21
Views
3
CrossRef citations to date
0
Altmetric
Review

Neuroglial responses to CNS injury: prospects for novel therapeutics

, , , , &
Pages 869-878 | Published online: 10 Jan 2014

References

  • Griffiths I, Klugmann M, Anderson T et al Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280(5369), 1610–1613 (1998).
  • Stoffel W Bosio A. Myelin glycolipids and their functions. CUI7: Opin. Neurobial 7(5), 654–661 (1997).
  • Lassmann H. Pathology of multiple sclerosis. In: McAlpinei Ifrlultiple Sclerosis. Churchill Livingston, London, UK, 323–358 (1998).
  • Lucchinetti C, Bruck W Parisi J et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neural 47(6), 707–717 (2000).
  • ••Documents the heterogeneity of multiplesclerosis lesions and suggests that in some instances, ofigodendrocyte apoptosis is a significant component of histopathology.
  • Trapp BD, Peterson J, Ransohoff RM et al Axonal transection in the lesions of multiple sclerosis. N Engl. I Med. 338(5), 278–285 (1998).
  • Barres BA, Hart IK, Coles HS et al. Cell death and control of cell survival in the oligodendrocyte lineage. Ce1170(1), 31–46 (1992).
  • Barnett MH, Prineas JVV Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann. Neural. 204(55), 458–468 (2004).
  • Newman PK, Saunders M, Tilley PJ. Methylprednisolone therapy in multiple sclerosis. .1. Neural. Neurosurg. Psychiatry 45(10), 941–942 (1982).
  • Kilpatrick TJ, Soilu-Hanninen M. New treatments for multiple sclerosis. Aust. NZ J. Med. 29,801–810 (1999).
  • Banes BA, Schmid R, Sendnter M, Raff MC. Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 118 (1), 283–295 (1993).
  • Liu X, Yao DL, Webster H. Insulin-like growth factor 1 treatment reduces clinical deficits and lesion severity in acute demyelinating experimental autoimmune encephalomyelitis. Mult. Scler.1(1), 2–9 (1995).
  • Mason JL, Ye P, Suzuki K, D'Ercole AJ, Matsushima GK. Insulin-like growth factor-1 inhibits mature oligodendrocyte apoptosis during primary demyelination. Neurosci. 20(15), 5703–5708 (2000).
  • Frank JA, Richert N, Lewis B et al A pilot study of recombinant insulin-like growth factor-1 in seven multiple sclerosis patients. Mult. Scler. 8(1), 24–29 (2002).
  • Metcalf D. Leukemia inhibitory factor — a puzzling polyfunctional regulator. Growth Factors7(3), 169–173 (1992).
  • Cheema SS, Richards L, Murphy M, Bartlett PE Leukemia inhibitory factor prevents the death of axotomised sensory neurons in the dorsal root ganglia of the neonatal rat. J. Neurosci. Res. 37(2), 213–218 (1994).
  • Finkelstein DI, Bartlett PF, Horne MK, Cheema SS. Leukemia inhibitory factor is a myotrophic and neurotrophic agent that enhances the reinnervation of muscle in the rat. Aiurosci. Rey. 46(1), 122–128 (1996).
  • Dowsing BJ, Morrison WA, Nicola NA et al Leukemia inhibitory factor is an autocrine survival factor for Schwann cells. Neurochem. 73(1), 96–104 (1999).
  • Ulich TR, Fann MJ, Patterson PH et al. Intratracheal injection of LPS and cytokines. V. LPS induces expression of LIF and LIF inhibits acute inflammation. Am. Physiol 267(4 Pt 1), 442–446 (1994).
  • Sendtner M, Gotz R, Hohmann B et al Cryptic physiological trophic support of motoneurons by LIF revealed by double gene targeting of CNTF and LIE CUI7: Bid 6(6), 686–694 (1996).
  • Bugga L, Gadient RA, Kwan K, Stewart CL, Patterson PH. Analysis of neuronal and glial phenotypes in brains of mice deficient in leukemia inhibitory factor. I Neurobial 36(4), 509–524 (1998).
  • Butzkueven H, Zhang JG, Soilu-Hanninen M et al LIF receptor signaling limits immune-mediated demyelination by enhancing oligodendrocyte survival. Nature Med. 8(6), 613–619 (2002).
  • •Documents that the clinical severity ofinflammatory delyelination in the mouse can be inhibited by the cytokine, leukemia inhibitory factor, whose action is directed to the maintenance of oligodendrocyte viability.
  • Linker RA, Maurer M, Gaupp S et al CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation. Nature Med. 8(6), 620–624 (2002). Shows that the cytokine ciliary neurotrophic factor by potentiating oligodendroglial precursor proliferation and oligodendrocyte survival, provides an important component of the endogenous CNS response to inflammatory demyelination.
  • Giess R, Maurer M, Linker R et al Association of a null mutation in the CNTF gene with early onset of multiple sclerosis. Arch. Neural. 59(3), 407–409 (2002).
  • Hibi M, Nakajima K, Hirano T IL-6 cytokine family and signal transduction: a model of the cytokine system. I Mal Med. 74(1), 1–12 (1996).
  • Turnley AM, Bartlett PE Cytokines that signal through the leukemia inhibitory factor receptor — 13 complex in the nervous system. I Neurochem. 74(3), 889–899 (2000).
  • Schumann G, Machein U, Huell M, Hocke G, Fiebich B. Interleukin-6 activates signal transducer and activator of transcription and mitogen-activated protein kinase signal transduction pathways and induces de nova protein synthesis in human neuronal cells. Neurochem. 73(5), 2009–2017 (1999).
