58
Views
12
CrossRef citations to date
0
Altmetric
Review

Dendritic cell-based immunotherapy for malignant gliomas

, &
Pages 497-508 | Published online: 10 Jan 2014

References

  • Legler JM, Ries LA, Smith MA et al. Cancer surveillance series (corrected): brain and other central nervous system cancers: recent trends in incidence and mortality. J. Natl Cancer Inst. 91, 1382–1390 (1999).
  • Surawicz TS, Davis F, Freels S, Laws ER Jr, Menck HR. Brain tumor survival: results from the National Cancer Data Base. J. Neurooncol. 40, 151–160 (1998).
  • Ehtesham M, Samoto K, Kabos P et al. Treatment of intracranial glioma with in situ interferon-γ and tumor necrosis factor-α gene transfer. Cancer Gene Ther. 9, 925–934 (2002).
  • Liau LM, Black KL, Prins RM et al. Treatment of intracranial gliomas with bone marrow-derived dendritic cells pulsed with tumor antigens. J. Neurosurg. 90, 1115–1124 (1999).
  • Liu Y, Ehtesham M, Samoto K et al. In situ adenoviral interleukin-12 gene transfer confers potent and long-lasting cytotoxic immunity in glioma. Cancer Gene Ther. 9, 9–15 (2002).
  • Herrlinger U, Kramm CM, Johnston KM et al. Vaccination for experimental gliomas using GM–CSF-transduced glioma cells. Cancer Gene Ther. 4, 345–352 (1997).
  • Cserr HF, Knopf PM. Cervical lymphatics, the blood–brain barrier and the immunoreactivity of the brain: a new view. Immunol. Today 13, 507–512 (1992).
  • Becher B, Prat A, Antel JP. Brain–immune connection: immuno-regulatory properties of CNS-resident cells. Glia 29, 293–304 (2000).
  • Hickey WF. Leukocyte traffic in the central nervous system: the participants and their roles. Semin. Immunol.11, 125–137 (1999).
  • Anderson AC, Nicholson LB, Legge KL, Turchin V, Zaghouani H, Kuchroo VK. High frequency of autoreactive myelin proteolipid protein-specific T-cells in the periphery of naive mice: mechanisms of selection of the self-reactive repertoire. J. Exp. Med. 191, 761–770 (2000).
  • Stohlman SA, Hinton DR. Viral induced demyelination. Brain Pathol. 11, 92–106 (2001).
  • Kuchroo VK, Anderson AC, Waldner H, Munder M, Bettelli, E, Nicholson LB. T-cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T-cell repertoire. Ann. Rev. Immunol. 20, 101–123 (2002).
  • Adorini L. Immunotherapeutic approaches in multiple sclerosis. J. Neurol. Sci. 223, 13–24 (2004).
  • Yang JS, Xu LY, Xiao BG, Hedlund G, Link H. Laquinimod (ABR-215062) suppresses the development of experimental autoimmune encephalomyelitis, modulates the Th1/Th2 balance and induces the Th3 cytokine TGF-β in Lewis rats. J. Neuroimmunol. 156, 3–9 (2004).
  • Qing Z, Sewell D, Sandor M, Fabry Z. Antigen-specific T-cell trafficking into the central nervous system. J. Neuroimmunol. 105, 169–178 (2000).
  • Baron JL, Madri JA, Ruddle NH, Hashim G, Janeway CA Jr. Surface expression of α4 integrin by CD4 T-cells is required for their entry into brain parenchyma. J. Exp. Med. 177, 57–68, 1993.
  • Ford AL, Foulcher E, Lemckert FA, Sedgwick JD. Microglia induce CD4 T lymphocyte final effector function and death. J. Exp. Med. 184, 1737–1745 (1996).
  • Irani DN. Brain-derived gangliosides induce cell cycle arrest in a murine T-cell line. J. Neuroimmunol.87, 11–16 (1998).
