54
Views
14
CrossRef citations to date
0
Altmetric
Review

Neuroprotection in primary brain tumors: sense or nonsense?

&
Pages 723-730 | Published online: 10 Jan 2014

References

  • Beaumont A, Whittle IR. The pathogenesis of tumor associated epilepsy. Acta Neurochir.142, 1–15 (2000).
  • Schaller B. Neuroprotection in brain tumors – pathophysiological sense or nonsense? Nervenarzt74, 1134–1136 (2003).
  • Schaller B. Influences of brain tumor-associated pH changes and hypoxia on epileptogenesis. Acta Neurol. Scand.111, 75–83 (2005).
  • Schaller B. Usefulness of positron emission tomography in diagnosis and treatment follow-up of brain tumors. Neurobiol. Dis.15, 437–448 (2004).
  • Whittle IR. Origins and management of peritumoural brain dysfunction. Neurosurg. Quart.2, 174–198 (1992)
  • Schaller B, Graf R, Jacobs AH. Ischemic tolerance: a window to endogenous neuroprotection? Lancet362, 1007–1078 (2003).
  • Ferriero DM. Protecting neurons. Epilepsia46(Suppl. 7), 45–51 (2005).
  • Schiffer D. Brain Tumors, Biology, Pathology and Clinical References, 2nd edition. Springer-Verlag, Heidelberg, Germany, 75–95 (1997).
  • Domingo Z, Rowe G, Blamire AM et al. Role of ischaemia in the genesis of oedema surrounding meningiomas assessed using magnetic resonance imaging and spectroscopy. Br. J. Neurosurg.12, 414–418 (1998).
  • Gastaut JL, Michel B, Sabet Hassen S et al. Electroencephalography in brain oedema (127 cases of brain tumour investigated by computerized tomography). Electroencephalogr. Clin. Neurophysiol.46, 231–255 (1979).
  • Hossman KA, Szymas J, Seo K et al. Experimental transplantation gliomas in the adult cat brain 2. Pathophysiology and magnetic resonance imaging. Acta Neurochir.98, 189–200 (1989).
  • Nabors LB, Fiveash J. Treatment of adults with recurrent malignant glioma. Expert Rev. Neurotherapeutics5, 509–514 (2005).
  • Kaal EC, Vecht CJ. The management of brain edema in brain tumors. Curr. Opin. Oncol.16, 593–600 (2004).
  • Sina S, Bastin ME, Wardlaw JM et al. Effects of dexamethasone on peritumoural oedematous brain: a DT_MRI study.J. Neurol. Neurosurg. Psychiatry75, 1632–1635 (2004).
  • Lantos P, Pilkington GJ. Neuronal changes in experimental gliomas. Neuropathol. Appl. Neurobiol.6, 255–266 (1980).
  • Delgado MB, Anderson JR, Whittle IR et al. Expression of bcl-2 and bax in oligodendrogliomas and their relationship to apoptosis. Neuropathol. Appl. Neurobiol.25, 400–407 (1999).
  • McKinney RA, Debanne D, Gahwiler BH et al. Lesion-induced axonal sprouting and hyperexcitability in the hippocampus in vitro. Implications for the genesis of posttraumatic epilepsy. Nat. Med.3, 990–996 (1997).
  • Curran T, Franza BR. Fos and Jun: the AP-1 connection. Cell55, 395–397 (1988).
  • Herdegen T, Skene P, Bähr M. The c-jun transcription factor. Bipotential mediator of neuronal death, survival, and regeneration. Trends Neurosci.20, 227–231 (1997).
  • Tomimoto H, Takemoto O, Akiguchi I et al. Immunoelectron microscopic study of c-Fos, c-Jun and heat shock protein after transient cerebral ischemia in gerbils. Acta Neuropathol.97, 22–30 (1999).
  • Schaller BJ, Bähr M, Buchfelder M. Pathophysiology of brain ischemia: penumbra, gene expression, and future therapeutic options. Eur. Neurol.54, 179–180 (2005).
  • Ham J, Babij C, Whitfield J et al. A c-jun dominant negative mutant protein protects sympathetic neurons against programmed cell death. Neuron14, 927–939 (1995).
  • Soriano MA, Ferrer I, Rodriguez-Farre E et al. Apoptosis and c-jun in the thalamus of the rat following cortical infarction. Neuroreport7, 425–428 (1996).
  • Pennypacker KR, Hong JS, McMillian MK. Implications of prolonged expression of Fos-related antigens. Trends Pharmacol. Sci.16, 317–321 (1995).
