28
Views
0
CrossRef citations to date
0
Altmetric
Review

New insights into brain dysfunction in migraine

&
Pages 307-312 | Published online: 10 Jan 2014

References

  • Wolff HG. Headache and Other Head Pain. Second edtion. Oxford University Press, New York, USA (1963).
  • Lashley KS. Patterns of cerebral integration indicated by the scotomas of migraine. Arch. Neurol. Psych. 46, 331–339 (1941).
  • Leao AAP. Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 8, 379–390 (1944).
  • Teive HAG, Kowacs PA, Maranhão Filho P, Piovesan EJ, Werneck LC. Leão’s cortical spreading depression: from experimental “artifact” to physiological principle. Neurology 65, 1455–1459 (2005).
  • Welch KMA, D’ Andrea G, Tepley N, Barkley G, Ramadan NM. The concept of migraine as a state of central neuronal hyperexcitabiliy. Neurol. Clin. 8, 817–828 (1990).
  • Ophoff RA, Terwindt GM, Vergouwe MN et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca+2 channel gene CACNL1A4. Cell 87, 543–552 (1996).
  • Cao Y, Welch KMA, Aurora SK, Vikingstad EM. Functional MRI-BOLD of visually triggered headache and visual change in migraine sufferers. Arch. Neurol. 56, 548–554 (1999).
  • Gardner-Medwin AR, Bruggen NV, Williams SR, Ahier RG. Magnetic resonance imaging of propagating waves of spreading depression in the anaesthetised rat. J. Cereb. Blood Flow Metab. 14, 7–11 (1994).
  • Hadjikhani N, Sanchez Del Rio M, Wu O et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc. Natl Acad. Sci. USA 98(8), 4687–4692 (2001)
  • Sanchez del Rio M, Bakker D, Wu O et al. Perfusion weighted imaging during migraine spontaneous visual aura and headache. Cephalalgia 19(8), 701–707 (1999).
  • Bowyer SM, Okada YC, Papuashvili N et al. Analysis of MEG signals of spreading cortical depression with propagation constrained to a rectangular cortical strip: I. lissencephalic rabbit model. Brain Research 843, 79–86 (1999).
  • Bowyer SM, Tepley N, Papuashvili N et al. Analysis of MEG signals of spreading cortical depression with propagation constrained to a rectangular cortical strip: II. Gyrencephalic swine model. Brain Res. 843, 71–78 (1999).
  • Barkley GL, Tepley N, Nagel-Leiby S, Moran JE, Simkins RT, Welch KMA. Magnetoencephalograhic studies of migraine. Headache 30(7), 428–434 (1990).
  • Bowyer SM, Aurora SK, Moran JE, Tepley N, Welch KMA. Magnetoencephalographic fields from patients with spontaneous and induced migraine aura. Ann. Neurol. 50, 582–587 (2001).
  • Bowyer SM, Moran JE, Tepley N, Mitsias PD. Cortical hyperexcitability in a migraine patient before and after sodium valproate treatment. J. Clin. Neurophys. 22, 65–67 (2005)
  • Raskin NH, Hosobuchi Y, Lamb S. Headache may arise from perturbation of the brain. Headache 27, 416–420 (1987).
  • Moskowitz MA. The neurobiology of vascular head pain. Ann. Neurol. 15, 157–168 (1984).
  • Goadsby PJ, Gundlach AL. Localization of 3H-dihydroergotamine-binding sites in cat central nervous system: relevance to migraine. Ann. Neurol. 29, 91–94 (1991).
  • Longmore J, Shaw D, Smith D et al. Differential distribution of 5-HT 1D and 5-HT 1B immunoreactivity within the human trigemino-cerebrovascular system: implications for the discovery of new anti-migraine drugs. Cephalalagia 17, 835–842 (1997).
  • Weiller C, May A, Limmroth V et al. Brainstem activation in spontaneous human migraine attacks. Nature Med. 1, 658–660 (1995).
  • Welch KMA, Cao Y, Aurora SK, Wiggins G, Vikingstad EM. MRI of the occipital cortex, red nucleus, and substantia nigra during visual aura of migraine. Neurology 51, 1465–1469 (1998).
  • Cao Y, Aurora SK, Vikingstad EM, Patel SC, Welch KMA. Functional MRI of the red nucleus and occipital cortex during visual stimulation of subjects with migraine. Cepahalagia 19, 462 (1999).
  • Iadarola MJ, Berman KF, Zeffiro TA et al. Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET. Brain. 121(Pt 5), 931–947 (1998).
  • Welch KMA, Nagesh V, Aurora SK, Gelman N. Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness. Headache 41, 629–637 (2001).
  • Bahra A, Matharu MS, Buchel C, Frackowiak RSI, Goadsby PJ. Brainstem activation specific to migraine headache. Lancet 357, 1016–1017 (2001).
  • Knight YE, Goadsby PJ. The periaqueductal grey matter modulates trigeminovascular input: a role in migraine? Neuroscience 106, 793–800 (2001).
  • Knight YE, BartschT, Kaube H, GoadsbyPJ. P/Q-type calcium-channel blockade in the periaqueductal gray facilitates trigeminal nociception: a functional genetic link for migraine. J. Neurosci. 22, 1–6 (2002).
  • Bolay M, Reuter U, Dunn A, Huang Z, Boas D, Moskowitz M. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nature Med. 8(2), 136–142 (2002).
  • Olesen J, Iversen HK, Thomsen LL. Nitric oxide supersensitivity: a possible molecular mechanism of migraine pain. Neuroreport 4, 1027–1030 (1993).
