45
Views
8
CrossRef citations to date
0
Altmetric
Perspective

The potential of stem cell therapies for neurological diseases

Pages 153-161 | Published online: 10 Jan 2014

References

  • Gerecht-Nir S, Itskovitz-Eldor J. Human embryonic stem cells: a potential source for cellular therapy. Am. J. Transplant 4(Suppl. 6), 51–57 (2004).
  • Arceci RJ. Progress and controversies in the treatment of pediatric acute myelogenous leukemia. Curr. Opin. Hematol. 9, 353–360 (2002).
  • Daley GQ, Goodell MA, Snyder EY. Realistic prospects for stem cell therapeutics. Hematology Am. Soc. Hematol. Educ. Program 398–418 (2003).
  • Krivit W. Stem cell bone marrow transplantation in patients with metabolic storage diseases. Adv. Pediatr. 49, 359–378 (2002).
  • Keirstead HS, Nistor G, Bernal G et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci. 25, 4694–4705 (2005).
  • Svendsen CN, Caldwell MA, Ostenfeld T. Human neural stem cells: isolation, expansion and transplantation. Brain Pathol. 9, 499–513 (1999).
  • Schwartz PH, Bryant PJ, Fuja TJ, Su H, O’Dowd DK, Klassen H. Isolation and characterization of neural progenitor cells from post-mortem human cortex. J. Neurosci. Res. 74, 838–851 (2003).
  • Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA, Gage FH. Cell culture. Progenitor cells from human brain after death. Nature 411, 42–43 (2001).
  • Quinones-Hinojosa A, Sanai N, Soriano-Navarro M et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J. Comp. Neurol. 494, 415–434 (2006).
  • Eriksson PS, Perfilieva E, Bjork-Eriksson T et al. Neurogenesis in the adult human hippocampus. Nature Med. 4, 1313–1317 (1998).
  • Nilsson M, Perfilieva E, Johansson U, Orwar O, Eriksson PS. Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J. Neurobiol. 39, 569–578 (1999).
  • Tamaki S, Eckert K, He D et al. Engraftment of sorted/expanded human central nervous system stem cells from fetal brain. J. Neurosci. Res. 69, 976–986 (2002).
  • Goldman JM, Horowitz MM. The international bone marrow transplant registry. Int. J. Hematol. 76(Suppl. 1), 393–397 (2002).
  • Klassen H, Schwartz MR, Bailey AH, Young MJ. Surface markers expressed by multipotent human and mouse neural progenitor cells include tetraspanins and non-protein epitopes. Neurosci. Lett. 312, 180–182 (2001).
  • Klassen H, Imfeld KL, Ray J, Young MJ, Gage FH, Berman MA. The immunological properties of adult hippocampal progenitor cells. Vision Res. 43, 947–956 (2003).
  • Hori J, Ng TF, Shatos M, Klassen H, Streilein JW, Young MJ. Neural progenitor cells lack immunogenicity and resist destruction as allografts. Stem Cells 21, 405–416 (2003).
  • Kempermann G, van PH, Gage FH. Activity-dependent regulation of neuronal plasticity and self repair. Prog. Brain Res. 127, 35–48 (2000).
  • Fallon J, Reid S, Kinyamu R et al. In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc. Natl. Acad. Sci. USA 97, 14686–14691 (2000).
  • Emsley JG, Mitchell BD, Magavi SS, Arlotta P, Macklis JD. The repair of complex neuronal circuitry by transplanted and endogenous precursors. NeuroRx. 1, 452–471 (2004).
  • Bonnet D. Biology of human bone marrow stem cells. Clin. Exp. Med. 3, 140–149 (2003).
  • Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ. Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20, 530–541 (2002).
  • Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J. Cell Mol. Med. 8, 301–316 (2004).
  • Verfaillie CM. Multipotent adult progenitor cells: an update. Novartis. Found. Symp. 265, 55–61 (2005).
  • Beyth S, Borovsky Z, Mevorach D et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105, 2214–2219 (2005).
  • Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815–1822 (2005).
  • Ortiz-Gonzalez XR, Keene CD, Verfaillie CM, Low WC. Neural induction of adult bone marrow and umbilical cord stem cells. Curr. Neurovasc. Res. 1, 207–213 (2004).
  • Guo L, Yin F, Meng HQ et al. Differentiation of mesenchymal stem cells into dopaminergic neuron-like cells in vitro. Biomed. Environ. Sci. 18, 36–42 (2005).