  • Blanc EM, Bruce-Keller AJ, Mattson MP. Astrocytic gap junctional communication decreases neuronal vulnerability to oxidative stress-induced disruption of Ca2+ homeostasis and cell death. J. Neurochem.70, 958–970 (1998).
  • Takuma K, Baba A, Matsuda T. Astrocyte apoptosis: implications for neuroprotection. Prog. Neurobiol.72, 111–127 (2004).
  • Kobayashi K, Hayashi M, Nakano H et al. Apoptosis of astrocytes with enhanced lysosomal activity and oligodendrocytes in white matter lesions in Alzheimer's disease. Neuropathol. Appl. Neurobiol.28, 238–251 (2002).
  • Lin JH, Weigel H, Cotrina ML et al. Gap-junction-mediated propagation and amplification of cell injury. Nat. Neurosci.1, 494–500 (1998).
  • Bauer A, Langen KJ, Bidmon H et al. 18F-CPFX PET identifies changes in cerebral A1 adenosine receptor density caused by glioma invasion. J. Nucl. Med.46, 450–454 (2005).
  • Ostrow LW, Sachs F. Mechanosensation and endothelin in astrocytes – hypothetical roles in CNS pathophysiology. Brain Res. Brain Res. Rev.48, 488–508 (2005).
  • Schaller B. The role of endothelin in stroke: experimental data and underlying pathophysiology. Arch. Med. Sci. (2006) (In Press).
  • Fidler IJ, Yano S, Zhang R et al. The seed and soil hypothesis: vascularization and brain metastasis. Lancet Oncol.3, 53–57 (2002).
  • Carmeliet P, Ferrera V, Breier G et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature380, 435–439 (1996).
  • Zagzag D, Nomura M, Friedlander DR et al. Geldanamyicn inhibits migration of glioma cells in vitro: a potential role for hypoxia-inducible factor (HIF-1 α) in glioma cell invasion. J. Cell Physiol.196, 394–402 (2003).
  • Briner P, Piribauer M, Fischer I et al. Vascular patterns in glioblastoma influence clinical outcome and associate with variable expression of anigogenic proteins: eivdnece for ditstinc angiogenic subtypes. Brain Pathol.13, 133–143 (2003).
  • Puce A, Constable RT, Luby ML et al. Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J. Neurosurg.83, 262–270 (1995).
  • Julien C, Payen JF, Tropres I et al. Assessment of vascular reactivity in rat brain glioma by measuring regional blood volume during graded hypoxic hypoxia. Br. J. Cancer91, 374–380 (2004).
  • Kontos HA, Wei EP, Raper AJ et al. Role of tissue hypoxia in local regulation of cerebral microcirculation. Am. J. Physiol.234, H582−H591 (1978).
  • De Murcia JM, Niedergang C, Trucco C et al. Requirement of poly-(ADP) ribose polymerase in recovery from DNA damage in mice and in cells. Proc. Natl Acad. Sci. USA94, 7303–7307 (1997).
  • Love S, Barber R, Wilcock GK. Neuronal accumulation of poly-(ADP) ribose after brain ischaemia. Neuropathol. Appl. Neurobiol.25, 98–103 (1999).
  • Pieper AA, Verma A, Zhang J et al. Poly-(ADP) ribose, nitric oxide and cell death. Trends Pharmacol. Sci.20, 171–181 (1999).
  • Wolburg H, Lippoldt A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vasc. Pharmacol.38, 323–337 (2002).
  • De Vries HE, Kuiper J, De Boer AG et al. The blood–brain barrier in neuroinflammatory diseases. Pharmacol. Rev.49, 143–153 (1997).
  • Gloor SM, Wachtel M, Bolliger MF et al. Molecular and cellular permeability control at the blood–brain barrier. Brain Res. Rev.36, 258–264 (2001).
  • Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier. Trends Neurosci.24, 719–725 (2001).
  • Marks KS, Davis TP. Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am. J. Physiol. Heart Circ. Physiol.282, H1485–H1494 (2002).
  • Lipton P. Ischemic cell death in brain neurons. Pharmacol. Rev.79, 1432–1568 (1999).
  • Morioka T, Baba T, Black KL et al. Inflammatory cell infiltrates vary in experimental primary and metastatic brain tumors. Neurosurgery30, 891–896 (1992).
  • Whittle IR, Collins F, Kelly PA et al. Nitric oxide synthase is expressed in experimental malignant glioma and influences tumor blood flow. Acta Neurochir.138, 870–875 (1996).