  • Wilbanks GA Streilein JW. Fluids from immune privileged sites endow macrophages with the capacity to induce antigen-specific immune deviation via a mechanism involving transforming growth factor-β. Eur. J. Immunol. 22, 1031–1036 (1992).
  • Suvannavejh GC, Dal Canto MC, Matis LA, Miller SD. Fas-mediated apoptosis in clinical remissions of relapsing experimental autoimmune encephalomyelitis. J. Clin. Invest. 105, 223–231 (2000).
  • Bauer J, Bradl M, Hickley WF et al. T-cell apoptosis in inflammatory brain lesions: destruction of T-cells does not depend on antigen recognition. Am. J. Pathol. 153, 715–724 (1998).
  • Benveniste EN. Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J. Mol. Med.75, 165–173 (1997).
  • Merrill JE, Murphy SP. Inflammatory events at the blood brain barrier: regulation of adhesion molecules, cytokines, and chemokines by reactive nitrogen and oxygen species. Brain Behav. Immun. 11, 245–263 (1997). Mekala DJ, Geiger TL. Immunotherapy of autoimmune encephalomyelitis with re-directed CD4+CD25+ T-lymphocytes. Blood 105(5), 2090–2092 (2005).
  • Gordon LB, Nolan SC, Cserr HF, Knopf PM, Harling-Berg CJ. Growth of P511 mastocytoma cells in BALB/c mouse brain elicits CTL response without tumor elimination: a new tumor model for regional central nervous system immunity. J. Immunol. 159, 2399–2408 (1997).
  • Walker PR, Calzascia T, Schnuriger V et al. The brain parenchyma is permissive for full antitumor CTL effector function, even in the absence of CD4 T-cells. J. Immunol. 165, 3128–3135 (2000).
  • Graeber MB, Scheithauer BW, Kreutzberg GW. Microglia in brain tumors. Glia 40, 252–259 (2002).
  • Schneider J, Hofman FM, Apuzzo ML, Hinton DR. Cytokines and immunoregulatory molecules in malignant glial neoplasms. J. Neurosurg. 77, 265–273 (1992).
  • Fischer HG, Reichmann G. Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J. Immunol. 166, 2717–2726 (2001).
  • Yang T, Witham TF, Villa L et al. Glioma-associated hyaluronan induces apoptosis in dendritic cells via inducible nitric oxide synthase: implications for the use of dendritic cells for therapy of gliomas. Cancer Res. 62, 2583–2591 (2002).
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).
  • Gunzer M, Janich S, Varga G, Grabbe S. Dendritic cells and tumor immunity. Semin. Immunol. 13, 291–302 (2001).
  • Hart MN, Fabry Z. CNS antigen presentation. Trends Neurosci. 18, 475–481 (1995).
  • Ehtesham M, Kabos P, Gutierrez MA, Samoto K, Black KL, Yu JS. Intratumoral dendritic cell vaccination elicits potent tumoricidal immunity against malignant glioma in rats. J. Immunother. 26, 107–116 (2003).
  • Kikuchi T, Akasaki Y, Abe T, Ohno T. Intratumoral injection of dendritic and irradiated glioma cells induces anti-tumor effects in a mouse brain tumor model. Cancer Immunol. Immunother. 51, 424–430 (2002).
  • Imaizumi T, Kuramoto T, Matsunaga K et al. Expression of the tumor-rejection antigen SART1 in brain tumors. Int. J. Cancer 83, 760–764 (1999).
  • Murayama K, Kobayashi T, Imaizumi T et al. Expression of the SART3 tumor-rejection antigen in brain tumors and induction of cytotoxic T lymphocytes by its peptides. J. Immunother. 23, 511–518 (2000).
  • Nonaka Y, Tsuda N, Shichijo S et al. Recognition of ADP-ribosylation factor 4-like by HLA-A2-restricted and tumor-reactive cytotoxic T lymphocytes from patients with brain tumors. Tissue Antigens 60, 319–327 (2002).
