47
Views
39
CrossRef citations to date
0
Altmetric
Review

Recent advances in the neuropathology of focal lesions in epilepsy

Pages 973-984 | Published online: 10 Jan 2014

References

  • Palmini A, Najm I, Avanzini G et al. Terminology and classification of the cortical dysplasias. Neurology 62, S2—S8 (2004).
  • ••Reviews and refines the currentterminology and classification issues of focal dysplasias with potential clinical relevance to epileptologists, neuroradiologists and neuropathologists.
  • Tassi L, Columba N, Garbelli R et aLFocal cortical dysplasia, neuropathological subtypes, EEG neuroimaging and surgical outcome. Brain 125,1719–1732 (2002).
  • •Introduces a three-tiered system for the classification of dysplasias.
  • Palmini A, Luders HO. Classification issues in malformations caused by abnormalities of cortical development. Neurosurg. Clinics North Am. 37,1–16 (2002).
  • Cepeda C, Hurst RS, Flores-Hernandez et aL Morphological and electrophysiological characterisation of abnormal cell types in pediatric cortical dysplasia. j Neurosci. Res 72,472–486 (2003).
  • ••In this study, abnormal cell types aremorphologically characterized in fresh slices from focal cortical dysplasias (FCD) lesions and abnormal intrinsic membrane properties are demonstrated which may be relevant to the epileptogenesis of this lesion.
  • Tassi L, Pasquier B, Minotti L et aL Cortical dysplasia, electroclinical, imaging and neuropathological study of 13 patients. Epilepsia 42,1112–1123 (2002).
  • Boonyapisit K, Najm I, Klem G et al. Epileptogenicity of focal malformations due to abnormal cortical development, Direct electrocorticographic-histopathologic correlations. Epilepsia 44, 69–76 (2003).
  • •A study of 15 FCD lesions suggesting that balloon cell-rich areas are less epileptogenic than those with dysplastic neurons only.
  • Thom M, Harding BN, Lin WR et al. Cajal Retzius cells, inhibitory interneuronal populations and NPY expression in focal cortical dysplasia (FCD) and microdysgenesis (MD). Acta Neuropathologica 105,561–569 (2003).
  • Kasper BS, Stefan H, Buchfelder M, Paulus W Temporal lobe microdysgenesis in epilepsy versus control brains. J NeuropathoL Exp. NeuroL 58,22–28 (1999).
  • Kalnins RM, McIntosh A, Saling MM et aL Subtle microscopic abnormalities in hippocampal sclerosis do not predict clinical features of temporal lobe epilepsy. Epilepsia 45,940–947 (2004).
  • Bothwell S, Meredith GE, Phillips J et al. Neuronal hypertrophy in the neocortex of patients with temporal lobe epilepsy. J. Neurosci. 42,1399–402 (2001).
  • Luyken C, Blumcke I, Fimmers R et aL Supratentorial gangliomgliomas, Histopathological grading and tumor recurrence in 184 patients with median follow-up of 8 years. Cancer101, 146–155 (2004).
  • Blumcke I, Wiestler OD. Gangliogliomas, an intriguing tumor entity associated with focal epilepsies. I NeuropathoL Exp. NeuroL 61,575–584 (2002).
  • Cenacch G, Giangaspero E Emerging tumor entities and variants of CNS neoplasms. J. NeuropathoL Exp. NeuroL 63, 185–192 (2004).
  • Blumcke I, Luyken C, Urbach H, Schramm J, Wiestler OD. An isomorphic subtype of long-term epilepsy associated astrocytomas associated with benign prognosis. Acta Neuropathoologica 107, 381–388 (2004).
  • Bruton C. The Neuropathology of Temporal Lobe Epilepsy Oxford University Press, NY, USA (1987).
  • Thom M Sisodiya SM, Beckett A et al. Cytoarchitectural abnormalities in hippocampal sclerosis. J. NeuropathoL Exp. NeuroL 61,510–551 (2002).
  • Walker MC, White HS, Sander JWAS. Disease modification in partial epilepsy. Brain 125,1937–1950 (2001).
  • Briellmann R, Berkovic S, Syngeniotis S, King M, Jackson GD. Seizure associated hippocampal volume loss, a longitudinal magnetic resonance study of temporal lobe epilepsy. Neurology51,642–644 (2002).
  • Weiser HG. Mesial temporal lobe epilepsy with hippocampal sclerosis. ILAE commission report. Epilepsia 45,695–714 (2004).
  • ••Report detailing the current consensusdecisions regarding the pathogenesis, imaging and natural history of hippocampal sclerosis.
