60
Views
7
CrossRef citations to date
0
Altmetric
Review

State of the art chemotherapeutic management of pediatric brain tumors

, &
Pages 765-779 | Published online: 10 Jan 2014

References

  • Rilliet B, Vernet O. Gliomas in children a review. Childs Nerv. Syst.16(10) 735–741, (1998).
  • National Cancer Institute. SEER program. In: Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1995. Ries LAG, Smith MA, Gurney JG et al. (Eds). National Cancer Institute. Bethesda, USA (1999).
  • Loomis DP, Wolf SH. Mortality of workers at a nuclear materials production plant at Oak Ridge, Tennessee, 1947–1990. Am. J. Ind. Med.29, 131–141 (1996).
  • Wrensch M, Minn Y, Bondy ML. Epidemiology. In: Essential neuro-oncology. Bernstein M, Berger M (Eds). Thieme, NY, USA (2000).
  • Preston-Martin S, Mack WJ. Neoplasms of the nervous system. In: Cancer Epidemiology and Prevention 2nd Edition. Schottenfeld D, Fraumeni JF (Eds). Oxford University Press, NY, USA (1996).
  • Bleyer WA. Epidemiologic impact of children with brain tumors. Childs. Nerv. Syst.15, 758–763 (1999).
  • Smith MA, Freidlin B, Ries LA et al. Trends in the reported incidence of primary Malignant brain tumors in the children in the United States. J. Natl Cancer Inst.90, 1269–1277, (1998).
  • Farewell JR. Dohrman GJ, Flannery JT. Central nervous system in children. Cancer40, 3123–3132 (1977).
  • Gilles F and the Childhood Brain Tumor Consortium. A Study of childhood Brain Tumors based on surgical biopsies from ten North American institutions: sample Distribution. J. Neurooncol.6, 9–23 (1988).
  • Rorke L, Gilles FH, Davis RL et al. Revision of the WHO classification of brain tumors for childhood brain tumors. Cancer561869–1886 (1985).
  • Kleihues P, Burger PC, Scheithauer BW et al. WHO International Histological Classification of Tumors. In: Histological Typing of Tumors on the Central Nervous System 2nd Edition. IARC Press, Germany (1993).
  • Mundigers CMPW, Lippens RJJ, Hoogenhout J et al. Astrocytoma in childhood: survival and performance. Pediatric Hematol. Oncol.7, 121–128 (1990).
  • Vandenberg SR, May EE, Rubenstein L et al. Desmoplastic supratentorial neuroepithelial tumors of infancy with divergent differentiation potential. J. Neurosurg.66, 58–71 (1987).
  • Guthrie BL, Laws ER. Supratentorial low-grade gliomas. Neurosurg. Clin. N. Am.1, 37–48 (1990).
  • North CA, North RB, Epstein JA et al. Low grade cerebral astrocytomas: survival and quality of life after radiation therapy. Cancer66, 6–14 (1990).
  • Svensen SA, Mulvihill JJ, Nielsen A. Longterm follow-up of von Recklinghausen neurofibromatosis: survival and malignant neoplasms. N. Engl. J. Med.96, 1010–1015 (1986).
  • Listernick R, Charrow J, Greenwald MJ et al. Optic gliomas in children with neurofibromatosis type. J. Pediatr.114, 788–792 (1989).
  • Korf BR. Diagnosis and management of neurofibromatosis Type 1. Curr. Neurol. Neurosci. Rep.1(2), 162–167 (2001).
  • Guillamo JS. Prognostic factors of CNS tumors in neurofibromatosis 1 (NF1): a retrospective study of 104 patients. Brain126(1), 152–160 (2003).
  • Singhal S, Birch JM, Kerr B, Lashford L, Evans DG. Neurofibromatosis Type 1 and sporadic optic gliomas. Arch. Dis. Child.87(1), 65–70 (2002).
  • Moore BD III, Ater JL, Needle MN, Slopis J, Copeland DR. Brain tumors in children with neurofibromatosis-1: additional morbidity? J. Child Neurol.9, 368–377 (1994).
