31
Views
8
CrossRef citations to date
0
Altmetric
Review

Toward biomarkers in multiple sclerosis: new advances

, , &
Pages 781-794 | Published online: 10 Jan 2014

References

  • Hohlfeid R, Wekerle H. Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines. Proc. Natl Acad. Sci. USA101, 14599–14606 (2004).
  • Lassmann H. Multiple sclerosis pathology: evolution of pathogenetic concepts. Brain Pathol.15(3), 217–222 (2005).
  • Petzold A, Eikelenboom MJ, Keir G et al. Axonal damage accumulates in the progressive phase of multiple sclerosis: three year follow up study. J. Neurol. Neurosurg. Psychiatry76(2), 206–211 (2005).
  • Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther.69(3), 89–95 (2001).
  • Knottnerus JAE. The evidence base of clinical diagnosis. BMJ books, London, UK (2002).
  • Prentice RL. Surrogate endpoints in clinical trials: definition and operational criteria. Stat. Med.8(4), 431–440 (1989).
  • Bielekova B, Martin R. Development of biomarkers in multiple sclerosis. Brain127, 1463–1478 (2004).
  • Franciotta D, Avolio C, Capello E, Lolli F. Consensus recommendations of the Italian Association for Neuroimmunology for immunochemical cerebrospinal fluid examination. J. Neurol. Sci.237(1–2), 5–11 (2005).
  • McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med.11(3), 335–339 (2005).
  • Niehaus A, Shi J, Grzenkowski M et al. Patients with active relapsing-remitting multiple sclerosis synthesize antibodies recognizing oligodendrocyte progenitor cell surface protein: implications for remyelination. Ann. Neurol.48(3), 362–371 (2000).
  • Lassmann H, Reindl M, Rauschka H et al. A new paraclinical CSF marker for hypoxia-like tissue damage in multiple sclerosis lesions. Brain126(Pt 6), 1347–1357 (2003).
  • Dornmair K, Goebels N, Weltzien HU, Wekerle H, Hohlfeld R. T-cell-mediated autoimmunity: novel techniques to characterize autoreactive T-cell receptors. Am. J. Pathol.163(4), 1215–1226 (2003).
  • Lolli F, Mazzanti B, Pazzagli M et al. The glycopeptide CSF114(Glc) detects serum antibodies in multiple sclerosis. J. Neuroimmunol.167(1–2), 131–137 (2005).
  • Lolli F, Mulinacci B, Carotenuto A et al. An N-glucosylated peptide detecting disease-specific autoantibodies, biomarkers of multiple sclerosis. Proc. Natl Acad. Sci. USA102(29), 10273–10278 (2005).
  • Cross AH, Trotter JL, Lyons J. B cells and antibodies in CNS demyelinating disease. J. Neuroimmunol.112(1–2), 1–14 (2001).
  • Sospedra M, Martin R. Immunology of multiple sclerosis. Annu. Rev. Immunol.23683–747 (2005).
  • Vergelli M, Mazzanti B, Traggiai E et al. Short-term evolution of autoreactive T cell repertoire in multiple sclerosis. J. Neurosci. Res.66(3), 517–524 (2001).
  • Mazzanti B, Hemmer B, Traggiai E et al. Decrypting the spectrum of antigen-specific T-cell responses: the avidity repertoire of MBP-specific T-cells. J. Neurosci. Res.59(1), 86–93 (2000).
  • Babbe H, Roers A, Waisman A et al. Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med.192(3), 393–404 (2000).
  • Friese MA, Fugger L. Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain128(Pt 8), 1747–1763 (2005).
  • Niland B, Banki K, Biddison WE, Perl A. CD8+ T cell-mediated HLA-A*0201-restricted cytotoxicity to transaldolase peptide 168–176 in patients with multiple sclerosis. J. Immunol.175(12), 8365–8378 (2005).
  • Qin Y, Duquette P, Zhang Y et al. Intrathecal B-cell clonal expansion, an early sign of humoral immunity, in the cerebrospinal fluid of patients with clinically isolated syndrome suggestive of multiple sclerosis. Lab. Invest.83(7), 1081–1088 (2003).
  • Colombo M, Dono M, Gazzola P et al. Maintenance of B lymphocyte-related clones in the cerebrospinal fluid of multiple sclerosis patients. Eur. J. Immunol.33(12), 3433–3438 (2003).
  • Link H. Qualitative changes in immunoglobulin G in multiple sclerosis- cerebrospinal fluid. Acta. Neurol. Scand.43(Suppl. 31), 180 (1967).
  • Uccelli A, Aloisi F, Pistoia V. Unveiling the enigma of the CNS as a B-cell fostering environment. Trends Immunol.26(5), 254–259 (2005).
  • Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol.14(2), 164–174 (2004).
