85
Views
10
CrossRef citations to date
0
Altmetric
Review

Attention-deficit/hyperactivity disorder: neurophysiology, information processing, arousal and drug development

&
Pages 1721-1734 | Published online: 09 Jan 2014

References

  • Kube DA, Petersen MC, Palmer FB. Attention deficit hyperactivity disorder: comorbidity and medication use. Clin. Pediatr.41(7), 461–469 (2002).
  • Rowland AS, Umbach DM, Stallone L et al. Prevalence of medication treatment for attention deficit-hyperactivity disorder among elementary school children in Johnston County, North Carolina. Am. J. Public Health92(2), 231–234 (2002).
  • Connor DF. Preschool attention deficit hyperactivity disorder: a review of prevalence, diagnosis, neurobiology, and stimulant treatment. J. Dev. Behav. Pediatr.23(Suppl. 1), S1–S9 (2002).
  • Smucker WD, Hedayat M. Evaluation and treatment of ADHD. Am. Fam. Physician64(5), 817–829 (2001).
  • Pliszka SR, McCracken JT, Maas JW. Catecholamines in attention-deficit hyperactivity disorder: current perspectives. J. Am. Acad. Child Adolesc. Psychiatry35(3), 264–272 (1996).
  • Biederman J, Spencer T. Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol. Psychiatry46(9), 1234–1242 (1999).
  • Clarke AR, Barry RJ, McCarthy R, Selikowitz M. EEG differences between good and poor responders to methylphenidate and dexamphetamine in children with attention-deficit/hyperactivity disorder. Clin. Neurophysiol.113(2), 194–205 (2002).
  • Chabot RJ, Orgill A, Crawford G, Harris M, Serfontein G. Behavioral and electrophysiological predictors of treatment response to stimulants in children with attention disorders. J. Child Neurol.14, 343–351 (1999).
  • Johnstone J, Gunkelman J, Lunt J. Clinical database development: characterization of EEG phenotypes. Clin. EEG Neurosci.36(2), 99–107 (2005).
  • Lubar JF, White JN Jr, Swartwood MO, Swartwood JN. Methylphenidate effects on global and complex measures of EEG. Pediatr. Neurol.21(3), 633–637 (1999).
  • Clarke AR, Barry RJ, McCarthy R et al. Effects of stimulant medications on the EEG of children with attention-deficit/hyperactivity disorder predominantly inattentive type. Int. J. Psychophysiol.47(2), 129–137 (2003).
  • Hermens DF, Rowe DL, Gordon E, Williams LM. Integrative neuroscience approach to predict ADHD stimulant response. Expert Rev. Neurother.6(5), 753–763 (2006).
  • Lin SJ, Crawford SY, Lurvey PL. Trend and area variation in amphetamine prescription usage among children and adolescents in Michigan. Social Sci. Med.60(3), 617–626 (2005).
  • Bonati M, Clavenna A. The epidemiology of psychotropic drug use in children and adolescents. Int. Rev. Psychiatry17(3), 181–188 (2005).
  • Sangal RB, Sangal JM. What is a significant response in drug studies of attention-deficit/hyperactivity disorder: statistical significance is necessary, but is it sufficient? Psychopharmacol. Bull.37(2), 50–58 (2003).
  • Sangal RB, Sangal JM. Attention-deficit/hyperactivity disorder: cognitive evoked potential (P300) amplitude predicts treatment response to atomoxetine. Clin. Neurophysiol.116(3), 640–647 (2005).
  • Greydanus DE, Sloane MA, Rappley MD. Psychopharmacology of ADHD in adolescents. Adolesc. Med.13(3), 599–624 (2002).
  • Caballero J, Nahata MC. Atomoxetine hydrochloride for the treatment of attention-deficit/hyperactivity disorder. Clin. Ther.25(12), 3065–3085 (2003).
  • Biederman J, Spencer T, Wilens T. Evidence-based pharmacotherapy for attention-deficit hyperactivity disorder. Int. J. Neuropsychopharmacol.7(1), 77–97 (2004).
  • Spencer T, Biederman J, Wilens T et al. Effectiveness and tolerability of tomoxetine in adults with attention deficit hyperactivity disorder. Am. J. Psychiatry155(5), 693–695 (1998).
  • Hermens DF, Cooper NJ, Kohn M, Clarke S, Gordon E. Predicting stimulant medication response in ADHD: evidence from an integrated profile of neuropsychological, psychophysiological and clinical factors. J. Integr. Neurosci.4(1), 107–121 (2005).
  • Loo SK, Teale PD, Reite ML. EEG correlates of methylphenidate response among children with ADHD: a preliminary report. Biol. Psychiatry45(12), 1657–1660 (1999).
  • Clarke AR, Barry RJ, McCarthy R et al. Effects of stimulant medications on the EEG of children with attention-deficit/hyperactivity disorder predominantly inattentive type. Int. J. Psychophysiol.47(2), 129–137 (2003).
