151
Views
18
CrossRef citations to date
0
Altmetric
Review

Cholesterol and 24S-hydroxycholesterol trafficking in Alzheimer’s disease

Pages 683-693 | Published online: 10 Jan 2014

References

  • Pfrieger FW. Cholesterol homeostasis and function in neurons of the central nervous system. Cell. Mol. Life Sci.60, 1158–1171 (2003).
  • Lukiw WJ, Pappolla M, Pelaez RP, Bazan NG. Alzheimer's disease – a dysfunction in cholesterol and lipid metabolism. Cell Mol. Neurobiol.25, 475–483 (2005).
  • Shobab LA, Hsiung GY, Feldman HH. Cholesterol in Alzheimer's disease. Lancet Neurol.4, 841–852 (2005).
  • Alexandrov P, Cui JG, Zhao Y, Lukiw WJ. 24S-hydroxycholesterol induces inflammatory gene expression in primary human neural cells. Neuroreport.16, 909–913 (2005).
  • Flirski M, Sobow T. Biochemical markers and risk factors of Alzheimer's disease. Curr. Alzheimer Res.2, 47–64 (2005).
  • Grant WB. Dietary links to Alzheimer’s Disease. J. Alz. Dis.1, 197–201 (1999).
  • Miller LJ, Chacko R. The role of cholesterol and statins in Alzheimer's disease. Ann. Pharmacother.38, 91–98 (2004).
  • Pappolla MA, Bryant-Thomas TK, Herbert D et al. Hypercholesterolemia is an early risk factor for the development of alzheimer amyloid pathology. Neurology61, 199–205 (2003).
  • Refolo LM, Malester B, LaFrancois J et al. Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol. Dis.7, 321–331 (2000).
  • Bjorkhem I, Meaney S. Brain cholesterol: long secret life behind a barrier. Arterioscler. Thromb. Vasc. Biol.24, 806–815 (2004).
  • Rebeck GW. Cholesterol efflux as a critical component of Alzheimer's disease pathogenesis. J. Mol. Neurosci.23, 219–224 (2004).
  • Dietschy JM, Turley SD. Cholesterol metabolism in the brain. Curr. Opin. Lipidol.12, 105–112 (2001).
  • Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosc.5, 347–360 (2004).
  • Wolozin B. Cholesterol, statins and dementia. Curr. Opin. Lipidol.15, 667–672 (2004).
  • Levi O, Lutjohann D, Devir A, von Bergmann K, Hartmann T, Michaelson DM. Regulation of hippocampal cholesterol metabolism by apoE and environmental stimulation. J. Neurochem.95, 987–997 (2005).
  • Petanceska SS, DeRosa S, Sharma A et al. Changes in apolipoprotein E expression in response to dietary and pharmacological modulation of cholesterol. J. Mol. Neurosci.20, 395–406 (2003).
  • Strittmatter WJ, Saunders AM, Schmeche D et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA.90, 1977–1981 (1993).
  • Aliev G, Smith MA, Obrenovich ME, de la Torre JC, Perry G. Role of vascular hypoperfusion-induced oxidative stress and mitochondria failure in the pathogenesis of Azheimer disease. Neurotox. Res.5, 491–504 (2003).
  • Lahiri DK, Sambamurti K, Bennett DA. Apolipoprotein gene and its interaction with the environmentally driven risk factors: molecular, genetic and eidemiological studies of Alzheimer's disease. Neurobiol. Aging25, 651–660 (2004).
  • Cutler RG, Kelly J, Storie K et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc. Natl Acad. Sci. USA101, 2070–2075 (2004).
  • Pasternak SH, Callahan JW, Mahuran DJ. The role of the endosomal/ lysosomal system in amyloid-β production and the pathophysiology of Alzheimer's disease: re-examining the spatial paradox from a lysosomal perspective. J. Alzheimers Dis.6, 53–65 (2004).
  • Wood WG, Schroeder F, Avdulov NA, Chochina SV, Igbavboa U. Recent advances in brain cholesterol dynamics: transport, domains and Alzheimer’s disease. Lipids34, 225–234 (1999).