  • Tsuda N, Nonaka Y, Shichijo S et al. UDP-Gal: βGlcNAc β1, 3-galactosyltransferase, polypeptide 3 (GALT3) is a tumour antigen recognised by HLA-A2-restricted cytotoxic T-lymphocytes from patients with brain tumour. Br. J. Cancer 87, 1006–1012 (2002).
  • Okano F, Storkus WJ, Chambers WH, Pollack IF, Okada H. Identification of a novel HLA-A*0201-restricted, cytotoxic T-lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor α2 chain. Clin. Cancer Res. 8, 2851–2855 (2002).
  • Liu G, Khong HT, Wheeler CJ, Yu JS, Black KL, Ying H. Molecular and functional analysis of tyrosinase-related protein (TRP)-2 as a cytotoxic T-lymphocyte target in patients with malignant glioma. J. Immunother. 26, 301–312 (2003).
  • Liu G, Yu JS, Zeng G et al. AIM-2: a novel tumor antigen is expressed and presented by human glioma cells. J. Immunother. 27, 220–226 (2004).
  • Liu G, Ying H, Zeng G, Wheeler CJ, Black KL, Yu JS. HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T-cells. Cancer Res. 64, 4980–4986 (2004).
  • Pardoll D. Does the immune system see tumors as foreign or self? Ann. Rev. Immunol. 21, 807–839 (2003).
  • Tacconi L, Stapleton S, Signorelli F, Thomas DG. Acquired immune deficiency syndrome (AIDS) and cerebral astrocytoma. Clin. Neurol. Neurosurg. 98, 149–151 (1996).
  • Wolff R, Zimmermann M, Marquardt G, Lanfermann H, Nafe R, Seifert V. Glioblastoma multiforme of the brain stem in a patient with acquired immunodeficiency syndrome. Acta Neurochir. (Wien) 144, 941–945 (2002).
  • Salvati M, Frati A, Caroli E et al. Glioblastoma in kidney transplant recipients. Report of five cases. J. Neurooncol. 63, 33–37 (2003).
  • Fenstermaker RA, Ciesielski MJ. Immunotherapeutic strategies for malignant glioma. Cancer Control 11, 181–191 (2004).
  • Yang L, Ng KY, Lillehei KO. Cell-mediated immunotherapy: a new approach to the treatment of malignant glioma. Cancer Control 10, 138–147 (2003).
  • Ehtesham M, Black KL, Yu JS. Recent progress in immunotherapy for malignant glioma: treatment strategies and results from clinical trials. Cancer Control 11, 192–207 (2004).
  • Zou JP, Morford LA, Chougnet C et al. Human glioma-induced immunosuppression involves soluble factor(s) that alters monocyte cytokine profile and surface markers. J. Immunol. 162, 4882–4892 (1999).
  • Roszman T, Elliott L, Brooks W. Modulation of T-cell function by gliomas. Immunol. Today 12, 370–374 (1991).
  • Weller M, Fontana A. The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-β, T-cell apoptosis, and the immune privilege of the brain. Brain Res. Rev. 21, 128–151 (1995).
  • Akasaki Y, Liu G, Chung NH, Ehtesham M, Black KL, Yu JS. Induction of a CD4+ T regulatory Type 1 response by cyclooxygenase-2-overexpressing glioma. J. Immunol. 173, 4352–4359 (2004).
  • Chaux P, Favre N, Bonnotte B, Moutet M, Martin M, Martin F. Tumor-infiltrating dendritic cells are defective in their antigen-presenting function and inducible B7 expression. A role in the immune tolerance to antigenic tumors. Adv. Exp. Med. Biol. 417, 525–528 (1997).
  • Chaux P, Favre N, Martin M, Martin F. Tumor-infiltrating dendritic cells are defective in their antigen-presenting function and inducible B7 expression in rats. Int. J. Cancer 72, 619–624 (1997).
  • Gabrilovich DI, Corak J, Ciernik IF, Kavanaugh D, Carbone DP. Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin. Cancer Res. 3, 483–490 (1997).
  • Troy AJ, Summers KL, Davidson PJ, Atkinson CH, Hart DN. Minimal recruitment and activation of dendritic cells within renal cell carcinoma. Clin. Cancer Res.4, 585–593 (1998).