  • Clarke AR, Barry RJ, McCarthy R, Selikowitz M. Excess β activity in children with attention-deficit/hyperactivity disorder: an atypical electrophysiological group. Psychiatry Res.103(2–3), 205–218 (2001).
  • Rowe DL, Rennie CJ, Wright JJ, Robinson PA, Gordon E. Neurochemical mechanisms of theta, P2 & P3 abnormalities in attention deficit hyperactivity disorder (ADHD). Int. J. Psychophysiol.45(1–2), 75–76 (2002).
  • Levin ED. Nicotinic receptor subtypes and cognitive function. J. Neurobiol.53(4), 633–640 (2002).
  • Wilens TE, Verlinden MH, Adler LA, Wozniak PJ, West SA. ABT-089, a neuronal nicotinic receptor partial agonist, for the treatment of attention-deficit/hyperactivity disorder in adults: results of a pilot study. Biol. Psychiatry59(11), 1065–1070 (2006).
  • Pichat P, Bergis OE, Terranova JP et al. SSR180711, a novel selective α-7 nicotinic receptor partial agonist: (II) efficacy in experimental models predictive of activity against cognitive symptoms of schizophrenia. Neuropsychopharmacology (2006) (In press).
  • Hermens DF, Williams LM, Clarke S et al. Responses to methylphenidate in adolescent AD/HD: evidence from concurrently recorded autonomic (EDA) and central (EEG and ERP) measures. Int. J. Psychophysiol.58(1), 21–33 (2005).
  • Evans SW, Axelrod J, Langberg JM. Efficacy of a school-based treatment program for middle school youth with ADHD: pilot data. Behav. Modif.28(4), 528–547 (2004).
  • Miranda A, Presentacion MJ. Efficacy of cognitive-behavioral therapy in the treatment of children with ADHD, with and without aggressiveness. Psychol. Sch.37(2), 169–182 (2000).
  • Levy F. Implications for Australia of the multimodal treatment study of children with attention-deficit/hyperactivity disorder. Aust. NZJ. Psychiatry35(1), 45–48 (2001).
  • Niedermeyer E, Lopes da Silva FH. Electroencephalography: Basic Principles, Clinical Applications and Related Fields. Williams & Watkins, MD, USA (1999).
  • Gordon E, Cooper N, Rennie C, Hermens D, Williams LM. Integrative neuroscience: the role of a standardized database. Clin. EEG Neurosci.36(2), 64–75 (2005).
  • Petroff OA. GABA and glutamate in the human brain. Neuroscientist8(6), 562–573 (2002).
  • Suffczynski P, Kalitzin S, Pfurtscheller G, Lopes da Silva FH. Computational model of thalamo-cortical networks: dynamical control of α rhythms in relation to focal attention. Int. J. Psychophysiol.43(1), 25–40 (2001).
  • Thomson AM. Activity dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal neurons in vitro. J. Physiol.502(1), 131–147 (1997).
  • Greengard P. The neurobiology of slow synaptic transmission. Science294(5544), 1024–1030 (2001).
  • Hasselmo ME. Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav. Brain Res.67(1), 1–27 (1995).
  • Gioanni Y, Rougeot C, Clarke PB et al. Nicotinic receptors in the rat prefrontal cortex: increase in glutamate release and facilitation of mediodorsal thalamo-cortical transmission. Eur. J. Neurosci.11(1), 18–30 (1999).
  • Chu ZG, Zhou FM, Hablitz JJ. Nicotinic acetylcholine receptor-mediated synaptic potentials in rat neocortex. Brain Res.887(2), 399–405 (2000).
  • Koós T, Tepper JM. Dual cholinergic control of fast-spiking interneurons in the neostriatum. J. Neurosci.22(2), 529–535 (2002).
  • Sarter M, Bruno JP. Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neuroscience95(4), 933–952 (2000).
  • Kobayashi Y, Isa T. Sensory-motor gating and cognitive control by the brainstem cholinergic system. Neural Networks15(4–6), 731–741 (2002).
  • Jones BE. The organization of central cholinergic systems and their functional importance in sleep-waking states. Prog. Brain Res.98, 61–71 (1993).
  • Jasper HH, Tessier J. Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science172(983), 601–602 (1971).
  • Gross DW, Gotman J. Correlation of high-frequency oscillations with the sleep-wake cycle and cognitive activity in humans. Neuroscience94(4), 1005–1018 (1999).
  • Gray CM, McCormick DA. Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science274(5284), 109–113 (1996).
  • Balatoni B, Detari L. EEG related neuronal activity in the pedunculopontine tegmental nucleus of urethane anaesthetized rats. Brain Res.959(2), 304–311 (2003).
  • Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol.1(4), 455–473 (1949).
  • Sakai K, Crochet S. Differentiation of presumed serotonergic dorsal raphe neurons in relation to behavior and wake–sleep states. Neuroscience104(4), 1141–1155 (2001).