  • Phinney DG, Isakova I. Plasticity and therapeutic potential of mesenchymal stem cells in the nervous system. Curr. Pharm. Des. 11, 1255–1265 (2005).
  • Long X, Olszewski M, Huang W, Kletzel M. Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells. Stem Cells Dev. 14, 65–69 (2005).
  • Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu. Rev. Cell Dev. Biol. 17, 387–403 (2001).
  • Futterman LG, Lemberg L. Cardiac repair with autologous bone marrow stem cells. Am. J. Crit. Care 13, 512–518 (2004).
  • Sugaya K. Possible use of autologous stem cell therapies for Alzheimer’s disease. Curr. Alzheimer Res. 2, 367–376 (2005).
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).
  • Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19, 193–204 (2001).
  • Brustle O, Jones KN, Learish RD et al. Embryonic stem cell-derived GLIAl precursors: a source of myelinating transplants. Science 285, 754–756 (1999).
  • Herrera J, Yang H, Zhang SC et al. Embryonic-derived GLIAl-restricted precursor cells (GRP cells) can differentiate into astrocytes and oligodendrocytes in vivo. Exp. Neurol. 171, 11–21 (2001).
  • Liu S, Qu Y, Stewart TJ et al. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc. Natl. Acad. Sci. USA 97, 6126–6131 (2000).
  • McDonald JW, Liu XZ, Qu Y et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nature Med. 5, 1410–1412 (1999).
  • Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49, 385–396 (2005).
  • Swijnenburg RJ, Tanaka M, Vogel H et al. Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112, I166–I172 (2005).
  • Ringden O, Schaffer M, Le BK et al. Which donor should be chosen for hematopoietic stem cell transplantation among unrelated HLA-A, -B, and -DRB1 genomically identical volunteers? Biol. Blood Marrow Transplant. 10, 128–134 (2004).
  • Mielcarek M, Storb R. Graft versus host disease after non-myeloablative hematopoietic cell transplantation. Leuk. Lymphoma 46, 1251–1260 (2005).
  • Almyroudis NG, Fuller A, Jakubowski A et al. Pre- and post-engraftment bloodstream infection rates and associated mortality in allogeneic hematopoietic stem cell transplant recipients. Transpl. Infect. Dis. 7, 11–17 (2005).
  • Wallen H, Gooley TA, Deeg HJ et al. Ablative allogeneic hematopoietic cell transplantation in adults 60 years of age and older. J. Clin. Oncol. 23, 3439–3446 (2005).
  • Voermans C, van Hennik PB, van der Schoot CE. Homing of human hematopoietic stem and progenitor cells: new insights, new challenges? J. Hematother. Stem Cell Res. 10, 725–738 (2001).
  • Chavany C, Jendoubi M. Biology and potential strategies for the treatment of GM2 gangliosidoses. Mol. Med. Today 4, 158–165 (1998).
  • Karageorgos LE, Isaac EL, Brooks DA et al. Lysosomal biogenesis in lysosomal storage disorders. Exp. Cell Res. 234, 85–97 (1997).
  • Cowan MJ, Golbus M. In utero hematopoietic stem cell transplants for inherited diseases. Am. J. Pediatr. Hematol. Oncol. 16, 35–42 (1994).
  • Bielicki J, Hopwood JJ, Wilson PJ, Anson DS. Recombinant human iduronate-2-sulphatase: correction of mucopolysaccharidosis-type II fibroblasts and characterization of the purified enzyme. Biochem. J. 289, 241–246 (1993).
  • Snyder EY, Taylor RM, Wolfe JH. Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature 374, 367–370 (1995).
  • Yandava BD, Billinghurst LL, Snyder EY. ‘Global’ cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc. Natl. Acad. Sci. USA 96, 7029–7034 (1999).
  • Shihabuddin LS, Numan S, Huff MR et al. Intracerebral transplantation of adult mouse neural progenitor cells into the Niemann–Pick-A mouse leads to a marked decrease in lysosomal storage pathology. J. Neurosci. 24, 10642–10651 (2004).
  • Meng XL, Shen JS, Ohashi T, Maeda H, Kim SU, Eto Y. Brain transplantation of genetically engineered human neural stem cells globally corrects brain lesions in the mucopolysaccharidosis Type VII mouse. J. Neurosci. Res. 74, 266–277 (2003).
  • Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant. 30, 215–222 (2002).
  • Cooper JD. Progress towards understanding the neurobiology of Batten disease or neuronal ceroid lipofuscinosis. Curr. Opin. Neurol. 16, 121–128 (2003).
  • Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED. Mesenchymal stem cells spontaneously express neural proteins in culture, and are neurogenic after transplantation. Stem cells (2005) [In Press].
  • Lacorazza HD, Flax JD, Snyder EY, Jendoubi M. Expression of human β-hexosaminidase alpha-subunit gene (the gene defect of Tay-Sachs disease) in mouse brains upon engraftment of transduced progenitor cells. Nature Med. 2, 424–429 (1996).
  • Stumm RK, Zhou C, Ara T et al. CXCR4 regulates interneurone migration in the developing neocortex. J. Neurosci. 23, 5123–5130 (2003).
  • Bagri A, Gurney T, He X et al. The chemokine SDF1 regulates migration of dentate granule cells. Development 129, 4249–4260 (2002).
  • Zhu Y, Yu T, Zhang XC, Nagasawa T, Wu JY, Rao Y. Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nature Neurosci. 5, 719–720 (2002).
  • Satake K, Lou J, Lenke LG. Migration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue. Spine 29, 1971–1979 (2004).
  • Baudry M, Yao Y, Simmons D, Liu J, Bi X. Postnatal development of inflammation in a murine model of Niemann-Pick type C disease: immunohistochemical observations of microGLIA and astroGLIA. Exp. Neurol. 184, 887–903 (2003).
  • Jeyakumar M, Thomas R, Elliot-Smith E et al. Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain 126, 974–987 (2003).
  • Imitola J, Raddassi K, Park KI et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1α/CXC chemokine receptor 4 pathway. Proc. Natl Acad. Sci. USA 101, 18117–18122 (2004).
  • Hill WD, Hess DC, Martin-Studdard A et al. SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J. Neuropathol. Exp. Neurol. 63, 84–96 (2004).
  • Barbero S, Bajetto A, Bonavia R et al. Expression of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1 in human brain tumors and their involvement in GLIAl proliferation in vitro. Ann. NY Acad. Sci. 973, 60–69 (2002).
  • Cummings BJ, Uchida N, Tamaki SJ et al. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc. Natl Acad. Sci. USA 102, 14069–14074 (2005).
  • Marr RA, Rockenstein E, Mukherjee A et al. Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J. Neurosci. 23, 1992–1996 (2003).
  • Leonard JV. Acute metabolic encephalopathy: an introduction. J. Inherit. Metab Dis. 28, 403–406 (2005).
  • Carlson MD. Recent advances in newborn screening for neurometabolic disorders. Curr. Opin. Neurol. 17, 133–138 (2004).
  • Nissenkorn A, Michelson M, Ben-Zeev B, Lerman-Sagie T. Inborn errors of metabolism: a cause of abnormal brain development. Neurology 56, 1265–1272 (2001).
  • Conzelmann E, Sandhoff K. Partial enzyme deficiencies: residual activities and the development of neurological disorders. Dev. Neurosci. 6, 58–71 (1983).
  • Schueler UH, Kolter T, Kaneski CR, Zirzow GC, Sandhoff K, Brady RO. Correlation between enzyme activity and substrate storage in a cell culture model system for Gaucher disease. J. Inherit. Metab Dis. 27, 649–658 (2004).
  • Baric I, Zschocke J, Christensen E et al. Diagnosis and management of glutaric aciduria type I. J. Inherit. Metab. Dis. 21, 326–340 (1998).
  • Shah K, Hsich G, Breakefield XO. Neural precursor cells and their role in neuro-oncology. Dev. Neurosci. 26, 118–130 (2004).
  • Aboody KS, Brown A, Rainov NG et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc. Natl Acad. Sci. USA 97, 12846–12851 (2000).
  • Ehtesham M, Yuan X, Kabos P et al. Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4. Neoplasia 6, 287–293 (2004).
  • Ehtesham M, Kabos P, Gutierrez MA et al. Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res. 62, 7170–7174 (2002).
  • Widera D, Holtkamp W, Entschladen F et al. MCP-1 induces migration of adult neural stem cells. Eur. J. Cell Biol. 83, 381–387 (2004).
  • Kielian T, van RN, Hickey WF. MCP-1 expression in CNS-1 astrocytoma cells: implications for macrophage infiltration into tumors in vivo. J. Neurooncol. 56, 1–12 (2002).
  • Leung SY, Wong MP, Chung LP, Chan AS, Yuen ST. Monocyte chemoattractant protein-1 expression and macrophage infiltration in gliomas. Acta Neuropathol. (Berl). 93, 518–527 (1997).