  • De Lannerolle NC, Kim JH, Williamson A et aL A retrospective analsysis of hippocampal pathology in human temporal lobe epilepsy, Evidence for distinctive patient subcategories. Epilepsia 44,677–687 (2002).
  • Baulac M, De Grissac N, Hasboun D et al Hippocampal developmental changes in patients with partial epilepsy, magnetic resonance imaging and clinical aspects. Ann. NeuroL 44,223–233 (1998).
  • Thom M, Sisodiya SM, Lin WR et al. Bilateral isolated hippocampal malformation in temporal lobe epilepsy. Neurology58, 1683–1686 (2002).
  • Sloviter RS, Kudrimoti HS, Laxer KD et al. Tectonic hippocampal malformations in patients with temporal lobe epilepsy. Epilepsy Res. 59,123–153 (2003).
  • •• Detailed histological analysis of hippocampal malformations involving the CAlisubicular region and possible relationship of these lesions to febrile seizures and epilepsy.
  • Fernandez G, Effenberger 0, Vinz B et al. Hippocampal malformation as a cause of familial febrile convulsions and subsequent hippocampal sclerosis. Neurology 50, 909–917 (2004).
  • Sisodiya SM, Thom M, Lin WR et aL Abnormal expression of cdk5 in focal cortical dysplasia in humans. Neurosci. Lett. 16,217-220 (2002).
  • Hua Y, Crino PB. Single cell lineage analysis in human focal cortical dysplasia. Cerebral Cortex 13,693–699 (2003).
  • Becker AJ, Urbach H, Scheffler B et aL Focal cortical dysplasia of Taylor's balloon cell type, mutational analysis of the TSC1 gene indicates a pathogenic relationship to tuberous sclerosis. Ann. NeuroL 52,29–37 (2002).
  • Fassunke J, Bliimcke I, Lahl R et al. Analysis of chromosomal instability in focal cortical dysplasia of Taylor's balloon cell type. Acta Neuropathologica 108,129–134 (1998).
  • Kam R, Chen J, Blumcke I et aL The reelin pathway components disabled-1 and p35 in gangliogliomas — a mutation and expression analysis. NeuropathoL AppL NeurobioL 30, 225–232 (2004).
  • Wenzel HJ, Robbins CA, Tsa LH et al. Abnormal morphological and functional organisation in a p35 mutant models of cortical dysplasia associated with spontaneous seizures. j Neurosci. 31, 953–999 (2001).
  • Scharfmann HE, Goodman JH, Sollas AL. Granule like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells, functional implication of seizure-free induced neurogenesis. I Neurosci. 20, 6144–6158 (2000).
  • Frotscher M, Hass CA, Forster E. Reelin controls granule cell migration in the dentate gyrus by acting on the radial glial scaffold. Cerebral Cortex 13,634–640 (2003).
  • •Demonstrates the relationship of reelin to radial glial patterns in the hippocampus in animal models. Parallel studies are shown suggesting possible dysfunction of the reelin pathway in human epilepsy tissues.
  • Maldonado M, Baybis M, Newman D et al. Expression of ICAM-1, TNF-a, NFKB and MAPK in tubers of the tuberous sclerosis complex. NeurobioL Dis. 14, 279–290 (2003).
  • Shan W Yoshida M, Wu XR, Huntley GW, Colman DR. Neural N-cadherin a synaptic adhesion molecule is induced in hippocampal mossy fibre sprouts by seizures. j Neurosci. Res. 69,292–304 (2004).
  • Fujita M, Aihara N, Yamamoto M et al. Regulation of rat hippocampal neural cadherin in kainic acid induced seizures. Neurosci. Lett. 297,13–16 (2001).
  • Aronica E, Troost D, Rozemuller AJ et al. Expression and regulation of voltage-gated sodium channel B1 subunit protein in human gliosis associated pathologies. Acta NeuropathoL 105,515–523 (2003).
  • Vezzani A, Moneta D, Richichi C et al. Functional role of pro-inflammatory and anti-inflammatory cytokines in seizures. Adv. Exp. Med. Biol. 548,123–133 (2004).
  • Cresper A, Coubes P, Rousset MC et al. Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal sclerosis. Brain Res. 952,159–169 (2002).
  • Kempermann G, Jessberger S, Steiner B, Kronenberg G. Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 27(8), 447–452(2004).
  • Schousboe A. Role of astrocytes in the maintenance and modulation of glutamatergic and GABAergic neurotransmission. Neurochem. Res. 28, 347–352 (2003).
