238
Views
34
CrossRef citations to date
0
Altmetric
Review

Glucocorticoids in multiple sclerosis and experimental autoimmune encephalomyelitis

, &
Pages 1657-1670 | Published online: 09 Jan 2014

References

  • Hollenberg SM, Weinberger C, Ong ES et al. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature318(6047), 635–641 (1985).
  • Groyer A, Schweizer-Groyer G, Cadepond F, Mariller M, Baulieu EE. Antiglucocorticosteroid effects suggest why steroid hormone is required for receptors to bind DNA in vivo but not in vitro. Nature328(6131), 624–626 (1987).
  • Buttgereit F, Brand MD, Burmester GR. Equivalent doses and relative drug potencies for non-genomic glucocorticoid effects: a novel glucocorticoid hierarchy. Biochem. Pharmacol.58(2), 363–368 (1999).
  • Webster JI, Tonelli L, Sternberg EM. Neuroendocrine regulation of immunity. Annu. Rev. Immunol.20, 125–163 (2002).
  • Reichardt HM, Schütz G. Feedback control of glucocorticoid production is established during fetal development. Mol. Med.2(6), 735–744 (1996).
  • Jondal M, Pazirandeh A, Okret S. Different roles for glucocorticoids in thymocyte homeostasis? Trends Immunol.25(11), 595–600 (2004).
  • Pazirandeh A, Xue Y, Rafter I, Sjovall J, Jondal M, Okret S. Paracrine glucocorticoid activity produced by mouse thymic epithelial cells. FASEB J.13(8), 893–901 (1999).
  • Tuckermann JP, Kleiman A, McPherson KG, Reichardt HM. Molecular mechanisms of glucocorticoids in the control of inflammation and lymphocyte apoptosis. Crit. Rev. Clin. Lab. Sci.42(1), 71–104 (2005).
  • Screpanti I, Morrone S, Meco D et al. Steroid sensitivity of thymocyte subpopulations during intrathymic differentiation. Effects of 17β-estradiol and dexamethasone on subsets expressing T cell antigen receptor or IL-2 receptor. J. Immunol.142(10), 3378–3383 (1989).
  • Wang D, Müller N, McPherson KG, Reichardt HM. Glucocorticoids engage different signal transduction pathways to induce apoptosis in thymocytes and mature T cells. J. Immunol.176(3), 1695–1702 (2006).
  • Frankfurt O, Rosen ST. Mechanisms of glucocorticoid-induced apoptosis in hematologic malignancies: updates. Curr. Opin. Oncol.16(6), 553–563 (2004).
  • Elenkov IJ. Glucocorticoids and the Th1/Th2 balance. Ann. NY Acad. Sci.1024, 138–146 (2004).
  • Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin. Sci.94(6), 557–572 (1998).
  • Moser M, De Smedt T, Sornasse T et al. Glucocorticoids down-regulate dendritic cell function in vitro and in vivo. Eur. J. Immunol.25(10), 2818–2824 (1995).
  • Kiefer R, Kreutzberg GW. Effects of dexamethasone on microglial activation in vivo: selective downregulation of major histocompatibility complex class II expression in regenerating facial nucleus. J. Neuroimmunol.34(2–3), 99–108 (1991).
  • Pitzalis C, Pipitone N, Perretti M. Regulation of leukocyte-endothelial interactions by glucocorticoids. Ann. NY Acad. Sci.966, 108–118 (2002).
  • Almawi WY, Beyhum HN, Rahme AA, Rieder MJ. Regulation of cytokine and cytokine receptor expression by glucocorticoids. J. Leukoc. Biol.60(5), 563–572 (1996).
  • Masferrer JL, Seibert K, Zweifel B, Needleman P. Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme. Proc. Natl Acad. Sci. USA89(9), 3917–3921 (1992).
  • Song IH, Buttgereit F. Non-genomic glucocorticoid effects to provide the basis for new drug developments. Mol. Cell. Endocrinol.246(1–2), 142–146 (2006).
  • Strähle U, Klock G, Schütz G. A DNA sequence of 15 base pairs is sufficient to mediate both glucocorticoid and progesterone induction of gene expression. Proc. Natl Acad. Sci. USA84(22), 7871–7875 (1987).