  • Ogura T, Mio K, Hayashi I et al. Three-dimensional structure of the γ-secretase complex. Biochem. Biophys. Res. Commun. (2006). [Epub ahead of print].
  • Dunys J, Kawarai T, Wilk S et al. Catabolism of endogenous and overexpressed APH1a and PEN2: evidence for artifactual involvement of the proteasome in the degradation of overexpressed proteins. Biochem. J.394, 501–509 (2006).
  • Bazan NG, Colangelo V, Lukiw WJ. Prostaglandins and other lipid mediators in Alzheimer's disease. Prostaglandins and Other Lipid Mediators68–69, 197–210 (2002).
  • Kolsch H, Lutjohann D, Tulke A, Bjorkhem I, Rao ML. The neurotoxic effect of 24-hydroxycholesterol on SH-SY5Y human neuroblastoma cells. Brain Res.818, 171–175 (1999).
  • Bodovitz S, Klein WL. Cholesterol modulates α-secretase cleavage of amyloid precursor protein. J. Biol. Chem.271, 4436–4440 (1996).
  • Frears ER, Stephens DJ, Walters CE, Davies H, Austen BM. The role of cholesterol in the biosynthesis of β-amyloid. Neuroreport.10, 1699–1705 (1999).
  • Fukumoto H, Rosene DL, Moss MB, Raju S, Hyman BT, Irizarry MC. β-secretase activity increases with aging in human, monkey, and mouse brain. Am. J. Pathol.164, 719–725 (2004).
  • Gibson WW, Eckert GP, Igbavboa U, Muller WE. Amyloid β-protein interactions with membranes and cholesterol: causes or casualties of Alzheimer's disease. Biochim. Biophys. Acta.1610, 281–290 (2003).
  • Hoglund K, Wiklund O, Vanderstichel H, Eikenberg O, Vanmechelen E, Blennow K. Plasma levels of β-amyloid(1–40), β-amyloid(1–42), and total β-amyloid remain unaffected in adult patients with hypercholesterolemia after treatment with statins. Arch. Neurol.61, 333–337 (2004).
  • Jankowsky JL, Fadale DJ, Anderson J et al. Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase. Hum. Mol. Genet.13, 159–170 (2004).
  • Puglielli L, Tanzi RE, Kovacs DM. Alzheimer's disease: the cholesterol connection. Nat. Neurosci.6, 345–351 (2003).
  • Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Pro. Natl Acad. Sci. USA95, 6460–6464 (1998).
  • Zlokovic BV, Yamada S, Holtzman D, Ghiso J, Frangione B. Clearance of amyloid β-peptide from brain: transport or metabolism? Nat. Med.6, 718 (2000).
  • Eckert GP, Kirsch C, Leutz S, Wood WG, Muller WE. Cholesterol modulates amyloid β-peptide's membrane interactions. Pharmacopsychiatry36, S136–S143 (2003).
  • Sidera C, Parsons R, Austen B. Proteolytic cascade in the amyloidogenesis of Alzheimer's disease. Biochem. Soc. Trans.32, 33–36 (2004).
  • Qin W, Ho L, Pompl PN et al. Cyclooxygenase (COX)-2 and COX-1 potentiate β-amyloid peptide generation through mechanisms that involve γ-secretase activity. J. Biol. Chem.278, 50970–50977 (2003).
  • Mizuno T, Haass C, Michikawa M, Yanagisawa K. Cholesterol-dependent generation of a unique amyloid β-protein from atypically missorted amyloid precursor protein in MDCK cells. Biochem. Biophys. Acta.1373, 119–130 (1998).
  • Cacabelos R, Fernandez-Novoa L, Lombardi V, Corzo L, Pichel V, Kubota Y. Cerebrovascular risk factors in Alzheimer's disease: brain hemodynamics and pharmacogenomic implications. Neurol. Res.25, 567–580 (2003).
  • Papassotiropoulos A, Lutjohann D, Bagli M et al. 24S-hydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia. J. Psychiatr. Res.36, 27–32 (2002).