  • Shouse MN, Staba RJ, Saquib SF, Farber PR. Monoamines and sleep: microdialysis findings in pons and amygdala. Brain Res.860(1–2), 181–189 (2000).
  • Jacobs BL, Azmitia EC. Structure and function of the brain serotonin system. Physiol. Rev.72(1), 165–229 (1992).
  • Monti JM. Involvement of histamine in the control of the waking state. Life Sci.53(17), 1331–1338 (1993).
  • Reiner PB. Correlational analysis of central noradrenergic neuronal activity and sympathetic tone in behaving cats. Brain Res.378(1), 86–96 (1986).
  • Hallanger AE, Levey AI, Lee HJ, Rye DB, Wainer BH. The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J. Comp. Neurol.262(1), 105–124 (1987).
  • Semba K, Fibiger HC. Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study. J. Comp. Neurol.323(3), 387–410 (1992).
  • Crabtree JW. Organization in the somatosensory sector of the cat’s thalamic reticular nucleus. J. Comp. Neurol.366(2), 207–222 (1996).
  • Steriade M, Jones EG, McCormick DA. Thalamus. Organisation and Function. Vol. 1, Elsevier, Amsterdam, NY, USA (1997).
  • Montero VM. Attentional activation of the visual thalamic reticular nucleus depends on ‘top-down’ inputs from the primary visual cortex via corticogeniculate pathways. Brain Res.864(1), 95–104 (2000).
  • Sherman SM, Koch C. Thalamus. In: Synaptic Organization of the Brain. Shepherd GM (Ed.). Oxford University Press, NY, USA, 289–328 (1998).
  • Steriade M, McCarley RW. Brainstem Control of Wakefulness and Sleep. Plenum Press, NY, USA (1990).
  • Molle M, Marshall L, Fehm HL, Born J. EEG theta synchronization conjoined with α desynchronization indicate intentional encoding. Eur. J. Neurosci.15(5), 923–928 (2002).
  • Basar E, Basar-Eroglu C, Karakas S, Schurmann M. Gamma, α, delta, and theta oscillations govern cognitive processes. Int. J. Psychophysiol.39(2–3), 241–248 (2001).
  • Wright JJ. Brain dynamics: modeling the whole brain in action. In: Integrative Neuroscience: “Bringing Together Biological Psychological and Clinical Models of the Human Brain”. Gordon E (Ed.). Harwood Academic Publishers, Amsterdam, The Netherlands, 139–162 (2000).
  • Nunez PL. Neocortical Dynamics and Human EEG Rhythms, Oxford University Press, NY, USA (1995).
  • Lopes da Silva FH, Mesulam MM. Basic mechanisms of cerebral rhythmic activities. Electroencephalogr. Clin. Neurophysiol.76, 481–508 (1990).
  • Rowe DL, Robinson PA, Rennie CJ. Estimation of neurophysiological parameters from the waking EEG using a biophysical model of brain dynamics. J. Theor. Biol.231(3), 413–433 (2004).
  • McCormick DA. Neurotransmitter actions in the thalamus and cerebral cortex. J. Clin. Neurophysiol.9(2), 212–223 (1992).
  • Whishaw IQ, Robinson TE, Schallert T, De Ryck M, Ramirez VD. Electrical activity of the hippocampus and neocortex in rats depleted of brain dopamine and norepinephrine: relations to behavior and effects of atropine. Exp. Neurol.62(3), 748–767 (1978).
  • Dringenberg HC, Vanderwolf CH. Involvement of direct and indirect pathways in electrocorticographic activation. Neurosci. Biobehav. Rev.22(2), 243–257 (1998).
  • Brown RE, Stevens DR, Haas HL. The physiology of brain histamine. Prog. Neurobiol.63(6), 637–672 (2001).
  • Grillner P, Mercuri NB. Intrinsic membrane properties and synaptic inputs regulating the firing activity of the dopamine neurons. Behav. Brain Res.130(1–2), 149–169 (2002).
  • Miller RJ. Presynaptic receptors. Ann. Rev. Pharmacol. Toxicol.38, 201–227 (1998).
  • Vanderwolf CH. Cerebral activity and behavior: control by central cholinergic and serotonergic systems. Int. Rev. Neurobiol.30, 225–340 (1988).
  • Dringenberg HC. Alzheimer’s disease: more than a ‘cholinergic disorder’ – evidence that cholinergic-monoaminergic interactions contribute to EEG slowing and dementia. Behav. Brain Res.115(2), 235–249 (2000).
  • Duque A, Balatoni B, Detari L, Zaborszky L. EEG correlation of the discharge properties of identified neurons in the basal forebrain. J. Neurophysiol.84(3), 1627–1635 (2000).
  • Berntson GG, Shafi R, Sarter M. Specific contributions of the basal forebrain corticopetal cholinergic system to electroencephalographic activity and sleep/waking behaviour. Eur. J. Neurosci.16(12), 2453–2461 (2002).