  • Yu JS, Wheeler CJ, Zeltzer PM et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res. 61, 842–847 (2001).
  • Yamanaka R, Yajima N, Abe T et al. Dendritic cell-based glioma immunotherapy (review). Int. J. Oncol. 23, 5–15 (2003).
  • Kikuchi T, Akasaki Y, Irie M, Homma S, Abe T, Ohno T. Results of a Phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol. Immunother. 50, 337–344 (2001).
  • Kikuchi T, Abe T, Ohno T. Effects of glioma cells on maturation of dendritic cells. J. Neurooncol. 58, 125–130 (2002).
  • Yu JS, Lee PK, Ehtesham M, Samoto K, Black KL, Wheeler CJ. Intratumoral T-cell subset ratios and Fas ligand expression on brain tumor endothelium. J. Neurooncol. 64, 55–61 (2003).
  • Wintterle S, Schreiner B, Mitsdoerffer M et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res.63, 7462–7467 (2003).
  • Wiendl H, Mitsdoerffer M, Hofmeister V et al. A functional role of HLA-G expression in human gliomas: an alternative strategy of immune escape. J. Immunol. 168, 4772–4780 (2002).
  • Huettner C, Paulus W, Roggendorf W. Messenger RNA expression of the immunosuppressive cytokine IL-10 in human gliomas. Am. J. Pathol. 146, 317–322 (1995).
  • Harada M, Matsunaga K, Oguchi Y et al. The involvement of transforming growth factor β in the impaired antitumor T-cell response at the gut-associated lymphoid tissue (GALT). Cancer Res. 55, 6146–6151 (1995).
  • Roncarolo MG, Bacchetta R, Bordignon C, Narula S, Levings MK. Type 1 T-regulatory cells. Immunol. Rev. 182, 68–79 (2001).
  • Groux H, O'Garra A, Bigler M et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).
  • Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL. Regulatory T-cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).
  • Inobe J, Slavin AJ, Komagata Y, Chen Y, Liu L, Weiner HL. IL-4 is a differentiation factor for transforming growth factor-β secreting Th3 cells and oral administration of IL-4 enhances oral tolerance in experimental allergic encephalomyelitis. Eur. J. Immunol. 28, 2780–2790 (1998).
  • Levings MK, Sangregorio R, Sartirana C et al. Human CD25+CD4+ T suppressor cell clones produce transforming growth factor β, but not interleukin 10, and are distinct from type 1 T regulatory cells. J. Exp. Med. 196, 1335–1346 (2002).
  • Albert ML, Jegathesan M, Darnell RB. Dendritic cell maturation is required for the cross-tolerization of CD8+ T-cells. Nature Immunol. 2, 1010–1017 (2001).
  • Steinman RM, Turley S, Mellman I, Inaba K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med. 191, 411–416 (2000).
  • Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Ann. Rev. Immunol. 21, 685–711 (2003).
  • Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423–434 (2000).
  • Mahnke K, Schmitt E, Bonifaz L, Enk AH, Jonuleit H. Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol. Cell. Biol. 80, 477–483 (2002).
  • Yamazaki S, Iyoda T, Tarbell K et al. Direct expansion of functional CD25+ CD4+ regulatory T-cells by antigen-processing dendritic cells. J. Exp. Med. 198, 235–247 (2003).
  • Harizi H, Juzan M, Pitard V, Moreau JF, Gualde N. Cyclooxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. J. Immunol. 168, 2255–2263 (2002).
  • Leslie CC. Properties and regulation of cytosolic phospholipase A2. J. Biol. Chem. 272, 16709–16712 (1997).
  • Shono T, Tofilon PJ, Bruner JM, Owolabi O, Lang FF. Cyclooxygenase-2 expression in human gliomas: prognostic significance and molecular correlations. Cancer Res. 61, 4375–4381 (2001).
  • Joki T, Heese O, Nikas DC et al. Expression of cyclooxygenase 2 (COX-2) in human glioma and in vitro inhibition by a specific COX-2 inhibitor, NS-398. Cancer Res. 60, 4926–4931 (2000).