  • Laws ER, Taylor WF, Clifton MB et al. Neurosurgical management of low-grade astrocytoma of the cerebral hemispheres. J. Neurosurg.61, 665–673 (1984).
  • Hoffman H J. In: Supratentorial brain tumors in children. Youman JR (Ed). Neurological Surgery, Saunders, Philadelphia, USA (1982).
  • Mercuri S, Russo A, Palma L. Hemispheric supratentorial astrocytomas in children. J. Neurosurg.55, 170–173 (1981).
  • Palma L, Guidetti B. Cystic pilocytic astrocytomas of the cerebral hemispheres. Surgical experience with 51 cases and long- term results. J. Neurosurg.62, 811–815 (1985).
  • Weir B, Grace M. The relative significance of factors affecting postoperative survival in astrocytomas, grades one and two. Can. J. Neurol. Sci.3, 47–50 (1976).
  • Fisher BJ, Leighton CC, Vujovic O, Macdonald DR, Stitt L. Results of a policy of surveillance alone after surgical management of pediatric low grade gliomas. Int. J. Radiat. Oncol. Biol. Phys.42, 271–288 (1999).
  • Pollack IF. The role of surgery in pediatric gliomas. J. Neurooncol.42(3), 271–288 (1999).
  • Page LK, Clark R. Gliomas of the septal area in children. Neurosurgery8, 651–655 (1981).
  • Packer RJ, Sutton LM, Bilaniuk LT et al. Treatment of chiasmatic/hypothalamic gliomas of childhood with chemotherapy: an update. Ann. Neurol.23, 79–85 (1988).
  • Packer R J, Lange B, Ater J et al. Carboplatin and vincristine for progressive low grade gliomas of childhood. J. Clin. Oncol.11, 850–857 (1993).
  • Prados MD, Edwards MS, Levin VA. Treatment of Pediatric Low-grade gliomas with nitrosourea based multi-agent chemotherapy regimen. J. Neurooncol.32(3), 235–241 (1997).
  • Chamberlain MC, Grafe MR. Recurrent chiasmatic–hypothalamic glioma treated with oral etoposide. J. Clin. Oncol.13, 2072–2076 (1995).
  • Kuo DJ, Weiner HL, Wisoff J, Miller DC, Knopp EA, Finlay JL. Temozolamide is active in childhood, progressive unresectable, low-grade glioma. J Pediatric Hematol. Oncol.25(5), 372–378 (2003).
  • Scanion P W, Taylor W F. Radiotherapy of intracranial astrocytomas: analysis of 417 cases treated from 1960 to 1969. Neurosurgery5, 301–308 (1979).
  • Plathow C, Schulz-Ertner D, Thilman C et al. Fractionated stereotactic radiotherapy in low-grade astrocytomas: long-term outcome and prognostic factors. Int. J. Radiat. Oncol. Biol. Phys.57(4), 996–1003 (2003).
  • Schulz-Ertner D, Debus J, Lohr F, Frank C, Hoss A, Wannenmacher M. Fractionated stereotactic conformal radiation therapy of brain stem gliomas: outcome and prognostic factors. Radiother. Oncol.57(2), 215–223 (2000)
  • Jenkin D, Danjoux C, Greenberg M. Subsequent quality of life for children irradiated for a brain tumor before age four years. Med. Pediatr. Oncol.31(6), 506–511 (1998).
  • Saran FH, Baumert BG, Khoo VS et al. Stereotactically guided conformal radiotherapy for progressive LGGs of childhood. Int. J. Radiat. Oncol. Biol. Phys.53(1), 43–51 (2002).
  • Sposto R, Ertel IJ, Jenkin RDT et al. The effectiveness of chemother- for treatment of high grade astrocytoma in children: results of a randomized trial. J. Neurooncol.7, 165–177 (1989).
  • Finlay JL, Boyett JM, Yates AJ et al. Randomized Phase III trial in childhood high grade astrocytoma comparing vincristine, lomustine and prednisone with the ‘8 drugs in 1 regimen’. JCO.39(13) 112–123 (1995).