  • Corcione A, Casazza S, Ferretti E et al. Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc. Natl Acad. Sci. USA101(30), 11064–11069 (2004).
  • Columba-Cabezas S, Serafini B, Ambrosini E, Aloisi F. Lymphoid chemokines Ccl19 and Ccl21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol.13(1), 38–51 (2003).
  • Rostrom B. Antibodies against viruses and structural brain components in oligoclonal IgG obtained from multiple sclerosis brain. J. Neurol.226(4), 255–263 (1982).
  • Vartdal F, Vandvik B, Norrby E. Viral and bacterial antibody responses in multiple sclerosis. Ann. Neurol.8(3), 248–255 (1980).
  • Cepok S, Zhou D, Srivastava R et al. Identification of Epstein-Barr virus proteins as putative targets of the immune response in multiple sclerosis.J. Clin. Invest.115(5), 1352–1360 (2005).
  • Lyons JA, San M, Happ MP, Cross AH. B cells are critical to induction of experimental allergic encephalomyelitis by protein but not by a short encephalitogenic peptide. Eur. J. Immunol.29(11), 3432–3439 (1999).
  • Paterson PY, Day ED, Whitacre CC, Berenberg RA, Harter DH. Endogenous myelin basic protein-serum factors (MBP-SFs) and anti-MBP antibodies in humans. Occurrence in sera of clinically well subjects and patients with multiple sclerosis. J. Neurol. Sci.52(1), 37–51 (1981).
  • Warren KG, Catz I. Kinetic profiles of cerebrospinal fluid anti-MBP in response to intravenous MBP synthetic peptide DENP(85)VVHFFKNIVTP(96)RT in multiple sclerosis patients. Mult. Scler.6(5), 300–311 (2000).
  • Wucherpfennig KW, Catz I, Hausmann S et al. Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2-restricted T cell clones from multiple sclerosis patients. Identity of key contact residues in the B-cell and T-cell epitopes.J. Clin. Invest.100(5), 1114–1122 (1997).
  • Lefranc D, Almeras L, Dubucquoi S et al. Distortion of the self-reactive IgG antibody repertoire in multiple sclerosis as a new diagnostic tool. J. Immunol.172(1), 669–678 (2004).
  • Sellebjerg F, Christiansen M, Garred P. MBP, anti-MBP and anti-PLP antibodies, and intrathecal complement activation in multiple sclerosis. Mult. Scler.4(3), 127–131 (1998).
  • Wekerle H. Remembering MOG: autoantibody mediated demyelination in multiple sclerosis? Nat. Med.5(2), 153–154 (1999).
  • Raine CS, Cannella B, Hauser SL, Genain CP. Demyelination in primate autoimmune encephalomyelitis and acute multiple sclerosis lesions: a case for antigen-specific antibody mediation. Ann. Neurol.46(2), 144–160 (1999).
  • Genain CP, Cannella B, Hauser SL, Raine CS. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat. Med.5(2), 170–175 (1999).
  • O'Connor KC, Appel H, Bregoli L et al. Antibodies from inflamed central nervous system tissue recognize myelin oligodendrocyte glycoprotein. J. Immunol.175(3), 1974–1982 (2005).
  • Gaertner S, de Graaf KL, Greve B, Weissert R. Antibodies against glycosylated native MOG are elevated in patients with multiple sclerosis. Neurology63(12), 2381–2383 (2004).
  • Lampasona V, Franciotta D, Furlan R et al. Similar low frequency of anti-MOG IgG and IgM in MS patients and healthy subjects. Neurology62(11), 2092–2094 (2004).
  • Mantegazza R, Cristaldini P, Bernasconi P et al. Anti-MOG autoantibodies in Italian multiple sclerosis patients: specificity, sensitivity and clinical association. Int. Immunol.16(4), 559–565 (2004).
  • Berger T, Rubner P, Schautzer F et al. Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N. Engl. J. Med.349(2), 139–145 (2003).
  • Lutterotti A, Reindl M, Gassner C et al. Antibody response to myelin oligodendrocyte glycoprotein and myelin basic protein depend on familial background and are partially associated with human leukocyte antigen alleles in multiplex families and sporadic multiple sclerosis. J. Neuroimmunol.131(1–2), 201–207 (2002).
  • Lim ET, Berger T, Reindl M et al. Anti-myelin antibodies do not allow earlier diagnosis of multiple sclerosis. Mult. Scler.11(4), 492–494 (2005).
  • Mata S, Lolli F, Soderstrom M, Pinto F, Link H. Multiple sclerosis is associated with enhanced B cell responses to the ganglioside GD1a. Mult. Scler.5(6), 379–388 (1999).
  • Menge T, Lalive PH, von Budingen HC et al. Antibody responses against galactocerebroside are potential stage-specific biomarkers in multiple sclerosis. J. Allergy Clin. Immunol.116(2), 453–459 (2005).
