72
Views
15
CrossRef citations to date
0
Altmetric
Review

Acetylcholinergic neurotransmission and the β-amyloid cascade: implications for Alzheimer’s disease

Pages 277-284 | Published online: 10 Jan 2014

References

  • Fillit H, Hill JW, Futterman R. Health care utilization and costs of Alzheimer's disease: the role of co-morbid conditions, disease stage, and pharmacotherapy. Fam. Med. 34(7), 528–535 (2002).
  • Lutz W, Sanderson W, Scherbov S. The end of world population growth. Nature 412, 543–545 (2001).
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science297(5580), 353–356 (2002).
  • Mufson EJ, Ginsberg SD, Ikonomovic MD, DeKosky ST. Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J. Chem. Neuroanat.26(4), 233–242 (2003).
  • Herholz K, Weisenbach S, Zundorf G et al. In vivo study of acetylcholine esterase in basal forebrain, amygdala, and cortex in mild to moderate Alzheimer disease. Neuroimage 21(1), 136–143 (2004).
  • Lane RM, Kivipelto M, Greig NH. Acetylcholinesterase and its inhibition in Alzheimer disease. Clin. Neuropharmacol. 27(3), 141–149 (2004).
  • Gilmor ML, Erickson JD, Varoqui H et al. Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer's disease. J. Comp. Neurol. 411(4), 693–704 (1999).
  • Shinotoh H, Namba H, Fukushi K et al. Progressive loss of cortical acetylcholinesterase activity in association with cognitive decline in Alzheimer's disease: a positron emission tomography study. Ann. Neurol. 48(2), 194–200 (2000).
  • Frolich L. The cholinergic pathology in Alzheimer's disease – discrepancies between clinical experience and pathophysiological findings. J. Neural Transm. 109(7–8), 1003–1013 (2002).
  • Mufson EJ, Ma SY, Dills J et al. Loss of basal forebrain P75(NTR) immunoreactivity in subjects with mild cognitive impairment and Alzheimer's disease. J. Comp. Neurol. 443(2), 136–153 (2002).
  • Cummings JL. Use of cholinesterase inhibitors in clinical practice: evidence-based recommendations. Am. J. Geriatr. Psychiatry 11(2), 131–145 (2003).
  • Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 291(3), 317–324 (2004).
  • Arendt T, Bigl V, Tennstedt A, Arendt A. Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer's disease. Neuroscience 14(1), 1–14 (1985).
  • Mesulam MM. Alzheimer plaques and cortical cholinergic innervation. Neuroscience 17(1), 275–276 (1986).
  • Geula C, Mesulam MM, Saroff DM, Wu CK. Relationship between plaques, tangles, and loss of cortical cholinergic fibers in Alzheimer disease. J. Neuropathol. Exp. Neurol. 57(1), 63–75 (1998).
  • Beeri R, Andres C, Lev-Lehman E et al. Transgenic expression of human acetylcholinesterase induces progressive cognitive deterioration in mice. Curr. Biol. 5(9), 1063–1071 (1995).
  • Janus C, Pearson J, McLaurin J et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature408(6815), 979–982 (2000).
  • Sberna G, Saez-Valero J, Li QX et al. Acetylcholinesterase is increased in the brains of transgenic mice expressing the C-terminal fragment (CT100) of the β-amyloid protein precursor of Alzheimer's disease. J. Neurochem. 71(2), 723–731 (1998).
  • Struble RG, Cork LC, Whitehouse PJ, Price DL. Cholinergic innervation in neuritic plaques. Science216(4544), 413–415 (1982).
  • Geula C, Mesulam MM. Special properties of cholinesterases in the cerebral cortex of Alzheimer’s disease. Brain Res. 489, 185–189 (1989).
  • Carson KA, Geula C, Mesulam MM. Electron microscopic localization of cholinesterase activity in Alzheimer brain tissue. Brain Res. 540(1–2), 204–208 (1991).
  • Moran MA, Mufson EJ, Gomez-Ramos P. Colocalization of cholinesterases with β amyloid protein in aged and Alzheimer's brains. Acta Neuropathol. (Berl.). 85(4), 362–369 (1993).