  • Hamada H, Kobune M, Nakamura K et al. Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy. Cancer Sci. 96, 149–156 (2005).
  • Herrlinger U, Woiciechowski C, Sena-Esteves M et al. Neural precursor cells for delivery of replication-conditional HSV-1 vectors to intracerebral gliomas. Mol. Ther. 1, 347–357 (2000).
  • Freed CR, Leehey MA, Zawada M, Bjugstad K, Thompson L, Breeze RE. Do patients with Parkinson’s disease benefit from embryonic dopamine cell transplantation? J. Neurol. 250 (Suppl. 3), III44–III46 (2003).
  • Milner R. Understanding the molecular basis of cell migration; implications for clinical therapy in multiple sclerosis. Clin. Sci. (Colch.) 92, 113–122 (1997).
  • Pluchino S, Quattrini A, Brambilla E et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422, 688–694 (2003).
  • Norenberg MD, Smith J, Marcillo A. The pathology of human spinal cord injury: defining the problems. J. Neurotrauma 21, 429–440 (2004).
  • Davies JH, Evans BA, Jenney ME, Gregory JW. Skeletal morbidity in childhood acute lymphoblastic leukaemia. Clin. Endocrinol. (Oxf). 63, 1–9 (2005).
  • Rianthavorn P, Ettenger RB, Malekzadeh M, Marik JL, Struber M. Noncompliance with immunosuppressive medications in pediatric and adolescent patients receiving solid-organ transplants. Transplantation 77, 778–782 (2004).
  • Lanza RP, Chung HY, Yoo et al. Generation of histocompatible tissues using nuclear transplantation. Nature Biotechnol. 20, 689–696 (2002).
  • Lanza R, Shieh JH, Wettstein PJ et al. Long-term bovine hematopoietic engraftment with clone-derived stem cells. Cloning Stem Cells 7, 95–106 (2005).
  • Stojkovic M, Stojkovic P, Leary C et al. Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reprod. Biomed. Online 11, 226–231 (2005).
  • Simpson E. Minor transplantation antigens: animal models for human host-versus-graft, graft versus host, and graft-versus-leukemia reactions. Transplantation 65, 611–616 (1998).
  • Beatty PG. National Heart, Lung, and Blood Institute (NHLBI) workshop on the importance of minor histocompatibility antigens in marrow transplantation. September 16–17, 1996; Bethesda, Maryland. Exp. Hematol. 25, 548–558 (1997).
  • Magnus D, Cho MK. Ethics. Issues in oocyte donation for stem cell research. Science 308, 1747–1748 (2005).
  • Dickenson D. The threatened trade in human ova. Nature Rev. Genet. 5, 167 (2004).
  • Fairchild PJ, Nolan KF, Cartland S, Waldmann H. Embryonic stem cells: a novel source of dendritic cells for clinical applications. Int. Immunopharmacol. 5, 13–21 (2005).
  • Beyth S, Borovsky Z, Mevorach D et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105, 2214–2219 (2005).
  • Fairchild PJ, Cartland S, Nolan KF, Waldmann H. Embryonic stem cells and the challenge of transplantation tolerance. Trends Immunol. 25, 465–470 (2004).
  • Bodnar MS, Meneses JJ, Rodriguez RT, Firpo MT. Propagation and maintenance of undifferentiated human embryonic stem cells. Stem Cells Dev. 13, 243–253 (2004).
  • Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature Med. 11, 228–232 (2005).
  • Amit M, Carpenter MK, Inokuma MS et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278 (2000).
  • Rosler ES, Fisk GJ, Ares X et al. Long-term culture of human embryonic stem cells in feeder-free conditions. Dev. Dyn. 229, 259–274 (2004).
  • Niemitz EL, Feinberg AP. Epigenetics and assisted reproductive technology: a call for investigation. Am. J. Hum. Genet. 74, 599–609 (2004).
  • Draper JS, Smith K, Gokhale P et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nature Biotechnol. 22, 53–54 (2004).
  • Maitra A, Arking DE, Shivapurkar N et al. Genomic alterations in cultured human embryonic stem cells. Nature Genet. 37, 1099–1103 (2005).

Websites

  • ClinicalTrials.gov U.S. National Library of Medicine. www.clinicaltrials.gov
  • National marrow donor program. Learning more about your disease www.marrow.org/PATIENT/learning_about_disease.html

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.