  • Papassotiropoulos A, Lutjohann D, Bagli M et al. Plasma 24S-hydroxycholesterol: a peripheral indicator of neuronal degeneration and potential state marker for Alzheimer's disease. Neuroreport11, 1959–1962 (2000).
  • Lutjohann D, von Bergmann K. 24S-hydroxycholesterol: a marker of brain cholesterol metabolism. Pharmacopsychiatry2, 102–106 (2003).
  • Ohyama Y, Meaney S, Heverin M et al. Studies on the transcriptional regulation of cholesterol 24-hydroxylase(CYP46A1): marked insensitivity towards different regulatory axes. J. Biol. Chem.281(7), 3810–3820 (2005).
  • Papassotiropoulos A, Wollmer MA, Tsolaki M et al. A cluster of cholesterol-related genes confers susceptibility for Alzheimer's disease. J. Clin. Psych.66, 940–947 (2005).
  • Colangelo V, Schurr J, Ball MJ, Pelaez RP, Bazan NG, Lukiw WJ. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J. Neurosci. Res.70, 462–473 (2002).
  • Lukiw WJ, Cui JG, Marcheselli VL et al. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Invest.115, 2774–83 (2005).
  • Bazan NG, Lukiw WJ. Cyclooxygenase-2 and presenilin-1 gene expression induced by interleukin-1β and amyloid β 42 peptide is potentiated by hypoxia in primary human neural cells. J. Biol. Chem.277, 30359–30367 (2002).
  • Lukiw WJ. Gene expression profiling in fetal, aged and Alzheimer hippocampus: a continuum of stress-related signaling. Neurochem. Res.29, 1287–1297 (2004).
  • Butterfield DA, Boyd-Kimball D. Amyloid β-peptide(1–42) contributes to the oxidative stress and neurodegeneration found in Alzheimer disease brain. Brain Pathol.14, 426–432 (2004).
  • Kolsch H, Heun R, Kerksiek A, Bergmann KV, Maier W, Lutjohann D. Altered levels of plasma 24S- and 27-hydroxycholesterol in demented patients. Neurosci Lett.368, 303–308 (2004).
  • Casserly I, Topol E. Convergence of atherosclerosis and Alzheimer's disease: inflammation, cholesterol and misfolded proteins. Lancet363, 1139–1146 (2004).
  • Beasley CL, Honer WG, Bergmann K, Falkai P, Lutjohann D, Bayer TA. Reductions in cholesterol and synaptic markers in association cortex in mood disorders. Bipolar Disord.7, 449–455 (2005).
  • Baskin F, Rosenberg RN, Fang X et al. Correlation of statin-increased platelet APP ratios and reduced blood lipids in AD patients. Neurology60, 2006–2007 (2003).
  • Edwards JE, Moore RA. Statins in hypercholesterolaemia: a dose-specific meta-analysis of lipid changes in randomised, double blind trials. BMC Family Pract.4, 18 (2003).
  • Miida T, Takahashi A, Tanabe N, Ikeuchi T. Can statin therapy really reduce the risk of Alzheimer's disease and slow its progression? Curr. Opin. Lipidol.16, 619–623 (2005).
  • Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA. Statins and the risk of dementia. Lancet.356, 1627–1631 (2000).
  • Launer L. Nonsteroidal anti-inflammatory drug use and the risk for Alzheimer's disease: dissecting the epidemiological evidence. Drugs63, 731–739 (2003).
  • Park IH, Hwang EM, Hong HS et al. Lovastatin enhances Aβ production and senile plaque deposition in female Tg2576 mice. Neurobiol. Aging24, 637–643 (2003).
  • Sparks DL, Martin TA, Gross DR, Hunsaker JC. III Link between heart disease, cholesterol, and Alzheimer's disease: a review. Microsc. Res. Tech.50, 287–290 (2000).
  • Stuve O, Youssef S, Steinman L, Zamvil SS. Statins as potential therapeutic agents in neuroinflammatory disorders. Curr. Opin. Neurol.16, 393–401 (2003).