  • Arenson E, Ater J, Bank J et al. A randomized Phase II trial ofhigh dose alkylating agents plus VP-16 in children with high-grade astrocytoma. J. Pediatr. Hematol. Oncol.21, 325 (1999).
  • Estlin EJ, Lashford L, Ablett S et al. Phase I study of temozolomide in paediatric patients with advanced cancer. Br. J. Cancer78, 652–661 (1998).
  • Nicholson HS, Krailo M, Ames MM et al. Phase I study of temozolomide in children and adolescents with recurrent solid tumors a report from the children’s cancer group. J. Clin. Oncol.163037–3043 (1998).
  • Morland BJ. Decline in the incidence of medulloblastoma in children. Cancer76, 155–156 (1995).
  • Hamilton SR, Liu B, Parsons RE et al. The molecular basis of Turcot’s syndrome. N. Engl. J. Med.332, 839–847 (1995).
  • Pearson ADJ, Ratcliffe JM, Birch JM et al. Two families with Li–Fraumeni cancer family syndrome. J. Med. Genet.19, 362–365 (1982).
  • Shuster J, Hart Z, Stimson CW, Brough AJ, Poulik MD. Ataxia teleangiectasia with cerebellar tumor. Pediatrics37, 776–786 (1966).
  • Rogers L, Pattisapu J, Smith RR, Parker P. Medulloblastoma is association with Coffin-Siris syndrome. Childs Nerv. Syst.4, 41–44 (1988).
  • WHO Classification of tumours. In: Pathology and Genetics of Tumors of The Nervous System. Kleihues P, Cavenee WK (Eds). IARC Press, Lyon, France (2000).
  • Packer RJ, Sutton LN, Elterman R. et al. Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU and vincristine chemotherapy. J. Neuro. surg.81, 690–698 (1994).
  • Packer RJ, Goldwein JW, Boyett J et al. Early results of reduced-dose radiotherapy plus chemotherapy for children with non-disseminated medulloblastoma (MB): a Children’s Cancer Group Study. Pediatr. Neurosurg.5, 518–521 (1995).
  • Zeltzer PM, Boyett JM, Finlay JL et al. Metastasis stage, adjuvant treatment and residual tumor are prognostic factors for medulloblastoma in children. conclusions from the of Children’s Cancer Group 921. Randomized Phase III study. J. Clin. Oncol.1 (7), 832–845 (1999).
  • Gajjar A, Shother D, Ashley D et al. Feasibility of four high dose chemotherapy Cycle with stem cell rescue for patients with newly diagnosed medulloblastoma or supratentorial primitive neuroectodermal tumors after craniospinal radiation. J. Clin. Oncol.19(10), 2696–2704 (2001).
  • Chi S, Finlay JL, Levy AS et al. Feasibility and response to induction chemotherapy intensified with high dose methotrexate for young children with newly diagnosed high risk disseminated medulloblastoma. J. Clin. Oncol.22(24), 4881–4887 (2004).
  • Duffner P, Krischer J, Burger P et al. Treatment of infants with malignant gliomas: pediatric oncology group experience. J. Neurooncol.28, 245–256 (1996).
  • Mason WP, Grovas A, Finlay JL et al. Intensive chemotherapy and bone marrow rescue for young children with newly diagnosed malignant brain tumors. J. Clin. Oncol. (1), 210–221 (1998).
  • Rutkowski S, Bode U,Kuehl J. Treatment of childhood medulloblastoma by post operative chemotherapy alone. N. Engl. J. Med.10 (10), 978–986 (2005).
  • Blaney SM, Boyett J, Heideman R et al. Phase I clinical trial of mafosfamide in infants and children aged three or younger with newly diagnosed embryonal tumors. J. Clin. Oncol.20(3), 525–531 (2005).
  • Merchant TE, Mulhern RK, Sanford RA et al. Preliminary results from a Phase II trial of conformal radiation related CNS effects for pediatric patients with localized ependymoma. J. Clin. Oncol.22(15), 3156–3162 (2004).
