123
Views
15
CrossRef citations to date
0
Altmetric
Review

Role of genetics in the diagnosis and treatment of epilepsy

, &
Pages 1789-1800 | Published online: 09 Jan 2014

References

  • Shostak S, Ottman R. Ethical, legal and social dimensions of epilepsy genetics. Epilepsia47(10), 1595–1602 (2006).
  • Schulte U, Thumfart JO, Klocker N et al. The epilepsy-linked Lgi1 protein assembles into presynaptic Kv1 channels and inhibits inactivation by Kvbeta1. Neuron49(5), 697–706 (2006).
  • Zimprich F, Ronen GM, Stogmann W et al. Andreas Rett and benign familial neonatal convulsions revisited. Neurology67(5), 864–866 (2006).
  • Plouin P, Anderson E. Benign familial and non-familial neonatal seizures. In: Epileptic Syndromes in Infancy, Childhood and Adolesence. Roger J, Bureau M, Dravet C, Genton P, Tassinari C, Wolf P (Eds). John Libbey, Eastleigh, UK, 3–13 (1992).
  • Brown DA. Adams PR. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature283(5748), 673–676 (1980).
  • Singh NA, Westenskow P, Charlier C et al; BFNC Physician Consortium. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain126(Pt 12), 2726–2737 (2003).
  • Dedek K, Fusco L, Teloy N, Steinlein OK. Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2. Epilepsy Res.54(1), 21–27 (2003).
  • Coppola G, Castaldo P, Miraglia del Giudice E et al. A novel KCNQ2 K+ channel mutation in benign neonatal convulsions and centrotemporal spikes. Neurology61(1), 131–134 (2003).
  • Pereira S, Roll P, Krizova J et al. Complete loss of the cytoplasmic carboxyl terminus of the KCNQ2 potassium channel: a novel mutation in a large Czech pedigree with benign neonatal convulsions or other epileptic phenotypes. Epilepsia45(4), 384–390 (2004).
  • Tang B, Li H, Xia K et al. A novel mutation in KCNQ2 gene causes benign familial neonatal convulsions in a Chinese family. J. Neurol. Sci.221(1–2), 31–34 (2004).
  • Borgatti R, Zucca C, Cavallini A et al. A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardation. Neurology63(1), 57–65 (2004).
  • Claes LR, Ceulemans B, Audenaert D et al.De novo KCNQ2 mutations in patients with benign neonatal seizures. Neurology63(11), 2155–2158 (2004).
  • Bassi MT, Balottin U, Panzeri C et al. Functional analysis of novel KCNQ2 and KCNQ3 gene variants found in a large pedigree with benign familial neonatal convulsions (BFNC). Neurogenetics6(4), 185–193 (2005).
  • de Haan GJ, Pinto D, Carton D et al. A novel splicing mutation in KCNQ2 in a multigenerational family with BFNC followed for 25 years. Epilepsia47(5), 851–859 (2006).
  • Zhou X, Ma A, Liu X et al. Infantile seizures and other epileptic phenotypes in a Chinese family with a missense mutation of KCNQ2. Eur. J. Pediatr.165(10), 691–695 (2006).
  • Hirose S, Zenri F, Akiyoshi H et al. A novel mutation of KCNQ3 (c.925T-->C) in a Japanese family with benign familial neonatal convulsions. Ann. Neurology47(6), 822–826 (2000).
  • Hunter J, Maljevic S, Shankar A et al. Subthreshold changes of voltage-dependent activation of the K(V)7.2 channel in neonatal epilepsy. Neurobiol. Dis.24(1), 194–201 (2006).
  • Schwake M, Athanasiadu D, Beimgraben C et al. Structural determinants of M-type KCNQ (Kv7) K+ channel assembly. J. Neurosci.26(14), 3757–3766 (2006).
  • Soldovieri MV, Castaldo P, Iodice L et al. Decreased subunit stability as a novel mechanism for potassium current impairment by a KCNQ2 C terminus mutation causing benign familial neonatal convulsions. J. Biol. Chem.281(1), 418–428 (2006).