  • Weir MR, Sperling RS, Reicin A, Gert BJ. Selective COX-2 inhibition and cardiovascular effects: a review of the rofecoxib program. Am. Heart J.146, 591–604 (2003).
  • Wilson HL, Schwartz DM, Bhatt HR, McCulloch CE, Duncan JL. Statin and aspirin therapy are associated with decreased rates of choroidal neovascularization among patients with age-related macular degeneration. Am. J. Ophthalmol.137, 615–624 (2004).
  • Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arch. Neurol.57, 1439–1443 (2000).
  • Wolozin B. Cyp46 (24S-cholesterol hydroxylase): a genetic risk factor for Alzheimer disease. Arch. Neurol.60, 29–35 (2003).
  • Hoglund K, Thelen KM, Syversen S et al. The effect of simvastatin treatment on the amyloid precursor protein and brain cholesterol metabolism in patients with Alzheimer's disease. Dement. Geriatr. Cogn. Disord.19, 256–265 (2005).
  • Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol. Rev.56, 387–437 (2004).
  • Locatelli S, Lutjohann D, Schmidt HH, Otto C, Beisiegel U, von Bergmann K. Reduction of plasma 24S-hydroxycholesterol (cerebrosterol) levels using high-dosage simvastatin in patients with hypercholesterolemia: evidence that simvastatin affects cholesterol metabolism in the human brain. Arch. Neurol.59, 213–216 (2002).
  • Li G, Shofer JB, Kukull WA et al. Serum cholesterol and risk of Alzheimer disease: a community-based cohort study. Neurology65, 1045–1050 (2005).
  • Bi X, Baudry M, Liu J et al. Inhibition of geranylgeranylation mediates the effects of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors on microglia. J. Biol. Chem.279, 48238–48245 (2004).
  • Golanska E, Hulas-Bigoszewska K, Wojcik I et al. CYP46: a risk factor for Alzheimer's disease or a coincidence? Neurosci Lett.383,105–108 (2005)
  • Ingelsson M, Jesneck J, Irizarry MC, Hyman BT, Rebeck GW. Lack of association of the cholesterol 24-hydroxylase (CYP46) intron 2 polymorphism with Alzheimer's disease. Neurosci. Lett.367, 228–231 (2004).
  • Irizarry MC. Biomarkers of Alzheimer disease in plasma. NeuroRx.1, 226–234 (2004).
  • Zatta P, Zambenedetti P, Stella MP, Licastro F. Astrocytosis, microgliosis, metallothionein-I-II and amyloid expression in high cholesterol-fed rabbits. J. Alzheimers Dis.4, 1–9 (2002).
  • Blain JF, Paradis E, Gaudreault SB, Champagne D, Richard D, Poirier J. A role for lipoprotein lipase during synaptic remodeling in the adult mouse brain. Neurobiol Dis.15, 510–519 (2004).
  • Ravona-Springer R, Davidson M, Noy S. The role of cardiovascular risk factors in Alzheimer's disease. CNS Spectr.8, 824–833 (2003).
  • Bassett CN, Montine TJ. Lipoproteins and lipid peroxidation in Alzheimer's disease. J. Nutr. Health Aging.7, 24–9 (2003).
  • Mirra SS, Heyman A, McKeel D et al. The consortium to establish a registry for Alzheimer's disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology41, 479–486 (1991).
  • Schenk D. Alzheimer's disease: a partner for presenilin. Nature407, 48–54 (2000).
  • Murphy MP, Das P, Nyborg AC et al. Overexpression of nicastrin increases Aβ production. FASEJ.17, 1138–1140 (2003).
  • Marcheselli VL, Hong S, Lukiw WJ et al. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem.278, 43807–43817 (2003).
  • Finch CE. Developmental origins of aging in brain and blood vessels: an overview. Neurobiol. Aging26, 281–291 (2005).
  • Mullenix PS, Andersen CA, Starnes BW. Atherosclerosis as inflammation. Ann. Vasc. Surg.19, 130–138 (2005).
  • Sun GY, Xu J, Jensen MD, Simonyi A. Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J. Lipid Res.45, 205–213 (2004).