  • Reuter U, Bolay H, Jansen-Olsen I et al. Delayed inflammation in rat meninges: implications for migraine pathophysiology. Brain 124, 2490–2502 (2001).
  • Read SJ, Smith MI, Hunter AJ, Parsons AA. Enhanced nitric oxide release during cortical spreading depression following infusion of glyceryl trinitrate in the anaesthetized cat. Cephalalgia 17(3), 159–165 (1997).
  • Stepien A, Chalimoniuk M. Level of nitric oxide-dependent cGMP in patients with migraine. Cephalalgia 18, 631–634 (1998).
  • Gronseth GS. Greenberg MK. The utility of the electroencephalogram in the evaluation of patients presenting with headache: a review of the literature. Neurology 45(7), 1263–1267 (1995).
  • Golla FL, Winter AL. Analysis of cerebral responses to flicker in patients complaining of episodic headache. Electroencephalopgr. Clin. Neurophysiol. 53, 270–276 (1982).
  • Simon RH, Zimmerman AW, Tasman A, Hale MS. Spectral analysis of photic stimulation in migraine. Electroencephalogr. Clin. Neurophysiol. 53(3), 270–276 (1982).
  • Pechadre JC, Gibert J. Demonstration, by the cartographic test, of an unusual reaction to intermittent light stimulation in patients with migraine. Encephale 13(4), 245–247 (1987).
  • Nyrke T, Kangasniemi P, Lang AH. Difference of steady-state visual evoked potential in classic and common migraine. Electroencephalopgr. Clin. Neurophysiol. 73, 284–294 (1989).
  • Nyrke T, Kangasniemi P, Lang AH. Steady-state visual evoked potentials during migraine prophylaxis by propranolol and femoxetine. Acta Neurol. Scand. 69, 9–14 (1984).
  • Schoenen J, Wang W, Albert A, Delwaide PJ. Potentiation instead of habituation characterizes visual evoked potentials in migraine patients between attacks. Eur. J. Neurol. 2, 115–122 (1995).
  • Afra J, Cecchini AP, DePasqua V, Albert A, Schoenen J. Visual evoked potentials during long periods of pattern-reversal stimualtion in migraine. Brain 121(Pt 2), 233–241 (1998).
  • Wang W, Timsit-Berthier M, Schoenen J. Intensity dependence of auditory evoked potentials is pronounced in migraine: an indication of cortical potentiation and low serotonergic neurotransmission? Neurology 46, 1404–1409 (1996).
  • Cecchini AP, Afra J, Schoenen J. Intensity dependence of the cortical auditory evoked potentials as a surrogate marer of CNS serotonin transmision in man: demonstration of a central effect for the 5-HT1B/1D agonist zomitriptan (311C90, Zomig). Cephalalgia 17, 1–18 (1997).
  • Barker AT, Freeston IL, Jalinous R, Jarratt JA. Magnetic stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation. Neurosurgery 20, 100–109 (1987).
  • Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet 1, 1106–1107 (1985).
  • Maertens de Noordhout AL, Pepin JL, Schoenen J, Delwaide PJ. Percutaneous magnetic stimulation of the motor cortex in migraine. Electroencephalogr. Clin. Neurophysiol. 85, 110–115 (1992).
  • Bettucci D, Cantello R, Gianelli M, Naldi P, Mutani R. Menstrual migraine without aura: cortical excitability to magnetic stimulation. Headache 32, 345–347 (1992).
  • van der Kamp W, Maassenvandenbrink A, Ferrari MD, vanDijk JG. Interictal cortical hyperexcitability in migraine patients demonstrated with transcranial magnetic stimulation. J. Neurol. Sci. 139, 106–110 (1996).
  • van der Kamp W, Maassenvandenbrink A, Ferrari MD, vanDijk JG. Interictal cortical excitability to magnetic stimulation in familial hemiplegic migraine. Neurology 48, 1462–1464 (1997).
  • Werhahn KJ, Förderreuther S, Straube A. Effects of serotonin 1B/1D receptor agonist zolmitriptan on motor cortical excitability in humans. Neurology 51, 896–898 (1998).
  • Afra J, Mascia A, Gérard P, Maertens de Noordhout A, Schoenen J. Interictal cortical excitability in migraine: a study using transcranial magnetic stimulation of motor and visual cortices. Ann. Neurol. 44, 209-215 (1998).
  • Aurora SK, Al-Sayed F, Welch KMA. The cortical silent period is shortened in migraine with aura. Cephalalgia 19, 708–712 (1999).
  • Aurora SK, Al-Sayed F, Welch KMA. The threshold for magnetophoshenes is lower in migraine. Neurology 52(6), A472 (1999).
  • Aurora SK, Welch KMA. Phosphene generation in migraine. Ann. Neurol. 45, 416. (1999).
  • Aggugia M, Zibetti M, Febbraro A, Mutani R. Transcranial magnetic stimulation in migraine with aura: further evidence of occipital cortex hyperexcitability. Cephalalgia 19, 465 (1999).
  • Aurora SK, Cao Y, Bowyer SM, Welch KMA. The occipital cortex is hyperexcitable in migraine; evidence from TMS, fMRI and MEG studies (Wolff Award). Headache 39, 469–476 (1999).
  • Battelli L, Black KR, Wray SH. Transcranial magnetic stimulation of visual area V5 in migraine. Neurology 58, 1066–1069 (2002).
  • Aurora SK, Barrodale P, Chronicle EP, Mulleners WM. Cortical inhibition is reduced in chronic and episodic migraine and demonstrates a spectrum of illness. Headache 45, 546–552 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.