  • Vanderwolf CH, Baker GB. Evidence that serotonin mediates non-cholinergic neocortical low voltage fast activity, non-cholinergic hippocampal rhythmical slow activity and contributes to intelligent behavior. Brain Res.374(2), 342–356 (1986).
  • Vanderwolf CH, Leung LW, Baker GB, Stewart DJ. The role of serotonin in the control of cerebral activity: studies with intracerebral 5,7-dihydroxytryptamine. Brain Res.504(2), 181–191 (1989).
  • Vanderwolf CH. The electrocorticogram in relation to physiology and behavior: a new analysis. Electroencephalogr. Clin. Neurophysiol.82(3), 165–175 (1992).
  • Kolmac CI, Mitrofanis J. Patterns of brainstem projection to the thalamic reticular nucleus. J. Comp. Neurol.396(4), 531–543 (1998).
  • Lavoie B, Parent A. Serotoninergic innervation of the thalamus in the primate: an immunohistochemical study. J. Comp. Neurol.312(1), 1–18 (1991).
  • Dori IE, Dinopoulos A, Parnavelas JG. The development of the synaptic organization of the serotonergic system differs in brain areas with different functions. Exp. Neurol.154(1), 113–125 (1998).
  • Cassel JC, Jeltsch H. Serotonergic modulation of cholinergic function in the central nervous system: cognitive implications. Neuroscience69(1), 1–41 (1995).
  • Gasbarri A, Sulli A, Pacitti C, McGaugh JL. Serotonergic input to cholinergic neurons in the substantia innominata and nucleus basalis magnocellularis in the rat. Neuroscience91(3), 1129–1142 (1999).
  • Steininger TL, Wainer BH, Blakely RD, Rye DB. Serotonergic dorsal raphe nucleus projections to the cholinergic and noncholinergic neurons of the pedunculopontine tegmental region: a light and electron microscopic anterograde tracing and immunohistochemical study. J. Comp. Neurol.382(3), 302–322 (1997).
  • Fillion G. Potential of 5-HT-moduline as a drug target for affective disorders. Curr. Opin. Invest. Drugs1(1), 104–109 (2000).
  • Funada M, Hara C. Differential effects of psychological stress on activation of the 5-hydroxytryptamine- and dopamine-containing neurons in the brain of freely moving rats. Brain Res.901(1–2), 247–251 (2001).
  • Reynolds CF. Sleep, mood, and serotonin: knitting up the raveled sleeve of care. Sleep Med. Rev.6(5), 337–339 (2002).
  • Ruotsalainen S, Miettinen R, MacDonald E, Koivisto E, Sirvio J. Blockade of muscarinic, rather than nicotinic, receptors impairs attention, but does not interact with serotonin depletion. Psychopharmacologia148(2), 111–123 (2000).
  • Sugita S, Shen KZ, North RA. 5-hydroxytryptamine is a fast excitatory transmitter at 5-HT3 receptors in rat amygdala. Neuron8(1), 199–203 (1992).
  • Andersen SL, Teicher MH. Serotonin laterality in amygdala predicts performance in the elevated plus maze in rats. Neuroreport10(17), 3497–3500 (1999).
  • Akirav I, Richter-Levin G. Mechanisms of amygdala modulation of hippocampal plasticity. J. Neurosci.22(22), 9912–9921 (2002).
  • Gottesmann C, Joncas S. Letter to the editor: hypothesis for the neurophysiology of dreaming. Sleep Res. Online3(1), 1–4 (2000).
  • Gottesmann C. The neurochemistry of waking and sleeping mental activity: the disinhibition-dopamine hypothesis. Psychiatry Clin. Neurosci.56(4), 345–354 (2002).
  • Wise RA. Brain reward circuitry: insights from unsensed incentives. Neuron36(2), 229–240 (2002).
  • Salamone JD, Correa M. Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav. Brain Res.137(1–2), 3–25 (2002).
  • Robbins TW. Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp. Brain Res.133(1), 130–138 (2000).
  • Stuss DT, Knight RT. Principles of Frontal Lobe Function. Oxford University Press, London, UK (2002).
  • Smiley JF, Subramanian M, Mesulam M-M. Monoaminergic-cholinergic interactions in the primate basal forebrain. Neuroscience93(3), 817–829 (1999).
  • Levin ED, Simon BB. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacologia138(3–4), 217–230 (1998).
  • Casamenti F, Deffenu G, Abbamondi AL, Pepeu G. Changes in cortical acetylcholine output induced by modulation of the nucleus basalis. Brain Res. Bull.16(5), 689–695 (1986).
  • Miller AD, Forster GL, Metcalf KM, Blaha CD. Excitotoxic lesions of the pedunculopontine differentially mediate morphine- and d-amphetamine-evoked striatal dopamine efflux and behaviors. Neuroscience111(2), 351–362 (2002).