  • Dix AR, Brooks WH, Roszman TL, Morford LA. Immune defects observed in patients with primary malignant brain tumors. J. Neuroimmunol. 100, 216–232 (1999).
  • Dermime S, Armstrong A, Hawkins RE, Stern PL. Cancer vaccines and immunotherapy. Br. Med. Bull. 62, 149–162 (2002).
  • Holladay FP, Heitz T, Wood GW. Antitumor activity against established intracerebral gliomas exhibited by cytotoxic T-lymphocytes, but not by lymphokine-activated killer cells. J. Neurosurg.77, 757–762 (1992).
  • Okada H, Pollack IF. Cytokine gene therapy for malignant glioma. Expert Opin. Biol. Ther. 4, 1609–1620 (2004).
  • Fong L, Engleman G. Dendritic cells in cancer immunotherapy. Ann. Rev. Immunol. 18, 245–273 (2000).
  • Yu JS, Burwick JA, Dranoff G, Breakefield XO. Gene therapy for metastatic brain tumors by vaccination with granulocyte-macrophage colony-stimulating factor-transduced tumor cells. Hum. Gene Ther. 8, 1065–1072 (1997).
  • Sobol RE, Fakhrai H, Shawler D et al. Interleukin-2 gene therapy in a patient with glioblastoma. Gene Ther. 2, 164–167 (1995).
  • Joki T, Kikuchi T, Akasaki Y, Saitoh S, Abe T, Ohno T. Induction of effective antitumor immunity in a mouse brain tumor model using B7–1 (CD80) and intercellular adhesive molecule 1 (ICAM-1; CD54) transfection and recombinant interleukin 12. Int. J. Cancer 82, 714–720 (1999).
  • Soos JM, Krieger JI, Stuve O et al. Malignant glioma cells use MHC class II transactivator (CIITA) promoters III and IV to direct IFNγ-inducible CIITA expression and can function as nonprofessional antigen presenting cells in endocytic processing and CD4+ T-cell activation. Glia 36, 391–405, (2001).
  • Heimberger AB, Crotty LE, Archer GE et al. Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma. J. Neuroimmunol. 103, 16–25 (2000).
  • Yamanaka R, Zullo SA, Tanaka R, Blaese M, Xanthopoulos KG. Enhancement of antitumor immune response in glioma models in mice by genetically modified dendritic cells pulsed with Semliki forest virus-mediated complementary DNA. J. Neurosurg. 94, 474–481 (2001).
  • Akasaki Y, Kikuchi T, Homma S, Abe T, Kofe D, Ohno T. Antitumor effect of immunizations with fusions of dendritic and glioma cells in a mouse brain tumor model. J. Immunother. 24, 106–113 (2001).
  • Witham TF, Erff ML, Okada H, Chambers WH, Pollack IF. 7-hydroxystaurosporine-induced apoptosis in 9L glioma cells provides an effective antigen source for dendritic cells and yields a potent vaccine strategy in an intracranial glioma model. Neurosurgery 50, 1327–1335 (2002).
  • Yamanaka R, Yajima N, Tsuchiya N et al. Administration of interleukin-12 and -18 enhancing the antitumor immunity of genetically modified dendritic cells that had been pulsed with Semliki forest virus-mediated tumor complementary DNA. J. Neurosurg. 97, 1184–1190 (2002).
  • Saito R, Mizuno M, Nakahara N et al. Vaccination with tumor cell lysate-pulsed dendritic cells augments the effect of IFN-β gene therapy for malignant glioma in an experimental mouse intracranial glioma. Int. J. Cancer 111, 777–782, (2004).
  • Mayordomo JI, Zorina T, Storkus WJ et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nature Med. 1, 1297–1302 (1995).
  • Soling A, Rainov NG. Dendritic cell therapy of primary brain tumors. Mol. Med. 7, 659–667 (2001).