  • Schwarz M, Spector L, Gortler M et al. Serum anti-Glc(α1,4)Glc(α) antibodies as a biomarker for relapsing–remitting multiple sclerosis. J. Neurol. Sci.244(1–2), 59–68 (2006).
  • Kanter JL, Narayana S, Ho PP et al. Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat. Med.12(1), 138–143 (2006).
  • Marconi S, De Toni L, Lovato L et al. Expression of gangliosides on glial and neuronal cells in normal and pathological adult human brain. J. Neuroimmunol.170(1–2), 115–121 (2005).
  • Marta CB, Taylor CM, Coetzee T et al. Antibody cross-linking of myelin oligodendrocyte glycoprotein leads to its rapid repartitioning into detergent-insoluble fractions, and altered protein phosphorylation and cell morphology. J. Neurosci.23(13), 5461–5471 (2003).
  • Zhang Y, Da RR, Hilgenberg LG et al. Clonal expansion of IgA-positive plasma cells and axon-reactive antibodies in MS lesions. J. Neuroimmunol.167(1–2), 120–130 (2005).
  • Zhang Y, Da RR, Guo W et al. Axon reactive B cells clonally expanded in the cerebrospinal fluid of patients with multiple sclerosis. J. Clin. Immunol.25(3), 254–264 (2005).
  • Robinson WH, Garren H, Utz PJ, Steinman L. Millennium award. Proteomics for the development of DNA tolerizing vaccines to treat autoimmune disease. Clin. Immunol.103(1), 7–12 (2002).
  • RobinsonWH, Utz PJ, Steinman L. Genetic underpinnings of autoimmunity – lessons from studies in. Curr. Opin. Immunol.15(6), 660–667 (2003).
  • Hammack BN, Owens GP, Burgoon MP, Gilden DH. Improved resolution of human cerebrospinal fluid proteins on two-dimensional gels. Mult. Scler.9(5), 472–475 (2003).
  • Hammack BN, Fung KY, Hunsucker SW et al. Proteomic analysis of multiple sclerosis cerebrospinal fluid. Mult. Scler.10(3), 245–260 (2004).
  • Dumont D, Noben JP, Raus J, Stinissen P, Robben J. Proteomic analysis of cerebrospinal fluid from multiple sclerosis patients. Proteomics4(7), 2117–2124 (2004).
  • Maccarrone G, Milfay D, Birg I et al. Mining the human cerebrospinal fluid proteome by immunodepletion and shotgun mass spectrometry. Electrophoresis25(14), 2402–2412 (2004).
  • Finehout EJ, Franck Z, Lee KH. Towards two-dimensional electrophoresis mapping of the cerebrospinal fluid proteome from a single individual. Electrophoresis25(15), 2564–2575 (2004).
  • Avasarala JR, Wall MR, Wolfe GM. A distinctive molecular signature of multiple sclerosis derived from MALDI-TOF/MS and serum proteomic pattern analysis: detection of three biomarkers. J. Mol. Neurosci.25(1), 119–125 (2005).
  • Weingarten P, Lutter P, Wattenberg A et al. Application of proteomics and protein analysis for biomarker and target finding for immunotherapy. Methods Mol. Med.109155–109174 (2005).
  • Hamacher M, Stephan C, Palacios Bustamante N et al. 4(th) HUPO brain proteome project workshop in Munich, Germany. Proteomics6(1), 14–15 (2006).
  • Bluggel M, Bailey S, Korting G et al. Towards data management of the HUPO human brain proteome project pilot phase. Proteomics4(8), 2361–2362 (2004).
  • Robinson WH, Fontoura P, Lee BJ et al. Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nat. Biotechnol.21(9), 1033–1039 (2003).
  • Hueber W, Utz PJ, Steinman L, Robinson WH. Autoantibody profiling for the study and treatment of autoimmune disease. Arthritis Res.4(5), 290–295 (2002).
  • Graham KL, Robinson WH, Steinman L, Utz PJ. High-throughput methods for measuring autoantibodies in systemic lupus erythematosus and other autoimmune diseases. Autoimmunity37(4), 269–272 (2004).
  • Wood DD, Bilbao JM, O'Connors P, Moscarello MA. Acute multiple sclerosis (Marburg type) is associated with developmentally immature myelin basic protein. Ann. Neurol.40(1), 18–24 (1996).
  • Kim JK, Mastronardi FG, Wood DD et al. Multiple sclerosis: an important role for post-translational modifications of myelin basic protein in pathogenesis. Mol. Cell Proteomics2(7), 453–462 (2003).
  • Cao L, Goodin R, Wood D, Moscarello MA, Whitaker JN. Rapid release and unusual stability of immunodominant peptide 45–89 from citrullinated myelin basic protein. Biochemistry38(19), 6157–6163 (1999).