  • Bloom HJG, Glees J, Bell J. The treatment and long-term prognosis of children with intracranial tumors : A study of 610 cases,1950–1981. Int. J. Radiat. Oncol. Biol. Phys.1(8), 723–745 (1991).
  • Nazar GB, Hoffman HJ, Becker LE et al. Infratentorial ependymomas in childhood: Prognostic factors and treatment. J. Neurosurg.72, 408–417 (1990).
  • Taylor R. Review of radiotherapy dose and volume for intracranial ependymoma. Pediatr. Blood Cancer42, 457–460 (2004).
  • Evans AE, Anderson JR, Lefkowitz-Boundreaux IB, Finlay JL. Adjuvant chemotherapy of childhood posterior fossa ependymoma: cranio-spinal irradiation with or without adjuvant CCNU, vincristine and prednisone: a Childrens Cancer Group study. Med. Pediatr. Oncol.27(1) 8–14 (1996).
  • Robertson PL, Zeltzer PM, Boyett JM et al. Survival and prognostic factors following radiation therapy and chemotherapy for ependymomas in children: a report of the Childrens Cancer Group. J. Neurosurg.90(3), 605 (1999).
  • White L, Kellie S, Gray E et al. Postoperative chemotherapy in children less than four years of age with malignant brain tumors: promising initial response to a VETOPEC-based regimen. A study of the Australian and New Zealand Children’s Cancer Study Group (ANZCCSG). J. Pediatr. Hematol. Oncol.20(2), 125–130 (1998).
  • Needle MN, Goldwein JW, Grass J et al. Adjuvant chemotherapy for the treatment of intracranial ependymoma of childhood.Cancer80(2) 341–347 (1997).
  • Duffner PK, Horowitz ME, Krischer JP et al. Post-operative chemotherapy and delayed radiation in children less than three years of age with malignant brain tumors. N. Engl. J. Med.328(24), 1725–1731 (1993).
  • Foreman NK, Love S, Gill SS, Coakham HB. Second-look surgery for incompletely resected fourth ventricle ependymomas: technical case report. Neurosurgery40(4), 856–860 (1997).
  • Papadakis V, Dunkel IJ, Finlay JL. High dose carmustine, thiotepa and etoposide followed by autologous bone marrow rescue for the treatment of high risk central nervous system tumors. Bone Marrow Transplant.26(2), 153–160 (2000).
  • Wolffe JE, Finlay JL. High dose chemotherapy in childhood brain tumors. Onkologie27(3), 239–245 (2004).
  • Dunkel IJ, Boyett JM, Finlay JL. Use of high dose carboplatin, thiotepa and etoposide with autologous stem cell rescue in patients with recurrent medulloblastoma.J. Clin. Oncol.16(1), 222–228 (1999).
  • Guruangan S, Dunkel IJ, Finlay JL et al. Myeloablative chemotherapy with ABMR in young children with recurrent malignant brain tumors. J. Clin. Oncol.6(7), 2486–2493 (1998).
  • Roskoski R, Jr. The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem. Biophys. Res. Commun.319(1), 1–11 (2004).
  • Ciardiello F. Epidermal growth factor receptor tyrosine kinase inhibitors as anticancer agents. Drugs60(Suppl. 1), 25–32; discussion 41–42 (2000).
  • Bredel M, Pollack IF, Hamilton RL, James CD. Epidermal growth factor receptor expression and gene amplification in high-grade non-brainstem gliomas of childhood. Clin. Cancer Res.5, 1786–1792 (1999).
  • Gilbertson RJ, Bentley L, Hernan R et al.Clin. Cancer Res.8(10) 3054–3064 (2002).
  • Gajjar A, Hernan R, Kocak M et al.Clin. Oncol.22(6) 984–993 (2004).
  • Wood ER, Truesdale AT, McDonald OB et al. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib) relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res.64, 6652–6659 (2004).
  • Hidalgo M, Siu LL, Nemunaitis J et al. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J. Clin. Oncol.19, 3267–3279 (2001).
  • Baselga J. The EGFR as a target for antiCancer therapy-focus on cetuximab. Eur. J. Cancer37(Suppl. 4), S16–S22 (2001).