  • Seifert G, Huttmann K, Schramm J, Steinhauser C. Enhanced relative expression of glutamate receptor subunits in hippocampal astrocytes of epilepsy patients with Ammon's horn sclerosis. Neurosci. 24,1996–2003 (2004).
  • Avail M, Louvel J, Mattia D et aL Epileptiform synchronisation in the human dysplastic cortex. Epileptic Disord. 2, S45–550 (2003).
  • Najm I, Ying Z, Babb T et al. Mechanisms of epileptogenicity in cortical dysplasias. Neurology 62, S9—S13 (2004).
  • ••Review of the potential cellularmechanisms causing cortical dysplasia to be epieleptogenic, including alterations to glutamate and y-aminobutyric acid receptors.
  • Urbach H, Scheffler B, Heinrichsmeier T et al. Focal cortical dysplasia of Taylor's Balloon cell type, A clinicopathological entity with characteristic neuroimaging and histopathological features and favourable post surgical outcome. Epilepsia 43,33–40 (2003).
  • Avail M, Bernasconi A, Mattia D et al. Epileptiform discharges in the human dysplastic neocortex, in vitro physiology and pharmacology. Ann. Neurol 46, 816–826 (1999).
  • Mathern GW, Cepeda C, Hurst TS et al. Neuron recording from pediatric epilepsy surgery patients. Epilepsia 41, S162—S167 (2002).
  • D'Antuono M, Louvel J, Kohling R et al. GABA a receptor-dependent synchronization leads to ictogenesis in the human dysplastic cortex. Brain 127, 1626–1640 (2000).
  • Ying Z, Babb TL, Comair YG et aL Induced expression of NMDAR2 proteins and differential expression of NMDAR1 splice variants in dysplastic neurons of human epileptic neocortex. I NeuropathoL Exp. NeuroL 57,47–62 (1998).
  • Najm IM, Ying Z, Babb T et aL Epileptogenicity correlated with increased NMDA receptor subunit NR2VB in human focal cortical dysplasia. Epilepsia 41, 971–976 (2000).
  • Andre VM, Flores-Hernandez J, Cepeda C et aL NMDA receptor alterations in neurones from pediatric cortical dysplasia tissue. Cerebral Cortex 14,634–646 (2004).
  • Aronica E, Garter JA, Jansen GH et aL Expression and cell distribution of group I and group II metabotropic glutamate receptor subtypes in Taylor-type cortical dysplasia. Epilepsia 44,785–795 (2003).
  • Loup F, Wiesere HG, Yonekawa Y et al. Selective alterations in GABAA receptor subtypes in human temporal lobe epilepsy. Neurosci. 20,5401–5419 (2000).
  • Arelllano JI, Munoz A, Ballesteros-Yanez I, Sola RG, DeFelipe J. Histopathology and reorganisation of chandelier cells in the human epileptic sclerotic hippocampus. Brain 127,45–64 (2004).
  • •Demonstrates reorganization of the chandelier cell terminals in the dentate gyms and hippocampus using immunohistochemistry.
  • Magloczky Z, Winner L, Borhegyi Z et al. Changes in the distribution and connectivity of interneurons in the epileptic human dentate gyrus. Neuroscience 96, 7–25 (2004).
  • Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstine DH. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganisation in the adult rat hippocampus. j Neurosci. 17, 3727–3738 (2000).
  • Blumcke I, Schewe JC, Normal S et al. Increase of nestin neuronal precursor cells in the dentate gyrus of pediatric patients with early-onset temporal lobe epilepsy. Hippocampus 11, 311–321 (2001).
  • Rao MS, Shetty AK. Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur. j Neurosci. 19, 234–246 (2004).
  • Huttmann K, Sadgrove M, Wallraff et al. Seizures preferentially stimulate proliferation of radial glial like astrocytes in the dentate gyrus, functional and immunohistochemical analysis. Eur. Neurosci. 18,2769–2778 (2003).
  • Seri B, Garda-Verdugo JM, McEwen BS, Alvarez-Buylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus.j Neurosci. 21,7153–7160 (2001).
  • Howell OW, Scharfman HE, Herzog H, Sundstrom LE, Beck-Sickinger A, Gray WP. Neuropeptide Y is neuroproliferative for post-natal hippocampal precursor cells. J. Neurochem. 86,646–659 (2003).
  • Sisodiya SM, Lin WR, Harding BN et al. Drug resistance in epilepsy; expression of drug resistance proteins in common causes of refractory epilepsy. Bruin 125, 22–31 (2002).
  • Remy S, Gabriel S, Urban BW et al. A novel mechanism underlying drug resistance in chronic epilepsy. Ann. Neural. 52,469–479 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.