  • Fecci PE, Mitchell DA, Archer GE et al. The history, evolution, and clinical use of dendritic cell-based immunization strategies in the therapy of brain tumors. J. Neurooncol. 64, 161–176 (2003).
  • Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H. The central role of CD4(+) T-cells in the antitumor immune response. J. Exp. Med. 188, 2357–2368 (1998).
  • Bourgeois C, Rocha B, Tanchot C. A role for CD40 expression on CD8+ T-cells in the generation of CD8+ T-cell memory. Science 297, 2060–2063 (2002).
  • Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).
  • Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998).
  • Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ. T-cell help for cytotoxic T-lymphocytes is mediated by CD40–CD40L interactions. Nature 393, 480–483 (1998).
  • Tatsumi T, Kierstead LS, Ranieri E et al. Disease-associated bias in T helper type 1 (Th1)/Th2 CD4(+) T-cell responses against MAGE-6 in HLA-DRB10401(+) patients with renal cell carcinoma or melanoma. J. Exp. Med. 196, 619–628 (2002).
  • Slager EH, Borghi, M, van der Minne CE et al. CD4+ Th2 cell recognition of HLA-DR-restricted epitopes derived from CAMEL: a tumor antigen translated in an alternative open reading frame. J. Immunol. 170, 1490–1497 (2003).
  • Gately MK, Renzetti LM, Magram J et al. The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Ann. Rev. Immunol. 16, 495–521 (1998).
  • Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H. Interleukin-18 regulates both Th1 and Th2 responses. Ann. Rev. Immunol. 19, 423–474 (2001).
  • Trinchieri G, Pflanz S, Kastelein RA. The IL-12 family of heterodimeric cytokines: new players in the regulation of T-cell responses. Immunity 19, 641–644 (2003).
  • Lankford CS, Frucht DM. A unique role for IL-23 in promoting cellular immunity. J. Leukoc. Biol. 73, 49–56 (2003).
  • Pirhonen J, Matikainen S, Julkunen I. Regulation of virus-induced IL-12 and IL-23 expression in human macrophages. J. Immunol. 169, 5673–5678 (2002).
  • Belladonna ML, Renauld JC, Bianchi R et al. IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J. Immunol. 168, 5448–5454 (2002).
  • Liu G, Ng H, Akasaki Y et al. Small interference RNA modulation of IL-10 in human monocyte-derived dendritic cells enhances the Th1 response. Eur. J. Immunol. 34, 1680–1687 (2004).
  • Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Ann. Rev. Immunol. 19, 683–765 (2001).
  • Kawashima I, Hudson SJ, Tsai V et al. The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum. Immunol. 59, 1–14 (1998).
  • Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E. Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nature Biotechnol. 16, 364–369 (1998).
  • Jingwu Z, Medaer R, Hashim GA, Chin Y, van den Berg-Loonen E, Raus JC. Myelin basic protein-specific T lymphocytes in multiple sclerosis and controls: precursor frequency, fine specificity, and cytotoxicity. Ann. Neurol.32, 330–338 (1992).
  • Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res. 64, 4973–4979 (2004).
  • Kikuchi T, Akasaki Y, Abe T et al. Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J. Immunother. 27, 452–459 (2004).
  • Inaba K, Inaba M, Naito M, Steinman RM. Dendritic cell progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo. J. Exp. Med. 178, 479–488 (1993).
  • Yamanaka R, Abe T, Yajima N et al. Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical Phase I/II trial. Br. J. Cancer 89, 1172–1179 (2003).
  • Wheeler CJ, Das A, Liu G, Yu JS, Black KL. Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin. Cancer Res. 10, 5316–5326 (2004).
  • Chu W, Pak BJ, Bani MR et al. Tyrosinase-related protein 2 as a mediator of melanoma specific resistance to cis-diamminedichloroplatinum(II): therapeutic implications. Oncogene 19, 395–402 (2000).
  • Liu G, Akasaki Y, Khong HT et al. Cytotoxic T-cell targeting of TRP-2 sensitizes human malignant glioma to chemotherapy. Oncogene (2005) (In Press).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.