  • Rao RD, James CD. Altered molecular pathways in gliomas: an overview of clinically relevant issues. Semin. Oncol.31, 595–604 (2004).
  • Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA. Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res.62, 3729–3735 (2002).
  • Lassman AB: Molecular biology of gliomas. Curr. Neurol. Neurosci. Rep.4, 228–233 (2004).
  • Mischel PS, Cloughesy TF. Targeted molecular therapy of GBM. Brain Pathol.13, 52–61 (2003).
  • Kilic T, Alberta JA, Zdunek PR et al. Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally-active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res.60, 5143–5150, (2000).
  • Traxler P, Bold G, Buchdunger E et al. Tyrosine kinase inhibitors: from rational design to clinical trials. Med. Res. Rev.21, 499–512 (2001).
  • Mauro A, Bulfone A, Turco E, Schiffer D. Coexpression of platelet-derived growth factor (PDGF) B chain and PDGF B-type receptor in human gliomas. Childs Nerv. Syst.7, 432–436 (1991).
  • Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood96, 925–932 (2000).
  • Boguski MS, McCormick F. Proteins regulating Ras and its relatives. Nature366, 643–654 (1993).
  • Black P, Carroll R, Glowacka D. Expression of platelet-derived growth factor transcripts in medulloblastomas and ependymomas. Neurosurgical Laboratories, Brigham and Women’s Hospital Children’s Hospital. Boston, MA, USA. Pediatr. Neurosurg.24(2), 74–78 (1996).
  • MacDonald TJ, Brown KM, LaFleur B et al. Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat. Genet.2, 143–152 (2001).
  • Bollag G, McCormick F. Regulators and effectors of ras proteins. Ann. Rev. Cell Biol.7, 601–632 (1991).
  • Tuzi NL, Venter DJ, Kumar S, Staddon SL, Lemoine NR, Gullick WJ. Expression of growth factor receptors in human brain tumours. Br. J. Cancer63, 227–233 (1991).
  • Bos JL, de Rooij J, Reedquist KA. Rap1 signalling: adhering to new models. Nat. Rev. Mol. Cell Biol.2, 369–377 (2001).
  • Silber JH, Radcliffe J, Peckham V et al. Whole-brain irradiation and decline in intelligence: the influence of dose and age on IQ score. J. Clin. Oncol.10, 1390–1396 (1992).
  • Guha A, Feldkamp MM, Lau N, Boss G, Pawson A. Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene15, 2755–2765 (1997).
  • Feldkamp MM, Lau N, Guha A. Growth inhibition of astrocytoma cells by farnesyl transferase inhibitors is mediated by a combination of antiproliferative, pro-apoptotic and anti-angiogenic effects. Oncogene18, 7514–7526 (1999).
  • Wang X, Christiani DC, Mark EJ et al. Carcinogen exposure, p53 alteration, and K-ras mutation in synchronous multiple primary lung carcinoma. Cancer85, 1734–1739 (1999).
  • Liu ZJ, Snyder R, Soma AS et al. VEGF-A and αVβ3 integrin synergistically rescue angiogenesis via N-Ras and PI3-K signaling in human microvascular endothelial cells. Faseb J.17, 1931–1933 (2003).
  • Meadows KN, Bryant P, Vincent PA, Pumiglia KM. Activated Ras induces a proangiogenic phenotype in primary endothelial cells. Oncogene23, 192–200 (2004).
  • Alsina M, Fonseca R, Wilson EF et al. Farnesyltransferase inhibitor tipifarnib is well-tolerated, induces stabilization of disease, and inhibits farnesylation and oncogenic/tumor survival pathways in patients with advanced multiple myeloma. Blood103, 3271–3277 (2004).
  • Carmeliet P. Angiogenesis in health and disease. Nat. Med.9, 653–660 (2003).
  • Tjwa M, Luttun A, Autiero M, Carmeliet P. VEGF and PlGF: two pleiotropic growth factors with distinct roles in development and homeostasis. Cell Tissue Res.314, 5–14 (2003).