  • Charara A, Smith Y, Parent A. Glutamatergic inputs from the pedunculopontine nucleus to midbrain dopaminergic neurons in primates: Phaseolus vulgaris-leucoagglutinin anterograde labeling combined with postembedding glutamate and GABA immunohistochemistry. J. Comp. Neurol.364(2), 254–266 (1996).
  • Blaha CD, Allen LF, Das S et al. Modulation of dopamine efflux in the nucleus accumbens after cholinergic stimulation of the ventral tegmental area in intact, pedunculopontine tegmental nucleus-lesioned, and laterodorsal tegmental nucleus-lesioned rats. J. Neurosci.16(2), 714–722 (1996).
  • Jackson MB. Presynaptic excitability. Int. Rev. Neurobiol.38, 201–251 (1995).
  • Sherman SM. Dual response modes in lateral geniculate neurons: mechanisms and functions. Visual Neuroscience13(2), 205–213 (1996).
  • McCormick DA. Cellular mechanisms underlying cholinergic and noradrenergic modulation of neuronal firing mode in the cat and guinea pig dorsal lateral geniculate nucleus. J. Neurosci.12(1), 278–289 (1992).
  • Meir A, Ginsburg S, Butkevich A et al. Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol. Rev.79(3), 1019–1088 (1999).
  • Dani JA. Overview of nicotinic receptors and their roles in the central nervous system. Biol. Psychiatry49(3), 166–174 (2001).
  • MacDermott AB, Role LW, Siegelbaum SA. Presynaptic ionotropic receptors and the control of transmitter release. Ann. Rev. Neurosci.22, 443–485 (1999).
  • Lambe EK, Picciotto MR, Aghajanian GK. Nicotine induces glutamate release from thalamocortical terminals in prefrontal cortex. Neuropsychopharmacology28(2), 216–225 (2003).
  • Zhu PJ, Chiappinelli VA. Nicotinic receptors mediate increased GABA release in brain through a tetrodotoxin-insensitive mechanism during prolonged exposure to nicotine. Neuroscience115(1), 137–144 (2002).
  • Fabian-Fine R, Skehel P, Errington ML et al. Ultrastructural distribution of the α7 nicotinic acetylcholine receptor subunit in rat hippocampus. J. Neurosci.21(20), 7993–8003 (2001).
  • Hatton GI, Yang QZ. Synaptic potentials mediated by α 7 nicotinic acetylcholine receptors in supraoptic nucleus. J. Neurosci.22(1), 29–37 (2002).
  • Levy RB, Aoki C. α 7 nicotinic acetylcholine receptors occur at postsynaptic densities of AMPA receptor-positive and -negative excitatory synapses in rat sensory cortex. J. Neurosci.22(12), 5001–5015 (2002).
  • Paterson D, Nordberg A. Neuronal nicotinic receptors in the human brain. Prog. Neurobiol.61(1), 75–111 (2000).
  • Vernino S, Amador M, Luetje CW, Patrick J, Dani JA. Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron8(1), 127–134 (1992).
  • Dani JA, Mayer ML. Structure and function of glutamate and nicotinic acetylcholine receptors. Curr. Opin. Neurobiol.5(3), 310–317 (1995).
  • Mulle C, Lena C, Changeux JP. Potentiation of nicotinic receptor response by external calcium in rat central neurons. Neuron8(5), 937–945 (1992).
  • Marchi M, Risso F, Viola C, Cavazzani P, Raiteri M. Direct evidence that release-stimulating α7* nicotinic cholinergic receptors are localized on human and rat brain glutamatergic axon terminals. J. Neurochem.80(6), 1071–1078 (2002).
  • Alkondon M, Albuquerque EX. Nicotinic acetylcholine receptor α7 and α4β2 subtypes differentially control GABAergic input to CA1 neurons in rat hippocampus. J. Neurophysiol.86(6), 3043–3055 (2001).
  • Puttfarcken PS, Jacobs I, Faltynek CR. Characterization of nicotinic acetylcholine receptor-mediated [(3)H]-dopamine release from rat cortex and striatum. Neuropharmacology39(13), 2673–2680 (2000).
  • Yokotani K, Wang M, Okada S, Murakami Y, Hirata M. Characterization of nicotinic acetylcholine receptor-mediated noradrenaline release from the isolated rat stomach. Eur. J. Pharmacol.402(3), 223–229 (2000).
  • Reuben M, Clarke PB. Nicotine-evoked [3H]5-hydroxytryptamine release from rat striatal synaptosomes. Neuropharmacology39(2), 290–299 (2000).
  • Mihailescu S, Guzman-Marin R, Dominguez MC, Drucker-Colin R. Mechanisms of nicotine actions on dorsal raphe serotoninergic neurons. Eur. J. Pharmacol.452(1), 77–82 (2002).
  • Xiang Z, Huguenard JR, Prince DA. Cholinergic switching within neocortical inhibitory networks. Science281(5379), 985–988 (1998).