  • Dedek K, Kunath B, Kananura C, Reuner U, Jentsch TJ, Steinlein OK. Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proc. Natl Acad. Sci. USA98(21), 12272–12277 (2001).
  • Jentsch TJ. Neuronal KCNQ potassium channels: physiology and role in disease. Nat. Rev. Neurosci.1(1), 21–30 (2000).
  • Richards MC, Heron SE, Spendlove HE et al. Novel mutations in the KCNQ2 gene link epilepsy to a dysfunction of the KCNQ2-calmodulin interaction. J. Med. Genet.41(3), E35 (2004).
  • Vijai J, Kapoor A, Ravishankar HM et al. Genetic association analysis of KCNQ3 and juvenile myoclonic epilepsy in a South Indian population. Hum. Genet.113(5), 461–463 (2003).
  • Haug K, Hallmann K, Horvath S et al. No evidence for association between the KCNQ3 gene and susceptibility to idiopathic generalized epilepsy. Epilepsy Res.42(1), 57–62 (2000).
  • Striano P, Lispi ML, Gennaro E et al. Linkage analysis and disease models in benign familial infantile seizures: a study of 16 families. Epilepsia47(6), 1029–1034 (2006).
  • Scalmani P, Rusconi R, Armatura E et al. Effects in neocortical neurons of mutations of the Na(v)1.2 Na+ channel causing benign familial neonatal-infantile seizures. J. Neurosci.26(40), 10100–10109 (2006).
  • Singh NA, Charlier C, Stauffer D et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat. Genet.18(1), 25–29 (1998).
  • Dravet C. Les epilepsies graves de l’enfant. Vie. Med.8, 354–548 (1978).
  • Dravet C, Bureau M, Oguni H, Fukuyama Y, Cokar O. Severe myolconic epilepsy in infancy. In: Epileptic Syndromes in Infancy, Childhood and Adolesence. Roger J, Bureau M, Dravet C, Genton P, Tassinari C, Wolf P (Eds). John Libbey, Eastleigh, UK,66–79 (1992).
  • Hurst DL. Epidemiology of severe myoclonic epilepsy of infancy. Epilepsia31(4), 397–400 (1990).
  • Doose H, Lunau H, Castiglione E, Waltz S. Severe idiopathic generalized epilepsy of infancy with generalized tonic-clonic seizures. Neuropediatrics29, 229–238 (1998).
  • Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am. J. Hum. Genet.68, 1327–1332 (2001).
  • Harkin LA, Bowser DN, Dibbens et al. Truncation of the GABA(A)-receptor γ-2 subunit in a family with generalized epilepsy with febrile seizures plus. Am. J. Hum. Genet.70, 530–536 (2002).
  • Sugawara T, Mazaki-Miyazaki E, Ito M et al. Na-v-1.1 mutations cause febrile seizures associated with afebrile partial seizures. Neurology57(4), 703–705 (2001).
  • Fujiwara T, Sugawara T, Mazaki-Miyazaki E et al. Mutations of sodium channel α-subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic-clonic seizures. Brain126, 531–546 (2003).
  • Mulley JC, Scheffer IE, Petrou S, Dibbens LM, Berkovic SF, Harkin LA. SCN1A mutations and epilepsy. Hum. Mutat.25(6), 535–542 (2005).
  • Mulley JC, Nelson P, Guerrero S et al. A new molecular mechanism for severe myoclonic epilepsy of infancy: exonic deletions in SCN1A. Neurology67(6), 1094–1095 (2006).
  • Suls A, Claeys KG, Goossens D et al. Microdeletions involving the SCN1A gene may be common in SCN1A-mutation-negative SMEI patients. Hum. Mutat.27(9), 914–920 (2006).
  • Madia F, Striano P, Gennaro E et al. Cryptic chromosome deletions involving SCN1A in severe myoclonic epilepsy of infancy. Neurology67(7), 1230–1235 (2006).
  • Marini C, Mei D, Helen Cross J, Guerrini R. Mosaic SCN1A mutation in familial severe myoclonic epilepsy of infancy.Epilepsia47(10), 1737–1740 (2006).
  • Kanai K, Hirose S, Oguni H et al. Effect of localization of missense mutations in SCN1A on epilepsy phenotype severity. Neurology63(2), 329–334 (2004).
  • Meisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders. J. Clin. Invest.115(8), 2010–2017 (2005).
  • Rhodes TH, Vanoye CG, Ohmori I, Ogiwara I, Yamakawa K, George AL Jr. Sodium channel dysfunction in intractable childhood epilepsy with generalized tonic–clonic seizures. J. Physiol.569(Pt 2), 433–445 (2005).
  • Rhodes TH, Lossin C, Vanoye CG, Wang DW, George AL Jr. Noninactivating voltage-gated sodium channels in severe myoclonic epilepsy of infancy. Proc. Natl Acad Sci. USA101(30), 11147–11152 (2004).
  • Thomas P, Valton L, Genton P. Absence and myoclonic status epilepticus precipitated by antiepileptic drugs in idiopathic generalized epilepsy. Brain129(Pt 5), 1281–1292 (2006).
  • Buoni S, Orrico A, Galli L et al. SCN1A (2528delG) novel truncating mutation with benign outcome of severe myoclonic epilepsy of infancy. Neurology66(4), 606–607 (2006).
  • Scheffer IE, Berkovic SF. Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. Brain120 (Pt 3), 479–490 (1997).
  • Wallace RH, Wang DW, Singh R. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel β-1 subunit gene SCN1B. Nat. Genet.19, 366–370 (1998).
  • Baulac S, Gourfinkel-An I, Picard F et al. A second locus for familial generalized epilepsy with febrile seizures plus maps to chromosome 2q21-q33. Am. J. Hum. Genet.65, 1078–1085 (1999).
  • Moulard B, Guipponi M, Chaigne D, Mouthon D, Buresi C Malafosse A. Identification of a new locus for generalized epilepsy with febrile seizures plus (GEFS+) on chromosome 2q24-q33. Am. J. Hum. Genet.65, 1396–1400 (1999).
  • Escayg A, MacDonald BT, Meisler MH et al. Utations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. (Letter) Nat. Genet.24, 343–345 (2000).
  • Mantegazza M, Gambardella A, Rusconi RA et al. Identification of an Na(v)1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures. Proc. Natl Acad. Sci. USA102, 18177–18182, (2005).
  • Sugawara T, Tsurubuchi Y, Agarwala KL et al. A missense mutation of the Na+ channel α-II subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc. Natl Acad. Sci. USA98, 6384–6389, (2001). Note: Erratum. Proc. Natl Acad. Sci. USA 98 10515 (2001).
  • Ito M, Shirasaka Y, Hirose S, Sugawara T, Yamakawa K. Seizure phenotypes of a family with missense mutations in SCN2A. Pediatr. Neurol.31(2), 150–152 (2004).
  • Baulac S, Huberfeld G, Gourfinkel-An I. First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the γ-2-subunit gene. Nat. Genet.28, 46–48 (2001).
  • Audenaert D, Schwartz E, Claeys KG et al. A novel GABRG2 mutation associated with febrile seizures. Neurology67(4), 687–690 (2006).
  • Dibbens LM, Feng H-J, Richards MC. GABRD encoding a protein for extra- or peri-synaptic GABA-A receptors is a susceptibility locus for generalized epilepsies. Hum. Molec. Genet.13, 1315–1319 (2004).
  • Malacarne M, Madia F, Gennaro E et al. Lack of SCN1A mutations in familial febrile seizures. Epilepsia43(5), 559–562 (2002).
  • Scheffer IE, Bhatia KP, Lopes-Cendes I et al. Autosomal dominant nocturnal frontal lobe epilepsy. A distinctive clinical disorder. Brain118(Pt 1), 61–73 (1995).
  • Picard F, Scheffer IE. Recently defined genetic epilepsy syndromes. In: Epileptic Syndromes in Infancy, Childhood and Adolesence. Roger J, Bureau M, Dravet C, Genton P, Tassinari C, Wolf P (Eds). John Libbey, Eastleigh, UK,483–486 (1992).
  • Combi R, Ferini-Strambi L, Montruccoli A et al. Two new putative susceptibility loci for ADNFLE. Brain Res. Bull.67(4) 257–263 (2005).