  • Jantzen HM, Strähle U, Gloss B et al. Cooperativity of glucocorticoid response elements located far upstream of the tyrosine aminotransferase gene. Cell49(1), 29–38 (1987).
  • Kelly EJ, Sandgren EP, Brinster RL, Palmiter RD. A pair of adjacent glucocorticoid response elements regulate expression of two mouse metallothionein genes. Proc. Natl Acad. Sci. USA94(19), 10045–11050 (1997).
  • Göttlicher M, Heck S, Herrlich P. Transcriptional cross-talk, the second mode of steroid hormone receptor. J. Mol. Med.76(7), 480–489 (1998).
  • Kamei Y, Xu L, Heinzel T et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell85(3), 403–414 (1996).
  • Reichardt HM, Kaestner KH, Tuckermann J et al. DNA binding of the glucocorticoid receptor is not essential for survival. Cell93(4), 531–541 (1998).
  • Reichardt HM, Tuckermann JP, Göttlicher M et al. Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor. Embo J.20(24), 7168–7173 (2001).
  • Buttgereit F, Scheffold A. Rapid glucocorticoid effects on immune cells. Steroids67(6), 529–534 (2002).
  • Limbourg FP, Huang Z, Plumier JC et al. Rapid nontranscriptional activation of endothelial nitric oxide synthase mediates increased cerebral blood flow and stroke protection by corticosteroids. J. Clin. Invest.110(11), 1729–1738 (2002).
  • Simoncini T, Fornari L, Mannella P et al. Novel non-transcriptional mechanisms for estrogen receptor signaling in the cardiovascular system. Interaction of estrogen receptor alpha with phosphatidylinositol 3-OH kinase. Steroids67(12), 935–939 (2002).
  • Bartholome B, Spies CM, Gaber T et al. Membrane glucocorticoid receptors (mGCR) are expressed in normal human peripheral blood mononuclear cells and up-regulated after in vitro stimulation and in patients with rheumatoid arthritis. FASEB J.18(1), 70–80 (2004).
  • Zhang Z, Burch PE, Cooney AJ et al. Genomic analysis of the nuclear receptor family: new insights into structure, regulation, and evolution from the rat genome. Genome Res.14(4), 580–590 (2004).
  • Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science307(5715), 1625–1630 (2005).
  • Sionov RV, Cohen O, Kfir S, Zilberman Y, Yefenof E. Role of mitochondrial glucocorticoid receptor in glucocorticoid-induced apoptosis. J. Exp. Med.203(1), 189–201 (2006).
  • Lu NZ, Cidlowski JA. Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol. Cell18(3), 331–342 (2005).
  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N. Engl. J. Med.343(13), 938–952 (2000).
  • Bjartmar C, Trapp BD. Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr. Opin. Neurol.14(3), 271–278 (2001).
  • Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Brück W. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain125(Pt 10), 2202–2212 (2002).
  • Lincoln MR, Montpetit A, Cader MZ et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat. Genet.37(10), 1108–1112 (2005).
  • McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med.11(3), 335–339 (2005).
  • Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell80(5), 695–705 (1995).
  • Zamvil SS, Steinman L. Diverse targets for intervention during inflammatory and neurodegenerative phases of multiple sclerosis. Neuron38(5), 685–688 (2003).
  • Friese MA, Fugger L. Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain128(Pt 8), 1747–1763 (2005).
  • Jacobsen M, Cepok S, Quak E et al. Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain125(Pt 3), 538–550 (2002).
  • Babbe H, Roers A, Waisman A et al. Clonal expansions of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med.192(3), 393–404 (2000).
  • Huseby ES, Liggitt D, Brabb T, Schnabel B, Ohlen C, Goverman J. A pathogenic role for myelin-specific CD8+ T cells in a model for multiple sclerosis. J. Exp. Med.194(5), 669–676 (2001).
  • Sun D, Whitaker JN, Huang Z et al. Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J. Immunol.166(12), 7579–7587 (2001).