  • Barazangi N, Role LW. Nicotine-induced enhancement of glutamatergic and GABAergic synaptic transmission in the mouse amygdala. J. Neurophysiol.86(1), 463–474 (2001).
  • Nobili L, Sannita WG. Cholinergic modulation, visual function and Alzheimer’s dementia. Vision Research37(24), 3559–3571 (1997).
  • Wilens TE, Biederman J, Wong J, Spencer TJ, Prince JB. Adjunctive donepezil in attention deficit hyperactivity disorder youth: case series. J. Child Adolesc. Psychopharmacol.10(3), 217–222 (2000).
  • Wonnacott S. Presynaptic nicotinic ACh receptors. Trends Neurosci.20(2), 92–98 (1997).
  • Role LW, Berg DK. Nicotinic receptors in the development and modulation of CNS synapses. Neuron16(6), 1077–1085 (1996).
  • Eddins D, Sproul AD, Lyford LK, McLaughlin JT, Rosenberg RL. Glutamate 172, essential for modulation of L247T α7 ACh receptors by Ca2+, lines the extracellular vestibule. Am. J. Physiol. Cell Physiol.283(5), C1454–C1460 (2002).
  • Seguela P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW. Molecular cloning, functional properties, and distribution of rat brain α 7: a nicotinic cation channel highly permeable to calcium. J. Neurosci.13(2), 596–604 (1993).
  • Liu QS, Kawai H, Berg DK. β-amyloid peptide blocks the response of α 7-containing nicotinic receptors on hippocampal neurons. Proc. Natl Acad. Sci.98(8), 4734–4739 (2001).
  • Frazier CJ, Buhler AV, Weiner JL, Dunwiddie TV. Synaptic potentials mediated via α-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons. J. Neurosci.18(20), 8228–8235 (1998).
  • Newman J. Thalamic contributions to attention and consciousness. Conscious. Cogn.4(2), 172–193 (1995).
  • Mitchell AS, Dalrymple-Alford JC, Christie MA. Spatial working memory and the brainstem cholinergic innervation to the anterior thalamus. J. Neurosci.22(5), 1922–1928 (2002).
  • Usher M, Cohen JD, Servan-Schreiber D, Rajkowski J, Aston-Jones G. The role of locus coeruleus in the regulation of cognitive performance. Science283(5401), 549–554 (1999).
  • Aston-Jones G, Rajkowski J, Kubiak P, Alexinsky T. Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J. Neurosci.14(7), 4467–4480 (1994).
  • Foote SL, Aston-Jones G, Bloom FE. Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc. Natl Acad. Sci. USA77(5), 3033–3037 (1980).
  • Reese NB, Garcia-Rill E, Skinner RD. The pedunculopontine nucleus – auditory input, arousal and pathophysiology. Prog. Neurobiol.47(2), 105–133 (1995).
  • Krout KE, Belzer RE, Loewy AD. Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol.448(1), 53–101 (2002).
  • McAlonan K, Brown VJ, Bowman EM. Thalamic reticular nucleus activation reflects attentional gating during classical conditioning. J. Neurosci.20(23), 8897–8901 (2000).
  • Groenewegen HJ. Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience24(2), 379–431 (1988).
  • Matsumura M, Nambu A, Yamaji Y et al. Organization of somatic motor inputs from the frontal lobe to the pedunculopontine tegmental nucleus in the macaque monkey. Neuroscience98(1), 97–110 (2000).
  • Clarke NP, Bevan MD, Cozzari C, Hartman BK, Bolam JP. Glutamate-enriched cholinergic synaptic terminals in the entopeduncular nucleus and subthalamic nucleus of the rat. Neuroscience81(2), 371–385 (1997).
  • Higo S, Matsuyama T, Kawamura S. Direct projections from the pedunculopontine and laterodorsal tegmental nuclei to area 17 of the visual cortex in the cat. Neurosci. Res.26(2), 109–118 (1996).
  • Reese NB, Garcia-Rill E, Skinner RD. Auditory input to the pedunculopontine nucleus: II. Unit responses. Brain Res. Bull.37(3), 265–273 (1995).
  • Inglis WL, Olmstead MC, Robbins TW. Selective deficits in attentional performance on the 5-choice serial reaction time task following pedunculopontine tegmental nucleus lesions. Behav. Brain Res.123(2), 117–131 (2001).
  • Steckler T, Inglis W, Winn P, Sahgal A. The pedunculopontine tegmental nucleus: a role in cognitive processes? Brain Res. Rev.19(3), 298–318 (1994).
  • Uhlrich DJ, Tamamaki N, Murphy PC, Sherman SM. Effects of brain stem parabrachial activation on receptive field properties of cells in the cat’s lateral geniculate nucleus. J. Neurophysiol.73(6), 2428–2447 (1995).
  • Dellu F, Mayo W, Cherkaoui J, Le Moal M, Simon H. Learning disturbances following excitotoxic lesion of cholinergic pedunculo-pontine nucleus in the rat. Brain Res.544(1), 126–132 (1991).