  • Hirano T, Ishihara K, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19 (21), 2548–2556 (2000).
  • Bonni A, Sun Y, Nadal-Vicens M et al Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278(5337), 477–483 (1997).
  • Gires 0, Kohlhuber F, Kilger E et al Latent membrane protein 1 of Epstein—Barr virus interacts with JAK3 and activates STAT proteins. EMI30 J. 18(11), 3064–3073 (1999).
  • Ihara S, Nakajima K, Fukada T et al. Dual control of neurite outgrowth by STAT3 and MAPK in PC12 cells stimulated with interleukin-6. EMI30 J. 16(17), 5345–5352 (1997).
  • ALS CNTF Treatment Study Group. A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. Neurology 46(5), 1244–1249 (1996).
  • Miller RG, Bryan WW Dietz MA et al Toxicity and tolerability of recombinant human ciliary neurotrophic factor in patients with amyotrophic lateral sclerosis. Neurology47(5), 1329–1331 (1996).
  • Isaac C, Li DK, Genton M et al Multiple sclerosis: a serial study using MRI in relapsing patients. Neurology 38 (10), 1511–1515 (1988).
  • Thorpe JW, Kidd D, Moseley IF et al Serial gadolinium-enhanced MRI of the brain and spinal cord in early relapsing-remitting multiple sclerosis. Neurology 46(2), 373–378 (1996).
  • Cercignani M, Bozzali M, Iannucci G, Comi G, Filippi M. Magnetisation transfer ratio and mean diffusivity of normal appearing white and grey matter from patients with multiple sclerosis. I Neural. Neurosurg. Psych. 70(3), 311–317 (2001).
  • Silver NC, Tofts PS, Symms MR et al Quantitative contrast-enhanced magnetic resonance imaging to evaluate blood—brain barrier integrity in multiple sclerosis: a preliminary study. Mult. Scler. 7(2), 75–82 (2001).
  • Aebischer P, Schluep M, Deglon N et al Intrathecal delivery of CNTF using encapsulated genetically modified xenogeneic cells in amyotrophic lateral sclerosis patients. Nature Med. 2(6), 696–699 (1996).
  • Ochs G, Penn RD, York M et al A Phase I/ II trial of recombinant methionyl human brain derived neurotrophic factor administered by it. infusion to patients with amyotrophic lateral sclerosis. Arnyotroph. Lateral Scler. Other Motor Neumn Disord. 1(3), 201–206 (2000).
  • Derossi D, Chassaing G, Prochiantz A. Trojan peptides: the penetratin system for intracellular delivery. Wends Cell Biol. 8(2), 84–87 (1998).
  • Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SE In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285(5433), 1569–1572 (1999).
  • Speiser PP. Nanoparticles and liposomes: a state of the art. Methods Find. Exp. Gun. Phalmacol. 13(5), 337–342 (1991).
  • Maysinger D, Morinville A. Drug delivery to the nervous system. 7i-ends Biotechnol. 15(10), 410–418 (1997).
  • Chorev M, Goodman M. Recent developments in retro peptides and proteins — an ongoing topochemical exploration. Trends Biotechnol 13(10), 438–445 (1995).
  • Starr R, Willson TA, Viney EM et al A family of cytokine-inducible inhibitors of signalling. Nature 387(6636), 917–921 (1997).
  • Liu B, Liao J, Rao X et al. Inhibition of Stat 1-mediated gene activation by PIAS1. Proc. Natl Acad. Sci. USA 95(18), 10626–10631 (1998).
  • De Groot CJ, Bergers E, Kamphorst W et al. Post mortem MRI-guided sampling of multiple sclerosis brain lesions: increased yield of active demyelinating and (p)reactive lesions. Brain 124(Pt 8), 1635–1645 (2001).
  • Paolillo A, Coles AJ, Molyneux PD et al Quantitative MRI in patients with secondary progressive MS treated with monoclonal antibody Campath 1H. Neurology53(4), 751–757 (1999).
  • Beck RVV, Cleary PA, Trobe JD et al The effect of corticosteroids for acute optic neuritis on the subsequent development of multiple sclerosis. The Optic Neuritis Study Group. N. Engl Med 329(24), 1764–1769 (1993).
  • Beck RVV, Trobe JD. What we have learned from the Optic Neuritis Treatment Trial. Ophthalmology 102 (10), 1504–1508 (1995).
  • Beck RVV, Cleary PA, Anderson MM Jr et al A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. The Optic Neuritis Study Group. N. Engl. Med. 326(9), 581–588 (1992).
  • Kapoor R, Miller DH, Jones SJ et al Effects of intravenous methylprednisolone on outcome in MRI-based prognostic subgroups in acute optic neuritis. Neumlogy 50(1), 230–237 (1998).
  • van Engelen BG, Hommes OR, Pinckers A et al Improved vision after intravenous immunoglobulin in stable demyelinating optic neuritis. Ann. Neural 32(6), 834–835 (1992).
  • van Walderveen MA, Kamphorst W, Scheltens P et al. Histopathologic correlate of hypointense lesions on T1-weighted spin- echo MRI in multiple sclerosis. Neurology 50 (5), 1282–1288 (1998).
  • Barkhof F, van Waesberghe JH, Filippi M et al T(1) hypointense lesions in secondary progressive multiple sclerosis: effect of interferon-P-lb treatment. Brain 124\(Pt 7), 1396–1402 (2001)

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.