  • Linker RA, Rott E, Hofstetter HH, Hanke T, Toyka KV, Gold R. EAE in β-2 microglobulin-deficient mice: axonal damage is not dependent on MHC-I restricted immune responses. Neurobiol. Dis.19(1–2), 218–228 (2005).
  • Gold R, Linington C, Lassmann H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain129(Pt 8), 1953–1971 (2006).
  • Gold R, Hartung HP, Toyka KV. Animal models for autoimmune demyelinating disorders of the nervous system. Mol. Med. Today6(2), 88–91 (2000).
  • Westland KW, Pollard JD, Sander S, Bonner JG, Linington C, McLeod JG. Activated non-neural specific T cells open the blood-brain barrier to circulating antibodies. Brain122(Pt 7), 1283–1291 (1999).
  • Komarek A, Dietrich FM. Chemical prevention of experimental allergic encephalomyelitis in rats: a quantitative evaluation of steroids and various non-steroid drugs. Arch. Int. Pharmacodyn. Ther.193(2), 249–257 (1971).
  • MacPherson A, Dinkel K, Sapolsky R. Glucocorticoids worsen excitotoxin-induced expression of pro-inflammatory cytokines in hippocampal cultures. Exp. Neurol.194(2), 376–383 (2005).
  • Diem R, Hobom M, Maier K et al. Methylprednisolone increases neuronal apoptosis during autoimmune CNS inflammation by inhibition of an endogenous neuroprotective pathway. J. Neurosci.23(18), 6993–7000 (2003).
  • Diem R, Sattler MB, Merkler D et al. Combined therapy with methylprednisolone and erythropoietin in a model of multiple sclerosis. Brain128(Pt 2), 375–385 (2005).
  • Pender MP, McCombe PA, Yoong G, Nguyen KB. Apoptosis of alpha β T lymphocytes in the nervous system in experimental autoimmune encephalomyelitis: its possible implications for recovery and acquired tolerance. J. Autoimmun.5(4), 401–410 (1992).
  • McCombe PA, Nickson I, Tabi Z, Pender MP. Corticosteroid treatment of experimental autoimmune encephalomyelitis in the Lewis rat results in loss of V β 8.2+ and myelin basic protein-reactive cells from the spinal cord, with increased total T-cell apoptosis but reduced apoptosis of V β 8.2+ cells. J. Neuroimmunol.70(2), 93–101 (1996).
  • Schmidt J, Elflein K, Stienekemeier M et al. Treatment and prevention of experimental autoimmune neuritis with superagonistic CD28-specific monoclonal antibodies. J. Neuroimmunol.140(1–2), 143–152 (2003).
  • Nguyen KB, McCombe PA, Pender MP. Increased apoptosis of T lymphocytes and macrophages in the central and peripheral nervous systems of Lewis rats with experimental autoimmune encephalomyelitis treated with dexamethasone. J. Neuropathol. Exp. Neurol.56(1), 58–69 (1997).
  • Leussink VI, Zettl UK, Jander S et al. Blockade of signaling via the very late antigen (VLA-4) and its counterligand vascular cell adhesion molecule-1 (VCAM-1) causes increased T-cell apoptosis in experimental autoimmune neuritis. Acta Neuropathol. (Berl.)103(2), 131–136 (2002).
  • Schmidt J, Metselaar JM, Wauben MH, Toyka KV, Storm G, Gold R. Drug targeting by long-circulating liposomal glucocorticosteroids increases therapeutic efficacy in a model of multiple sclerosis. Brain126(Pt 8), 1895–1904 (2003).
  • Paul C, Bolton C. Inhibition of blood–brain barrier disruption in experimental allergic encephalomyelitis by short-term therapy with dexamethasone or cyclosporin A. Int. J. Immunopharmacol.17(6), 497–503 (1995).
  • Dietrich JB. Endothelial cells of the blood–brain barrier: a target for glucocorticoids and estrogens? Front. Biosci.9, 684–693 (2004).
  • Rosenberg GA, Dencoff JE, Correa N Jr, Reiners M, Ford CC. Effect of steroids on CSF matrix metalloproteinases in multiple sclerosis: relation to blood–brain barrier injury. Neurology46(6), 1626–1632 (1996).