  • Small DH, Michaelson S, Sberna G. Non-classical actions of cholinesterases: role in cellular differentiation, tumorigenesis and Alzheimer's disease. Neurochem. Int. 28(5–6), 453–483 (1996).
  • Mesulam MM, Geula C. Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann. Neurol. 36(5), 722–727 (1994).
  • Guillozet AL, Smiley JF, Mash DC, Mesulam MM. Butyrylcholinesterase in the life cycle of amyloid plaques. Ann. Neurol. 42(6), 909–918 (1997).
  • Kar S, Slowikowski SPM, Westaway D, Mount HTJ. Interactions between β-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J. Psychiatry Neurosci. 29(6), 427–441 (2004).
  • Inestrosa NC, Alvarez A, Perez CA et al. Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme. Neuron 16(4), 881–891 (1996).
  • Reyes AE, Perez DR, Alvarez A et al. A monoclonal antibody against acetylcholinesterase inhibits the formation of amyloid fibrils induced by the enzyme. Biochem. Biophys. Res. Commun.232(3), 652–655 (1997).
  • Alvarez A, Opazo C, Alarcon R, Garrido J, Inestrosa NC. Acetylcholinesterase promotes the aggregation of amyloid-β-peptide fragments by forming a complex with the growing fibrils. J. Mol. Biol. 272(3), 348–361 (1997).
  • Inestrosa NC, Alvarez A, Godoy J, Reyes A, De Ferrari GV. Acetylcholinesterase-amyloid-β-peptide interaction and Wnt signaling involvement in Aβ neurotoxicity. Acta Neurol. Scand. Suppl.176, 53–59 (2000).
  • De Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC. A structural motif of acetylcholinesterase that promotes amyloid β-peptide fibril formation. Biochemistry40(35), 10447–10457 (2001).
  • Barber KL, Mesulam MM, Krafft GA, Klein WL. Butyrylcholinesterase (BChE) alters the aggregation state of Aβ amyloid. Soc. Neurosci. Abstr. 22, 1172 (1996).
  • Hu J, Van Eldik LJ. Glial-derived proteins activate cultured astrocytes and enhance β amyloid-induced glial activation. Brain Res. 842(1), 46–54 (1999).
  • Small DH, Moir RD, Fuller SJ et al. A protease activity associated with acetylcholinesterase releases the membrane-bound form of the amyloid protein precursor of Alzheimer's disease. Biochemistry 30(44), 10795–10799 (1991).
  • Campos EO, Alvarez A, Inestrosa NC. Brain acetylcholinesterase promotes amyloid-β-peptide aggregation but does not hydrolyze amyloid precursor protein peptides. Neurochem. Res.23(2), 135–140 (1998).
  • Lahiri DK, Farlow MR, Sambamurti K. The secretion of amyloid β-peptides is inhibited in the tacrine-treated human neuroblastoma cells. Brain Res. Mol. Brain Res. 62(2), 131–140 (1998).
  • Lahiri DK, Farlow MR, Hintz N, Utsuki T, Greig NH. Cholinesterase inhibitors, β-amyloid precursor protein and amyloid β-peptides in Alzheimer's disease. Acta Neurol. Scand. Suppl. 176, 60–67 (2000).
  • Racchi M, Sironi M, Caprera A, Konig G, Govoni S. Short- and long-term effect of acetylcholinesterase inhibition on the expression and metabolism of the amyloid precursor protein. Mol. Psychiatry 6(5), 520–528 (2001).
  • Haroutunian V, Greig N, Pei XF, Utsuki T, Gluck R, Acevedo LD, Davis KL, Wallace WC. Pharmacological modulation of Alzheimer's β-amyloid precursor protein levels in the CSF of rats with forebrain cholinergic system lesions. Brain Res. Mol. Brain Res. 46(1–2), 161–168 (1997).
  • Basun H, Nilsberth C, Eckman C, Lannfelt L, Younkin S. Plasma levels of Aβ42 and Aβ40 in Alzheimer patients during treatment with the acetylcholinesterase inhibitor tacrine. Dement. Geriatr. Cogn. Disord. 14(3), 156–160 (2002).