  • Wang D, Huang HJ, Kazlauskas A, Cavenee WK. Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phosphatidylinositol 3-kinase. Cancer Res.59, 1464–1472 (1999).
  • Pepper MS, Mandriota SJ, Jeltsch M, Kumar V, Alitalo K. Vascular endothelial growth factor (VEGF)-C synergizes with basic fibroblast growth factor and VEGF in the induction of angiogenesis in vitro and alters endothelial cell extracellular proteolytic activity. J. Cell Physiol.177, 439–452 (1998).
  • Sanchez-Elsner T, Botella LM, Velasco B, Corbi A, Attisano L, Bernabeu C. Synergistic co-operation between hypoxia and transforming growth factor-β pathways on human vascular endothelial growth factor gene expression. J. Biol. Chem.276, 38527–38535 (2001).
  • Brooks PC, Montgomery AM, Rosenfeld M et al. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic Blood vessels. Cell79, 1157–1164 (1994).
  • Gesundheit B, Klement G, Senger C et al.Differences in vasculature between pilocytic and anaplastic astrocytomas of childhood. Med. Pediatr. Oncol.41, 516–526 (2003).
  • Plate KH, Risau W. Angiogenesis in malignant gliomas. Glia15, 339–347 (1995).
  • Huber H, Eggert A, Janss AJet al. Angiogenic profile of childhood primitive neuroectodermal brain tumours/medulloblastomas. Eur. J. Cancer37(16), 2064–2072 (2001).
  • MacDonald TJ, Brown KM, LaFleur B et al. Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat. Genet.29(2), 143–152 (2001).
  • Plate KH, Mennel HD. Vascular morphology and angiogenesis in glial tumors. Exp. Toxicol. Pathol.47, 89–94 (1995).
  • Millauer B, Longhi MP, Plate KH et al. Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo. Cancer Res.56, 1615–1620 (1996).
  • Smith JK, Mamoon NM, Duhe RJ. Emerging roles of targeted small molecule protein-tyrosine kinase inhibitors in cancer therapy. Oncol. Res.14, 175–225 (2004).
  • Zangari M, Anaissie E, Stopeck A et al. Phase II study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor, in patients with refractory multiple myeloma. Clin. Cancer Res.10, 88–95 (2004).
  • Litz J, Sakuntala Warshamana-Greene G, Sulanke G, Lipson KE, Krystal GW. The multi-targeted kinase inhibitor SU5416 inhibits small cell lung Cancer growth and angiogenesis, in part by blocking Kit-mediated VEGF expression. Lung Cancer46, 283–291 (2004).
  • Renbarger J, Aleksic A, McGuffey L, Dauser R, Berg S, Blaney S. Plasma and cerebrospinal fluid pharmacokinetics of SU5416 after intravenous administration in nonhuman primates. Cancer Chemother. Pharmacol.53, 39–42 (2004).
  • Stadler WM, Cao D, Vogelzang NJ Karrison T, Vokes EE. A randomized Phase II trial of the anti-angiogenic agent SU5416 in hormone-refractory prostate cancer. Clin. Cancer Res.10, 3365–3370 (2004).
  • Westlin WF. Integrins as targets of angiogenesis inhibition. Cancer J.7(Suppl. 3), S139–S143 (2001).
  • Nikolopoulos SN, Blaikie P, Yoshioka T, Guo W, Giancotti FG. Integrin β4 signaling promotes tumor angiogenesis. Cancer Cell6, 471–483 (2004).
  • Hall H, Hubbell JA. Matrix-bound sixth Ig-like domain of cell adhesion molecule L1 acts as an angiogenic factor by ligating αvβ3-integrin and activating VEGF-R2. Microvasc. Res.68, 169–178 (2004).
  • Springer TA, Wang JH. The three-dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion. Adv. Protein Chem.68, 29–63 (2004).
  • Hwang R, Varner J. The role of integrins in tumor angiogenesis. Hematol. Oncol. Clin. North Am.18, 991–1006 (2004).