  • Dunbar JS, Hitchcock K, Latimer M et al. Excitotoxic lesions of the pedunculopontine tegmental nucleus of the rat. II. Examination of eating and drinking, rotation, and reaching and grasping following unilateral ibotenate or quinolinate lesions. Brain Res.589(2), 194–206 (1992).
  • Sakai K. Some anatomical and physiological properties of ponto-mesencephalic tegmental neurons with special reference to the PGO waves and postural atonia during paradoxical sleep in the cat. In: The Reticular Formation Revisited. Hobson JA, Brazier MAB (Eds). Raven Press, NY, USA, 427–447 (1980).
  • Dormont JF, Conde H, Farin D. The role of the pedunculopontine tegmental nucleus in relation to conditioned motor performance in the cat. I. Context-dependent and reinforcement-related single unit activity. Exp. Brain Res.121(4), 401–410 (1998).
  • Koch M, Kungel M, Herbert H. Cholinergic neurons in the pedunculopontine tegmental nucleus are involved in the mediation of prepulse inhibition of the acoustic startle response in the rat. Exp. Brain Res.97(1), 71–82 (1993).
  • Gil Z, Connors BW, Amitai Y. Differential regulation of neocortical synapses by neuromodulators and activity. Neuron19(3), 679–686 (1997).
  • Lavine N, Reuben M, Clarke PB. A population of nicotinic receptors is associated with thalamocortical afferents in the adult rat: laminal and areal analysis. J. Comp. Neurol.380(2), 175–190 (1997).
  • Broide RS, Robertson RT, Leslie FM. Regulation of α7 nicotinic acetylcholine receptors in the developing rat somatosensory cortex by thalamocortical afferents. J. Neurosci.16(9), 2956–2971 (1996).
  • Lubin M, Erisir A, Aoki C. Ultrastructural immunolocalization of the α7 nAChR subunit in guinea pig medial prefrontal cortex. Ann. NY Acad. Sci.868, 628–632 (1999).
  • Hasselmo ME, Fehlau BP. Differences in time course of ACh and GABA modulation of excitatory synaptic potentials in slices of rat hippocampus. J. Neurophysiol.86(4), 1792–1802 (2001).
  • Sahin M, Bowen WD, Donoghue JP. Location of nicotinic and muscarinic cholinergic and mu-opiate receptors in rat cerebral neocortex: evidence from thalamic and cortical lesions. Brain Res.579(1), 135–147 (1992).
  • Kimura F, Fukuda M, Tsumoto T. Acetylcholine suppresses the spread of excitation in the visual cortex revealed by optical recording: possible differential effect depending on the source of input. Eur. J. Neurosci.11(10), 3597–3609 (1999).
  • Vidal C, Changeux JP. Nicotinic and muscarinic modulations of excitatory synaptic transmission in the rat prefrontal cortex in vitro.Neuroscience56(1), 23–32 (1993).
  • Levy F. The dopamine theory of attention deficit hyperactivity disorder (ADHD). Austr. NZ J. Psychiatry25(2), 277–283 (1991).
  • Kimura F. Cholinergic modulation of cortical function: a hypothetical role in shifting the dynamics in cortical network. Neurosci. Res.38(1), 19–26 (2000).
  • Biederman J, Spencer T. Non-stimulant treatments for ADHD. Eur. Child Adolesc. Psychiatry9(Suppl. 1), I51–I59 (2000).
  • Rowe DL, Robinson PA, Lazzaro I, Williams LM, Gordon E. Biophysical modelling of tonic measures of cortical activity (EEG) in attention deficit hyperactivity disorder (ADHD). Int. J. Neurosci.115(9), 1273–1305 (2005).
  • Conners CK, Levin ED, Sparrow E et al. Nicotine and attention in adult attention deficit hyperactivity disorder (ADHD). Psychopharmacol. Bull.32(1), 67–73 (1996).
  • Alkondon M, Pereira EF, Eisenberg HM, Albuquerque EX. Nicotinic receptor activation in human cerebral cortical interneurons: a mechanism for inhibition and disinhibition of neuronal networks. J. Neurosci.20(1), 66–75 (2000).
  • Tercyak KP, Lerman C, Audrain J. Association of attention-deficit/hyperactivity disorder symptoms with levels of cigarette smoking in a community sample of adolescents. J. Am. Acad. Child. Adolesc. Psychiatry41(7), 799–805 (2002).
  • Dunbar G, Demazieres A, Monreal A et al. Pharmacokinetics and safety profile of ispronicline (TC-1734), a new brain nicotinic receptor partial agonist, in young healthy male volunteers. J. Clin. Pharmacol.46(7), 715–726 (2006).
  • Barry RJ, Clarke AR, Johnstone SJ. A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clin. Neurophysiol.114(2), 171–183 (2003).