  • Borroni B, Colciaghi F, Pastorino L et al. Amyloid precursor protein in platelets of patients with Alzheimer disease: effect of acetylcholinesterase inhibitor treatment. Arch. Neurol. 58(3), 442–446 (2001).
  • Nordberg A, Alafuzoff I, Winblad B. Nicotinic and muscarinic receptor subtypes in the human brain: changes with aging and dementia. J. Neurosci. Res. 31, 103–111 (1992).
  • Lander CJ, Lee JM. Pharmacological drug treatment of Alzheimer’s disease: the cholinergic hypothesis revisited. J. Neuropathol. Exp. Neurol. 57, 719–731 (1998).
  • Warpman U, Alafuzoff I, Nordberg A. Coupling of muscarinic receptors to GTP proteins in postmortem human brain – alterations in Alzheimer’s disease. Neurosci. Lett. 150, 39–43 (1993).
  • Nitsch RM, Slack BE, Wurtman RJ, Growdon JH. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258(5080), 304–307 (1992).
  • Wolf BA, Wertkin AM, Jolly YC et al. Muscarinic regulation of Alzheimer's disease amyloid precursor protein secretion and amyloid β-protein production in human neuronal NT2N cells. J. Biol. Chem. 270(9), 4916–4922 (1995).
  • Rossner S, Ueberham U, Yu J et al. In vivo regulation of amyloid precursor protein secretion in rat neocortex by cholinergic activity. Eur. J. Neurosci. 9(10), 2125–2134 (1997).
  • Rossner S, Ueberham U, Schliebs R, Perez-Polo JR, Bigl V. The regulation of amyloid precursor protein metabolism by cholinergic mechanisms and neurotrophin receptor signaling. Prog. Neurobiol. 56(5), 541–569 (1998).
  • McGehee DS, Role LW. Physiological diversity of nicotine acetylcholine receptors expressed by vertebrate neurons. Ann. Rev. Physiol. 57, 521–546 (1995).
  • Colquhoun LM, Patrick JW. Pharmacology of neuronal nicotinic acetylcholine receptor subtypes. Adv. Pharmacol. 39, 191–220 (1997).
  • Drisdel RC, Green WN. Neuronal α-bungarotoxin receptors are α7 subunit homomers. J. Neurosci.20, 133–139 (2000).
  • Kellar KJ. Muscarinic and nicotinic binding sites in Alzheimer’s disease cerebral cortex. Brain Res. 436, 62–68 (1987).
  • Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 66, 137–147 (1999).
  • Nordberg A, Lundqvist H, Hartvig P, Lilja A, Langstrom B. Kinetic analysis of regional (S)(-)11C-nicotine binding in normal and Alzheimer brains – in vivo assessment using position emission tomography. Alzheimer Dis. Assoc. Disord. 9, 21–27 (1995).
  • Wang HY, Lee DHS, Davis CB, Shank RP. Amyloid peptide Aβ1–42 binds selectively and with picomolar affinity to α7 nicotinic acetylcholine receptors. J. Neurochem. 75, 1155–1161 (2000).
  • Liu Q, Kawai H, Berg DK. β-Amyloid peptide blocks the response of α7-containing nicotinic receptors on hippocampal neurons. Proc. Natl Acad. Sci. USA 98, 4734–4739 (2001).
  • Pettit DL, Shao Z, Yakel JL. β-Amyloid1–42 peptide directly modulates nicotinc receptors in the rat hippocampal slice. J. Neurosci. 21, RC120–124 (2001).
  • Lee DHS, Wang HY. Differential physiologic responses of α7 nicotinic acetylcholine receptors to β-amyloid1–40 and β-amyloid1–42. J. Neurobiol. 55, 25–30 (2003).
  • Graves AB, van Duijn CM, Chandra V et al. Alcohol and tobacco consumption as risk factors for Alzheimer’s disease: a collaborative re-analysis of case-control studies. Int. J. Epidemiology20(Suppl. 2), S48–S57 (1991).
  • Lee PN. Smoking and Alzheimer’s disease: a review of the epidemiological evidence. Neuroepidemiology 13, 131–144 (1994).