  • Bolton SJ, Anthony DC, Perry VH. Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood–brain barrier breakdown in vivo. Neuroscience86, 1245–1257 (1998).
  • Petty MA, Lo EH. Junctional complexes of the blood–brain barrier: permeability changes in neuroinflammation. Prog. Neurobiol.68, 311–323 (2002).
  • Sondergaard KL, Hilton DA, Penney M et al. Expression of hypoxia-inducible factor 1 α in tumors of patients with glioblastoma. Neuropathol.Appl. Neurobiol.28, 210–217 (2002).
  • Shweiki D, Itin A, Soffer D et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxiainitiated angiogenesis. Nature359, 843–845 (1992).
  • Thomas KA. Vascular endothelial growth factor, a potent and selective angiogenic agent. J. Biol. Chem.271, 603–606 (1996).
  • Machein MR, Kullmer J, Fiebich BL et al. Vascular endothelial growth factor expression, vascular volume, and capillary permeability in human brain tumors. Neurosurgery44, 732–740 (1999).
  • Machein MR, Kullmer J, Ronicke V et al. Differential downregulation of vascular endothelial growth factor by dexamethasone in normoxic and hypoxic rat glioma cells. Neuropathol. Appl. Neurobiol.25, 104–112 (1999).
  • Fischer I, Gagner JP, Law M et al. Angiogenesis in gliomas biology and molecular pathophyisology. Brain Pathol.15, 297–310 (2005).
  • Jansen M, de Witt Hamer PC, Witmer AN et al. Current perspectives on antiagiogenesis strategies in the treatment of malignant gliomas. Brain Res. Brain Res. Rev.45, 143–163 (2004).
  • Schaller B, Graf R. Hypothermia and stroke: the pathophysiological background. Pathophysiology10(1), 7–35 (2003).
  • Zoref-Shani E, Reshef A, Di Capua N et al. The signal transduction pathway induced by adenosine to confere ischemic tolerance. In: Ischemic Tolerance of the Brain. Schaller B (Ed.). Nova Science, Hauppauge, NY, USA (2005).
  • Schaller B, Graf R. Cerebral ischemic preconditioning. An experimental phenomenon or a clinical important entity of stroke prevention? J. Neurol.249, 1503–1511 (2002).
  • Schaller B. Prospects for the future: the role of free radicals in the treatment of stroke. Free Radic. Biol. Med.38, 411–425 (2005).
  • Ehrenreich H. Medicine. A boost for translational neuroscience. Science305, 184–185 (2004).
  • Ehrenreich H, Hasselblatt M, Dembowski C et al. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol. Med.8, 495–505 (2002).
  • Ehrenreich H, Degner D, Meller J et al. Erythropoietin a candicate compound for neuroprotection in schizophrenia. Mol. Psychiatry9, 42–54 (2004).
  • Duffau H. Lessons from brain mapping in surgery for low-grade glioma insights into assocations between tumour and brain plasticity. Lancet Neurol.4, 476–486 (2005).
  • Nedergaard M, Dirnagl U. Role of glial cells in cerebral ischemia. Glia50, 281–286 (2005).
  • Dawson TM. Preconditioning-mediated neuroprotection through erythropoietin? Lancet359, 96–97 (2002).
  • Jones NM, Bergeron M. Hypoxic preconditioning induces changes in HIF-1 target genes in neonatal rat brain. J. Cereb. Blood Flow Metab.21, 1105–1114 (2001).
  • Pfenninger E, Himmelseher S. Neuroprotection by ketamine at the cellular level. Anaesthesist46, S47–S54 (1997).
  • Ruscher K, Freyer D, Karsch M et al. Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J. Neurosci.22, 10291–10301 (2002).
  • Prass K, Scharff A, Ruscher K et al. Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke34, 1981–1986 (2003).
  • Erbayraktar S, Grasso G, Sfacteria A et al. Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc. Natl Acad. Sci. USA100, 6741–6746 (2003).
  • Mineura K, Sasajima T, Kowada M et al. Perfusion and metabolism in predictiong the survival of patients with cerebral gliomas. Cancer73, 2386–2394 (1994).
  • Fisher MR, Ratan R. New perspectives on developing acute stroke therapy. Ann. Neurol.53, 10–20 (2003).
  • DeGracia DJ, Kumar R, Owen CR et al. Molecular pathways of protein synthesis inhibition during brain reperfusion. J. Cereb. Blood Flow Metab.22, 393–403 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.