  • Amzica F, Steriade M. Electrophysiological correlates of sleep delta waves. Electroencephalogr. Clin. Neurophysiol.107(2), 69–83 (1998).
  • Rowell PP, Volk KA, Li J, Bickford ME. Investigations of the cholinergic modulation of gaba release in rat thalamus slices. Neuroscience116(2), 447–453 (2003).
  • Hu B, Steriade M, Deschenes M. The effects of brainstem peribrachial stimulation on perigeniculate neurons: the blockage of spindle waves. Neuroscience31(1), 1–12 (1989).
  • Steriade M. Corticothalamic resonance, states of vigilance and mentation. Neuroscience101(2), 243–276 (2000).
  • Barry RJ, Johnstone SJ, Clarke AR. A review of electrophysiology in attention-deficit/hyperactivity disorder: II. Event-related potentials. Clin. Neurophysiol.114(2), 184–198 (2003).
  • Wang YP, Kawai Y, Nakashima K. Rabbit P300-like potential depends on cortical muscarinic receptor activation. Neuroscience89(2), 423–427 (1999).
  • Hammond EJ, Meador KJ, Aung-Din R, Wilder BJ. Cholinergic modulation of human P3 event-related potentials. Neurology37(2), 346–350 (1987).
  • Pineda JA, Herrera C, Kang C, Sandler A. Effects of cigarette smoking and 12-h abstention on working memory during a serial-probe recognition task. Psychopharmacology139(4), 311–321 (1998).
  • Pineda JA, Westerfield M. Monkey P3 in an “oddball” paradigm: pharmacological support for multiple neural sources. Brain Res. Bull.31(6), 689–696 (1993).
  • Potter DD, Pickles CD, Roberts RC, Rugg MD. Scopolamine impairs memory performance and reduces frontal but not parietal visual P3 amplitude. Biol. Psychol.52(1), 37–52 (2000).
  • Rennie CJ, Robinson PA, Wright JJ. Unified neurophysiological model of EEG spectra and evoked potentials. Biol. Cybern.86(6), 457–471 (2002).
  • Lee KH, McCormick DA. Acetylcholine excites GABAergic neurons of the ferret perigeniculate nucleus through nicotinic receptors. J. Neurophysiol.73(5), 2123–2128 (1995).
  • Zhu JJ, Uhlrich DJ. Nicotinic receptor-mediated responses in relay cells and interneurons in the rat lateral geniculate nucleus. Neuroscience80(1), 191–202 (1997).
  • Castro-Alamancos MA, Calcagnotto ME. High-pass filtering of corticothalamic activity by neuromodulators released in the thalamus during arousal: in vitro and in vivo.J. Neurophysiol.85(4), 1489–1497 (2001).
  • Castro-Alamancos MA. Properties of primary sensory (lemniscal) synapses in the ventrobasal thalamus and the relay of hig-frequency sensory inputs. J. Neurophysiol.87(2), 946–953 (2002).
  • Clarke AR, Barry RJ, McCarthy R et al. Effects of stimulant medications on the EEG of children with attention-deficit/hyperactivity disorder predominantly inattentive type. Int. J. Psychophysiol.47(2), 129–137 (2003).
  • Mazurov A, Hauser T, Miller CH. Selective α7 nicotinic acetylcholine receptor ligands. Curr. Med. Chem.13(13), 1567–1584 (2006).
  • Frazier TW, Demaree HA, Youngstrom EA. Meta-analysis of intellectual and neuropsychological test performance in attention-deficit/hyperactivity disorder. Neuropsychology18(3), 543–555 (2004).
  • Rowe DL, Robinson PA, Gordon E. Stimulant drug action in attention deficit hyperactivity disorder (ADHD): inference of neurophysiological mechanisms via quantitative modelling. Clin. Neurophysiol.116, 324–335 (2004).
  • Purper-Ouakil D, Fourneret P, Wohl M, Reneric JP. Atomoxetine: a new treatment for attention deficit/hyperactivity disorder (ADHD) in children and adolescents. Encephale31(3), 337–348 (2005).
  • Buitelaar JK, Michelson D, Danckaerts M et al. A randomized, double-blind study of continuation treatment for attention-deficit/hyperactivity disorder after 1 year. Biol. Psychiatry (2006) (In Press).
  • Woodcock J. Pharmacogenetics: on the road to ‘personalized medicine’. FDA Consumer39(6), 44 (2005).
  • Iorga B, Herlem D, Barr E, Guillou C. Acetylcholine nicotinic receptors: finding the putative binding site of allosteric modulators using the “blind docking” approach. J. Mol. Model.12(3), 366–372 (2006).
  • Hay BP, Firman TK, Lumetta GJ et al. Toward the computer-aided design of metal ion sequestering agents. J. Alloys Compounds374(1–2), 416–419 (2004).
  • Ortiz AR, Gomez-Puertas P, Leo-Macias A et al. Computational approaches to model ligand selectivity in drug design. Curr. Top. Medicinal Chem.6(1), 41–55 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.