  • Breteler MM. Vascular involvement in cognitive decline and dementia. Epidemiologic evidence from the Rotterdam Study and the Rotterdam Scan Study. Ann. NY Acad. Sci. 903, 457–465 (2000).
  • Breteler MM. Vascular risk factors for Alzheimer's disease: an epidemiologic perspective. Neurobiol. Aging 21(2), 153–60 (2000).
  • De la Torre JC. Alzheimer disease as a vascular disorder: nosological evidence. Stroke 33(4), 1152–1162 (2002).
  • Sahakian BJ. The effect of nicotine on attention, information processing and short-term memory in patients with dementia of the Alzheimer’s type. Br. J. Psychiatry 154, 797–800 (1989).
  • Newhouse PA. Nicotinic treatment of Alzheimer’s disease. Biol. Psychiatry 49, 268–278 (2001).
  • Sacco KA, Bannon KL, George TP. Nicotinic receptor mechanisms and cognition in normal states and neuropsychiatric disorders. J. Psychopharmacol. 18(4), 457–474 (2004).
  • Hellström-Lindahl E, Mousavi M, Ravid R, Nordberg A. Reduced levels of Aβ40 and Aβ42 in brains of smoking controls and Alzheimer's patients. Neurobiol. Dis. 15(2), 351–360 (2004).
  • Ulrich J, Johannson-Locher G, Seiler WO, Stahelin HB. Does smoking protect form Alzheimer’s disease? Alzheimer-type changes in 301 unselected brains from patients with known smoking history. Acta. Neuropathol. (Berl.). 94, 450–454 (1997).
  • Perry E, Martin-Ruiz C, Lee M et al. Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur. J. Pharmacol. 393, 215–222 (2000).
  • Benwell ME, Balfour DJ, Anderson JM. Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain. J. Neurochem. 50(4), 1243–1247 (1988).
  • Salomon AR, Marcinowski KJ, Friedland RP, Zagorski MG. Nicotine inhibits amyloid formation by the β-peptide. Biochemistry 35, 13568–13578 (1996).
  • Kihara T, Shimohama S, Sawada H et al. Nicotinic receptor stimulation protects neurons against β-amyloid toxicity. Ann. Neurol. 42, 159–163 (1997).
  • Svedberg MM, Svensson AL, Johnson M et al. Upregulation of neuronal nicotinic receptor subunits α4, β2, and α7 in transgenic mice overexpressing human acetylcholinesterase. J. Mol. Neurosci. 18(3), 211–22 (2002).
  • Bednar I, Paterson D, Marutle A et al. Selective nicotinic receptor consequences in APP(SWE) transgenic mice. Mol. Cell. Neurosci. 20(2), 354–365 (2002).
  • Nagele RG, D'Andrea MR, Anderson WJ, Wang HY. Intracellular accumulation of β-amyloid(1–42) in neurons is facilitated by the α7 nicotinic acetylcholine receptor in Alzheimer's disease. Neuroscience110(2), 199–211 (2002).
  • Nordberg A, Hellström-Lindahl E, Lee M et al. Chronic nicotine treatment reduces β-amyloidosis in the brain of a mouse model of Alzheimer's disease (APPsw). J Neurochem. 81(3), 655–658 (2002).
  • Hellström-Lindahl E, Court J, Keverne J et al. Nicotine reduces Aβ in the brain and cerebral vessels of APPsw mice. Eur. J. Neurosci. 19(10), 2703–2710 (2004).
  • Lahiri DK, Utsuki T, Chen D et al. Nicotine reduces the secretion of Alzheimer's β-amyloid precursor protein containing β-amyloid peptide in the rat without altering synaptic proteins. Ann. NY Acad. Sci. 965, 364–372 (2002).
  • Utsuki T, Shoaib M, Holloway HW et al. Nicotine lowers the secretion of the Alzheimer's amyloid β-protein precursor that contains amyloid β-peptide in rat. J. Alzheimer’s Dis. 4(5), 405–415 (2002).
  • Giaccone G, Tagliavini F, Linoli G et al. Down patients: extracellular preamyloid deposits precede neuritic degeneration and senile plaques. Neurosci. Lett. 97, 232–238 (1989).