  • MacDonald TJ, Taga T, Shimada H et al. Preferential susceptibility of brain tumors to the anti-angiogenic effects of an α(v) integrin antagonist. Neurosurgery48, 151–157 (2001).
  • MacDonald TJ, Taga T, Shimada H et al. Preferential susceptibility of brain tumors to the anti-angiogenic effects of an α(v) integrin antagonist. Neurosurgery (1), 151–157 (2001).
  • Chatterjee S, Matsumura A, Schradermeier J, Gillespie GY. Human malignant glioma therapy using anti-α(v)β3 integrin agents. J. Neurooncol.46, 135–144 (2000).
  • Kumar S, Witzig TE, Rajkumar SV. Thalidomide as an anticancer agent. J. Cell. Mol. Med.6, 160–174, (2002).
  • Jacobson JM. Thalidomide: a remarkable comeback. Expert Opin. Pharmacother.1, 849–863 (2000).
  • Stirling D. Thalidomide: a novel template for anticancer drugs. Semin. Oncol.28, 602–606 (2001).
  • Fine HA, Figg WD, Jaeckle K et al. Phase II trial of the anti-angiogenic agent thalidomide in patients with recurrent high-grade gliomas. J. Clin. Oncol.18, 708–715 (2000).
  • Richardson P, Anderson K. Immunomodulatory analogs of thalidomide: an emerging new therapy in myeloma. J. Clin. Oncol.22, 3212–3214 (2004).
  • Tohnya TM, Ng SS, Dahut WL et al. A Phase I study of oral CC-5013 (lenalidomide, Revlimid), a thalidomide derivative, in patients with refractory metastatic Cancer. Clin. Prostate Cancer2, 241–243 (2004).
  • Sirohi B, Powles R. Multiple myeloma. Lancet363, 875–887 (2004).
  • Barlogie B. Thalidomide and CC-5013 in multiple myeloma: the University of Arkansas experience. Semin. Hematol.40, 33–38 (2003).
  • Bartlett JB, Michael A, Clarke IA et al. Phase I study to determine the safety, tolerability and immunostimulatory activity of thalidomide analogue CC-5013 in patients with metastatic malignant melanoma and other advanced Cancers. Br. J. Cancer90, 955–961 (2004).
  • Guerin C, Olivi A, Weingart JD, Lawson HC, Brem H. Recent advances in brain tumor therapy: local intracerebral drug delivery by polymers. Invest. New Drugs22, 27–37 (2004).
  • Whittle IR, Lyles S, Walker M. Gliadel therapy given for first resection of malignant glioma: a single centre study of the potential use of Gliadel. Br. J. Neurosurg.17, 352–354 (2003).
  • Brem H, Gabikian P. Biodegradable polymer implants to treat brain tumors. J. Control Release74, 63–67 (2001).
  • Yuan X, Tabassi K, Williams JA. Implantable polymers for tirapazamine treatments of experimental intracranial malignant glioma. Radiat Oncol. Investig.7, 218–230 (1999).
  • Gururangan S, Cokgor L, Rich JN et al. Phase I study of Gliadel wafers plus temozolomide in adults with recurrent supratentorial high-grade gliomas. Neurooncology3, 246–250 (2001).
  • Olivi A, Brem H. Interstitial chemotherapy with sustained-release polymer systems for the treatment of malignant gliomas. Recent Results Cancer Res.135, 149–154 (1994).
  • Westphal M, Hilt DC, Bortey E et al. A Phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neurooncology5, 79–88 (2003).
  • Bruce JN, Falavigna A, Johnson JP et al. Intracerebral clysis in a rat glioma model. Neurosurgery46, 683–691 (2000).
  • Kawakami M, Kawakami K, Puri RK. Interleukin-4-Pseudomonas exotoxin chimeric fusion protein for malignant glioma therapy. J. Neurooncol.65, 15–25 (2003).
  • Lieberman DM, Laske DW, Morrison PF, Bankiewicz KS, Oldfield EH. Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J. Neurosurg.82, 1021–1029 (1995).
  • Weber F, Asher A, Bucholz R, Berger M et al. Safety, tolerability, and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J. Neurooncol.64, 125–137 (2003).