  • Karlstedt K, Sallmen T, Eriksson KS et al. Lack of histamine synthesis and down-regulation of H1 and H2 receptor mRNA levels by dexamethasone in cerebral endothelial cells. J. Cereb. Blood. Flow. Metab.19(3), 321–330 (1999).
  • Harkness KA, Adamson P, Sussman JD, Davies-Jones GA, Greenwood J, Woodroofe MN. Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium. Brain123(Pt 4), 698–709 (2000).
  • Heppner FL, Greter M, Marino D et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med.11(2), 146–152 (2005).
  • Golde S, Coles A, Lindquist JA, Compston A. Decreased iNOS synthesis mediates dexamethasone-induced protection of neurons from inflammatory injury in vitro. Eur. J. Neurosci.18(9), 2527–2537 (2003).
  • Flavin MP, Ho LT, Coughlin K. Neurotoxicity of soluble macrophage products in vitro – influence of dexamethasone. Exp. Neurol.145(2 Pt 1), 462–470 (1997).
  • Kleinert H, Euchenhofer C, Ihrig-Biedert I, Forstermann U. Glucocorticoids inhibit the induction of nitric oxide synthase II by down-regulating cytokine-induced activity of transcription factor nuclear factor-κ B. Mol. Pharmacol.49(1), 15–21 (1996).
  • Nguyen KB, Pender MP. Phagocytosis of apoptotic lymphocytes by oligodendrocytes in experimental autoimmune encephalomyelitis. Acta Neuropathol. (Berl.)95(1), 40–46 (1998).
  • Kerr DS, Campbell LW, Applegate MD, Brodish A, Landfield PW. Chronic stress-induced acceleration of electrophysiologic and morphometric biomarkers of hippocampal aging. J. Neurosci.11(5), 1316–1324 (1991).
  • Reder AT, Thapar M, Jensen MA. A reduction in serum glucocorticoids provokes experimental allergic encephalomyelitis: implications for treatment of inflammatory brain disease. Neurology44(12), 2289–2294 (1994).
  • Milligan NM, Newcombe R, Compston DA. A double-blind controlled trial of high dose methylprednisolone in patients with multiple sclerosis: 1. Clinical effects. J. Neurol. Neurosurg. Psychiatry50(5), 511–516 (1987).
  • Oliveri RL, Valentino P, Russo C et al. Randomized trial comparing two different high doses of methylprednisolone in MS: a clinical and MRI study. Neurology50(6), 1833–1836 (1998).
  • McDonald WI, Compston A, Edan G et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol.50(1), 121–127 (2001).
  • Keegan M, Konig F, McClelland R et al. Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet366(9485), 579–582 (2005).
  • Beck RW, Cleary PA, Anderson MM Jr et al. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. The Optic Neuritis Study Group. N. Engl. J. Med.326(9), 581–588 (1992).
  • Elenkov IJ, Chrousos GP. Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease. Trends Endocrinol. Metab.10(9), 359–368 (1999).
  • Hill N, Sarvetnick N. Cytokines: promoters and dampeners of autoimmunity. Curr. Opin. Immunol.14(6), 791–797 (2002).
  • Wilder RL. Neuroendocrine-immune system interactions and autoimmunity. Annu. Rev. Immunol.13, 307–338 (1995).
  • El-Etr M, Vukusic S, Gignoux L et al. Steroid hormones in multiple sclerosis. J. Neurol. Sci.233(1–2), 49–54 (2005).
  • Barrat FJ, Cua DJ, Boonstra A et al. In vitro generation of interleukin 10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J. Exp. Med.195(5), 603–616 (2002).
  • McGeachy MJ, Stephens LA, Anderton SM. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J. Immunol.175(5), 3025–3032 (2005).
  • Chen X, Murakami T, Oppenheim JJ, Howard OM. Differential response of murine CD4+CD25+ and CD4+CD25- T cells to dexamethasone-induced cell death. Eur. J. Immunol.34(3), 859–869 (2004).