  • Hyman BT, West HL, Rebeck GW, Lai F, Mann DM. Neuropathological changes in Down’s syndrome hippocampal formation. Effect of age and apolipoprotein E genotype. Arch. Neurology 52, 373–378 (1995).
  • Tanzi RE. Neuropathology in the Down’s syndrome brain. Nature Med. 2, 31–32 (1996).
  • Farlow MR. Do cholinesterase inhibitors slow progression of Alzheimer’s disease? Int. J. Clin. Pract.127(Suppl.), 37–44 (2002).
  • Janus C, Chishti MA, Westaway D. Transgenic mouse models of Alzheimer's disease. Biochim. Biophys. Acta 1502(1), 63–75 (2000).
  • Flood DG, Howland DS, Lin YG et al. Aβ deposition in a transgenic rat model of Alzheimer’s disease. Society for Neuroscience Meeting, New Orleans, USA, Abstract Program No. 842.22 (2003).
  • Head E, Milgram NW, Cotman CW. Chapter 30. Neurobiological models of aging in the dog and other vertebrate species. In: Functional Neurobiology of Aging. Hof PR, Mobbs CV (Eds). Academic Press, CA, USA, 457–472 (2001).
  • Liu L, Ikonen S, Heikkinen T, Tapiola T, van Groen T, Tanila H. The effects of long-term treatment with metrifonate, a cholinesterase inhibitor, on cholinergic activity, amyloid pathology, and cognitive function in APP and PS1 doubly transgenic mice. Exp. Neurol. 173(2), 196–204 (2002).
  • Shoghi-Jadid K, Small GW, Agdeppa ED et al. Localization of neurofibrillary tangles and β-amyloid plaques in the brains of living patients with Alzheimer disease. Am. J. Geriatr. Psychiatry10, 24–35 (2002).
  • Klunk WE, Engler H, Nordberg A et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann. Neurol. 55(3), 306–319 (2004).
  • Verhoeff NPLG, Wilson AA, Kung HF, Hussey D, Trop L, Houle S. β-Amyloid imaging in vivo and its possible implications for Alzheimer’s disease. In: Nuclear Medicine in Psychiatry. Otte A, Audenaert K, Peremans K, Van Heeringen K, Dierckx RA (Eds). Springer Verlag, Heidelberg, Germany, 191–199 (2004).
  • Verhoeff NPLG, Wilson AA, Takeshita S et al. In vivo imaging of Alzheimer disease β-amyloid with [11C]SB-13 PET. Am. J. Geriatr. Psychiatry 12, 584–595 (2004).
  • Petersen RC, Doody R, Kurz A et al. Current concepts in mild cognitive impairment. Arch. Neurol. 58(12), 1985–1992 (2001).
  • Selkoe DJ, Schenk D. Alzheimer’s disease; molecular understanding predicts amyloid-based therapeutics. Ann. Rev. Pharmacol. Toxicol. 43, 545–584 (2003).
  • Blennow K, Hampel H. CSF markers for incipient Alzheimer's disease. Lancet Neurol. 2(10), 605–613 (2003).
  • Ertekin-Taner N, Allen M, Fadale D et al. Genetic variants in a haplotype block spanning IDE are significantly associated with plasma Aβ42 levels and risk for Alzheimer disease. Hum. Mutat. 23(4), 334–342 (2004).
  • Small GW, Agdeppa ED, Kepe V et al. In vivo brain imaging of tangle burden in humans. J. Mol. Neurosci.19(3), 323–327 (2002).
  • Volkow ND, Ding YS, Fowler JS, Gatley SJ. Imaging brain cholinergic activity with positron emission tomography: its role in the evaluation of cholinergic treatments in Alzheimer's dementia. Biol. Psychiatry. 49(3), 211–220 (2001).
  • Verhoeff NPLG. Ligands for neuroreceptor imaging by positron or single-photon emission tomography. In: Nuclear Medicine in Clinical Diagnosis and Treatment. Third Edition. Ell PJ, Gambhir SS (Eds). Churchill Livingstone, NY, USA, 1275–1294 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.