  • Pastan I, Chaudhary V, FitzGerald DJ. Recombinant toxins as novel therapeutic agents. Ann. Rev. Biochem.61, 331–354 (1992).
  • Hall WA, Godal A, Juell S, Fodstad O. In vitro efficacy of transferrin-toxin conjugates against glioblastoma multiforme. J. Neurosurg.76, 838–844 (1992).
  • FitzGerald DJ, Pastan I. Pseudomonas exotoxin: recombinant conjugates as therapeutic agents. Biochem. Soc. Trans.20, 731–734 (1992).
  • Khuntia D, Mehta M. Motexafin gadolinium: a clinical review of a novel radioenhancer for brain tumors. Expert Rev. AntiCancer Ther.4, 981–989 (2004).
  • Rodrigus P. Motexafin gadolinium: a possible new radiosensitiser. Expert Opin. Investig. Drugs12, 1205–1210 (2003).
  • Rockwell S, Donnelly ET, Liu Y, Tang LQ. Preliminary studies of the effects of gadolinium texaphyrin on the growth and radiosensitivity of EMT6 cells in vitro. Int. J. radiat. Oncol. Biol. Phys.54, 536–541(2002).
  • Xu S, Zakian K, Thaler H et al. Effects of Motexafin gadolinium on tumor metabolism and radiation sensitivity. Int. J. radiat. Oncol. Biol. Phys.49, 1381–1390 (2001).
  • Evens AM, Lecane P, Magda D et al. Motexafin gadolinium generates reactive oxygen species and induces apoptosis in sensitive and highly resistant multiple myeloma cells. Blood105(3), 1265–1273 (2004).
  • Dehnad H, Kal HB, Stam T, Gademan IS, van Moorselaar RJ, van der Sanden BP. Response to motexafin gadolinium and ionizing radiation of experimental rat prostate and lung tumors. Int. J. radiat. Oncol. Biol. Phys.57, 787–793 (2003).
  • Rowinsky EK. Novel radiation sensitizers targeting tissue hypoxia. Oncology (Huntingt.)13, 61–70 (1999).
  • Danson SJ, Middleton MR. Temozolomide: a novel oral alkylating agent. Expert Rev. AntiCancer Ther.1, 13–19, (2001).
  • Cai Y, Wu MH, Xu-Welliver M, Pegg AE, Ludeman SM, Dolan ME. Effect of O6-benzylguanine on alkylating agent-induced toxicity and mutagenicity. In Chinese hamster ovary cells expressing wild type and mutant O6-alkylguanine-DNA alkyltransferases. Cancer Res.60, 5464–5469 (2000).
  • Pegg AE. Repair of O(6)-alkylguanine by alkyltransferases. Mutat. Res.462, 83–100 (2000).
  • Friedman HS, McLendon RE, Kerby T et al. DNA mismatch repair and O6-alkylguanine-DNA alkyltransferase analysis and response to Temodal in newly diagnosed malignant glioma. J. Clin. Oncol.16, 3851–3857 (1998).
  • Friedman HS, Johnson SP, Dong Q et al. Methylator resistance mediated by mismatch repair deficiency in a glioblastoma multiforme xenograft. Cancer Res.57, 2933–2936 (1997).
  • Mitchell RB, Dolan ME. Effect of temozolomide and dacarbazine on O6-alkylguanine-DNA alkyltransferase activity and sensitivity of human tumor cells and xenografts to 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Chemother. Pharmacol.32, 59–63 (1993).
  • Van Meir EG, Hao C, Post DE et al. Therapeutic targeting of molecular pathways that induce brain tumor development. In: Genomic and Molecular Neuro-Oncology. Zhang W, Fuller GN (Eds). Jones and Bartlett, Sadbury, MA, USA, 303–331 (2003).
  • Boskovitz A, Wikstrand CJ, Kuan CT, Zalutsky MR, Reardon DA. Bigner DDMonoclonal antibodies for brain tumour treatment. Expert Opin. Biol. Ther.4(9), 1453–1471 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.