  • Combi R, Dalpra L, Tenchini ML, Ferini-Strambi L. Autosomal dominant nocturnal frontal lobe epilepsy – a critical overview.J. Neurol.251(8), 923–934 (2004).
  • McLellan A, Phillips HA, Rittey C et al. Phenotypic comparison of two Scottish families with mutations in different genes causing autosomal dominant nocturnal frontal lobe epilepsy. Epilepsia44(4), 613–617 (2003).
  • Bonati MT, Combi R, Asselta R et al. Exclusion of linkage of nine neuronal nicotinic acetylcholine receptor subunit genes expressed in brain in autosomal dominant nocturnal frontal lobe epilepsy in four unrelated families. J. Neurol.249(8), 967–974 (2002).
  • Steinlein OK, Mulley JC, Propping P et al. A missense mutation in the neuronal nicotinic acetylcholine receptor α 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet.11(2), 201–303 (1995).
  • Saenz A, Galan J, Caloustian C et al. Autosomal dominant nocturnal frontal lobe epilepsy in a Spanish family with a Ser252Phe mutation in the CHRNA4 gene. Arch. Neurol.56(8), 1004–1009 (1999).
  • Hirose S, Iwata H, Akiyoshi H et al. A novel mutation of CHRNA4 responsible for autosomal dominant nocturnal frontal lobe epilepsy. Neurology53(8), 1749–1453 (1999).
  • Phillips HA, Marini C, Scheffer IE, Sutherland GR, Mulley JC, Berkovic SF. A de novo mutation in sporadic nocturnal frontal lobe epilepsy. Ann. Neurol.48(2), 264–267 (2000).
  • De Fusco M, Becchetti A, Patrignani A et al. The nicotinic receptor β 2 subunit is mutant in nocturnal frontal lobe epilepsy. Nat. Genet.26(3), 275–276 (2000).
  • Phillips HA, Favre I, Kirkpatrick M et al. CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. Am. J. Hum. Genet.68(1), 225–231 (2001).
  • Rozycka A, Skorupska E, Kostyrko A, Trzeciak WH. Evidence for S284L mutation of the CHRNA4 in a white family with autosomal dominant nocturnal frontal lobe epilepsy. Epilepsia44(8), 1113–1117 (2003).
  • Steinlein OK, Magnusson A, Stoodt J et al. An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. Hum. Mol. Genet.6(6), 943–947 (1997).
  • Bertrand D, Elmslie F, Hughes E et al. The CHRNB2 mutation I312M is associated with epilepsy and distinct memory deficits. Neurobiol. Dis.20(3), 799–804 (2005).
  • Matsushima N, Hirose S, Iwata H et al. Mutation (Ser284Leu) of neuronal nicotinic acetylcholine receptor α 4 subunit associated with frontal lobe epilepsy causes faster desensitization of the rat receptor expressed in oocytes. Epilepsy Res.48(3), 181–186 (2002).
  • Duga S, Asselta R, Bonati MT et al. Mutational analysis of nicotinic acetylcholine receptor β2 subunit gene (CHRNB2) in a representative cohort of Italian probands affected by autosomal dominant nocturnal frontal lobe epilepsy. Epilepsia43(4), 362–364 (2002).
  • Bisulli F, Tinuper P, Scudellaro E et al. A de novo LGI1 mutation in sporadic partial epilepsy with auditory features. Ann. Neurol.56(3), 455–456 (2004).
  • Suzuki T, Delgado-Escueta AV, Aguan K et al. Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nature Genet.36(8), 842–849 (2004).
  • Pal DK, Evgrafov OV, Tabares P, Zhang F, Durner M, Greenberg DA. BRD2 (RING3) is a probable major susceptibility gene for common juvenile myoclonic epilepsy. Am. J. Hum. Genet.73(2), 261–270 (2003).

Websites

  • NCBI SNP database www.ncbi.nlm.nih.gov/SNP/)
  • Human Mutation www.mrw.interscience.wiley.com/suppmat/1059-7794/suppmat/aid.0022.html

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.