  • Karagiannidis C, Akdis M, Holopainen P et al. Glucocorticoids upregulate FOXP3 expression and regulatory T cells in asthma. J. Allergy. Clin. Immunol.114(6), 1425–1433 (2004).
  • Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med.199(7), 971–979 (2004).
  • Tennakoon DK, Mehta RS, Ortega SB, Bhoj V, Racke MK, Karandikar NJ. Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis. J. Immunol.176(11), 7119–7129 (2006).
  • Ramirez F, Mason D. Induction of resistance to active experimental allergic encephalomyelitis by myelin basic protein-specific Th2 cell lines generated in the presence of glucocorticoids and IL-4. Eur. J. Immunol.30(3), 747–758 (2000).
  • Reichardt HM. Immunomodulatory activities of glucocorticoids: insights from transgenesis and gene targeting. Curr. Pharm. Des.10(23), 2797–2805 (2004).
  • MacPhee IA, Antoni FA, Mason DW. Spontaneous recovery of rats from experimental allergic encephalomyelitis is dependent on regulation of the immune system by endogenous adrenal corticosteroids. J. Exp. Med.169(2), 431–445 (1989).
  • Bolton C, O’Neill JK, Allen SJ, Baker D. Regulation of chronic relapsing experimental allergic encephalomyelitis by endogenous and exogenous glucocorticoids. Int. Arch. Allergy Immunol.114(1), 74–80 (1997).
  • Mason D, MacPhee I, Antoni F. The role of the neuroendocrine system in determining genetic susceptibility to experimental allergic encephalomyelitis in the rat. Immunology70(1), 1–5 (1990).
  • Smith T, Schmied M, Hewson AK, Lassmann H, Cuzner ML. Apoptosis of T cells and macrophages in the central nervous system of intact and adrenalectomized Lewis rats during experimental allergic encephalomyelitis. J. Autoimmun.9(2), 167–174 (1996).
  • Pekarski O, Bjork J, Hedlund G, Andersson G. The inhibitory effect in experimental autoimmune encephalomyelitis by the immunomodulatory drug Linomide (PNU-212616) is not mediated via release of endogenous glucocorticoids. Autoimmunity28(4), 235–241 (1998).
  • Pepin M, Pothier F, Barden N. Impaired type II glucocorticoid-receptor function in mice bearing antisense RNA transgene. Nature355, 725–728 (1992).
  • Marchetti B, Morale MC, Brouwer J et al. Exposure to a dysfunctional glucocorticoid receptor from early embryonic life programs the resistance to experimental autoimmune encephalomyelitis via nitric oxide-induced immunosuppression. J. Immunol.168(11), 5848–5859 (2002).
  • Cole TJ, Blendy JA, Monaghan AP et al. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev.9(13), 1608–1621 (1995).
  • Buttgereit F, Straub RH, Wehling M, Burmester GR. Glucocorticoids in the treatment of rheumatic diseases: an update on the mechanisms of action. Arthritis Rheum.50(11), 3408–3417 (2004).
  • Schmidt J, Gold R, Schonrock L, Zettl UK, Hartung HP, Toyka KV. T-cell apoptosis in situ in experimental autoimmune encephalomyelitis following methylprednisolone pulse therapy. Brain123(Pt 7), 1431–1441 (2000).
  • Schmied M, Breitschopf H, Gold R et al. Apoptosis of T lymphocytes in experimental autoimmune encephalomyelitis. Evidence for programmed cell death as a mechanism to control inflammation in the brain. Am. J. Pathol.143(2), 446–452 (1993).
  • Pender MP, Nguyen KB, McCombe PA, Kerr JF. Apoptosis in the nervous system in experimental allergic encephalomyelitis. J. Neurol. Sci.104(1), 81–87 (1991).
  • Mason D. Genetic variation in the stress response: susceptibility to experimental allergic encephalomyelitis and implications for human inflammatory disease. Immunol. Today12(2), 57–60 (1991).
  • Bolton C, Flower RJ. The effects of the anti-glucocorticoid RU 38486 on steroid-mediated suppression of experimental allergic encephalomyelitis (EAE) in the Lewis rat. Life Sci.45(1), 97–104 (1989).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.