuziel WA, Karpus WJ. CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. I Exp. Med 192, 899–905 (2000).
  • Izikson L, Klein RS, Charo IF, Weiner HL, Luster AD. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. Exp. Med. 192,1075-80 (2000).
  • Tran EH, Kuziel WA, Owens T Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1(x or its CCR5 receptor. Eur I Immunal 30, 1410–1415 (2000).
  • Bennetts BH, Teutsch SM, Buhler MM, Heard RN, Stewart GJ. The CCR5 deletion mutation fails to protect against multiple sclerosis. Hum. Immunal 58, 52–59 (1997).
  • Rottman JB, Slavin AJ, Silva R, Weiner HL, Gerard CG, Hancock WW. Leukocyte recruitment during onset of experimental allergic encephalomyelitis is CCR1 dependent. Eur I Immunal 30, 2372–2377 (2000).
  • Fife BT, Kennedy KJ, Paniagua MC et al CXCL10 (IFN-y-inducible protein-10) control of encephalitogenic CD4+ T-cell accumulation in the central nervous system during experimental autoimmune encephalomyelitis. I Immunal 166, 7617–7624 (2001).
  • Ajuebor MN, Swain MG, Perretti M. Chemokines as novel therapeutic targets in inflammatory diseases. Biochem. Pharmacol 63,1191–1196 (2002).
  • Howard OMZ, Oppenheim JJ, Wang JIM. Chemokines as molecular targets for therapeutic intervention. j Clin. Immunol. 19, 280–292 (1999).
  • •Reviews the current chemokine antagonists and chemokine receptor blockers under study as potential future treatments.
  • Karpus WJ, Kennedy KJ. Mip-la and MCP-J. differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Th1/Th2 lymphocyte differentiation. Leukoc Biol. 62, 681–768 (1997).
  • Matsui M, Weaver J, Proudfoot AEI et al Treatment of experimental autoimmune encephalomyelitis with the chemokine receptor antagonist Met-RANTES. Neuroimmund 128, 16–22 (2002).
  • Eltayeb S, Sunnemark D, Berg A et al. Effector stage CC chemokine receptor-1 selective antagonist reduces multiple sclerosis-like rat disesase. j Neuroimmund 142, 75–85 (2003).
  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Eng. Mecl. 343, 938–952 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.