  • Handschin C, Meyer UA. Regulatory network of lipid-sensing nuclear receptors: roles for CAR, PXR, LXR and FXR. Arch. Biochem. Biophys.433, 387–396 (2005).
  • Lutjohann D, Bjorkhem I, Locatelli S et al. Cholesterol dynamics in the foetal and neonatal brain as reflected by circulatory levels of 24S-hydroxycholesterol. Acta Paediatr.90, 652–657 (2001).
  • Yoo BC, Seidl R, Cairns N, Lubec G. Heat-shock protein 70 levels in brain of patients with Down syndrome and Alzheimer's disease. J. Neural. Transm. Suppl.57, 315–322 (1999).
  • Flood DG, Reaume AG, Dorfman KS et al. Mutant PS-1 gene-targeted mice: increased Aβ42 and Aβ deposition without APP overproduction. Neurobiol. Aging23, 335–348 (2002).
  • Alexandrov PN, Zhao Y, Pogue AI et al. Synergistic effects of iron and aluminum on stress-related gene expression in primary human neural cells. J. Alzheimers Dis.8, 117–127 (2005).
  • Boedker M, Boetkjaer A, Bazan NGet al. Budesonide epimer R, LAU-8080 and phenyl butyl nitrone synergistically repress cyclooxygenase-2 induction in [IL-1β+Aβ42]-stressed human neural cells. Neurosci Lett.380, 176–180 (2005).
  • Xu C, Li CY, Kong AN. Induction of Phase I, II and III drug metabolism/transport by xenobiotics. Arch. Pharm. Res.28, 249–268 (2005).
  • Mohan R, Heyman RA. Orphan nuclear receptor modulators. Curr. Top. Med. Chem.3, 1637–1647 (2003).
  • Shechter M, Beigel R, Matetzky S, Freimark D, Chouraqui P. The intensive statin therapy myth. Israeli Med. Assoc. J.7, 683–687 (2005).
  • Sparks DL, Sabbagh MN, Connor DJ et al. Atorvastatin therapy lowers circulating cholesterol but not free radical activity in advance of identifiable clinical benefit in the treatment of mild-to-moderate AD. Curr. Alzheimer Res.2, 343–353 (2005).
  • Mora S, Ridker PM. Justification for the use of statins in primary prevention: an intervention trial evaluating rosuvastatin (JUPITER)–can C-reactive protein be used to target statin therapy in primary prevention? Am. J. Cardiol.97, 33–41 (2006).
  • Miyazaki A, Kanome T, Watanabe T.Inhibitors of acyl-coenzyme a: cholesterol acyltransferase. Curr. Drug Targets Cardiovasc. Haematol. Disord.5, 463–469 (2005).
  • Brown WJ, Schmidt JA. Use of acyltransferase inhibitors to block vesicular traffic between the ER and golgi complex. Methods Enzymol.404, 115–125 (2005).
  • Burnett JR, Telford DE, Barrett PH, Huff MW. The ACAT inhibitor avasimibe increases the fractional clearance rate of postprandial triglyceride-rich lipoproteins in miniature pigs. Biochim. Biophys. Acta.1738, 10–18 (2005).
  • Yatskar L, Fisher EA, Schwartzbard A. Ezetimibe:rationale and role in the management of hypercholesterolemia. Clin. Cardiol.29, 52–55 (2006).
  • Chaki O. Next generation selective estrogen receptor modulators. Clin. Calcium.16, 145–152 (2006).
  • Rodenburg J, Vissers MN, Daniels SR, Wiegman A, Kastelein JJ. Lipid-lowering medications. Pediatr. Endocrinol. Rev.2(Suppl. 1) 171–180 (2004).
  • Denke MA. Diet, lifestyle, and nonstatin trials: review of time to benefit. Am. J. Cardiol.96, 3F–10F (2005).
  • Schmitt B, Bernhardt T, Moeller HJ, Heuser I, Frolich L. Combination therapy in Alzheimer's disease: a review of current evidence. CNS Drugs.18, 827–844 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.