  • De Keyser J, Schaaf M, Teelken A. Peptidylarginine deiminase activity in postmortem white matter of patients with multiple sclerosis. Neurosci. Lett.260(1), 74–76 (1999).
  • Nicholas AP, Sambandam T, Echols JD, Tourtellotte WW. Increased citrullinated glial fibrillary acidic protein in secondary progressive multiple sclerosis. J. Comp. Neurol.473(1), 128–136 (2004).
  • Raijmakers R, Vogelzangs J, Croxford JL et al. Citrullination of central nervous system proteins during the development of experimental autoimmune encephalomyelitis. J. Comp. Neurol.486(3), 243–253 (2005).
  • Doyle HA, Mamula MJ. Post-translational protein modifications in antigen recognition and autoimmunity. Trends Immunol.22(8), 443–449 (2001).
  • Vossenaar ER, Zendman AJ, van Venrooij WJ, Pruijn GJ. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays25(11), 1106–1118 (2003).
  • Wang Y, Wysocka J, Sayegh J et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science306(5694), 279–283 (2004).
  • Cuthbert GL, Daujat S, Snowden AW et al. Histone deimination antagonizes arginine methylation. Cell118(5), 545–553 (2004).
  • Denman RB. PAD: the smoking gun behind arginine methylation signaling? Bioessays27(3), 242–246 (2005).
  • Beniac DR, Wood DD, Palaniyar N et al. Cryoelectron microscopy of protein-lipid complexes of human myelin basic protein charge isomers differing in degree of citrullination. J. Struct. Biol.129(1), 80–95 (2000).
  • Ishiyama N, Bates IR, Hill CM et al. The effects of deimination of myelin basic protein on structures formed by its interaction with phosphoinositide-containing lipid monolayers. J. Struct. Biol.136(1), 30–45 (2001).
  • Cao L, Sun D, Whitaker JN. Citrullinated myelin basic protein induces experimental autoimmune encephalomyelitis in Lewis rats through a diverse T cell repertoire. J. Neuroimmunol.88(1–2), 21–29 (1998).
  • Tranquill LR, Cao L, Ling NC et al. Enhanced T cell responsiveness to citrulline-containing myelin basic protein in multiple sclerosis patients. Mult. Scler.6(4), 220–225 (2000).
  • Moscarello MA, Mak B, Nguyen TA et al. Paclitaxel (Taxol) attenuates clinical disease in a spontaneously demyelinating transgenic mouse and induces remyelination. Mult. Scler.8(2), 130–138 (2002).
  • Cao L, Sun D, Cruz T et al. Inhibition of experimental allergic encephalomyelitis in the Lewis rat by paclitaxel. J. Neuroimmunol.108(1–2), 103–111 (2000).
  • Amor S, Groome N, Linington C et al. Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J. Immunol.153(10), 4349–4356 (1994).
  • Mazzucco S, Mata S, Vergelli M et al. A synthetic glycopeptide of human myelin oligodendrocyte glycoprotein to detect antibody responses in multiple sclerosis and other neurological diseases. Bioorg. Med. Chem. Lett.9(2), 167–172 (1999).
  • Carotenuto A, D'Ursi AM, Nardi E, Papini AM, Rovero P. Conformational analysis of a glycosylated human myelin oligodendrocyte glycoprotein peptide epitope able to detect antibody response in multiple sclerosis. J. Med. Chem.44(14), 2378–2381 (2001).
  • Linington C, Lassmann H. Antibody responses in chronic relapsing experimental allergic encephalomyelitis: correlation of serum demyelinating activity with antibody titre to the myelin/oligodendrocyte glycoprotein (MOG). J. Neuroimmunol.17(1), 61–69 (1987).
  • Marta CB, Oliver AR, Sweet RA, Pfeiffer SE, Ruddle NH. Pathogenic myelin oligodendrocyte glycoprotein antibodies recognize glycosylated epitopes and perturb oligodendrocyte physiology. Proc. Natl Acad. Sci. USA102(39), 13992–13997 (2005).
  • Papini AM. Simple test for multiple sclerosis. Nat. Med.11(1), 13 (2005).
  • Saso L, Valentini G, Leone MG et al. Changes in concanavalin A-reactive proteins in neurological disorders. J. Clin. Lab. Anal.13(4), 158–165 (1999).
  • Demetriou M, Granovsky M, Quaggin S, Dennis JW. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature409(6821), 733–739 (2001).
  • Fernandez O, Mayorga C, Luque G et al. Study of binding and neutralizing antibodies to interferon β in two groups of relapsing-remitting multiple sclerosis patients. J. Neurol.248(5), 383–388 (2001).
  • Pender MP. The pathogenesis of primary progressive multiple sclerosis: antibodymediated attack and no repair? J. Clin. Neurosci.11(7), 689–692 (2004).
  • Wingerchuk DM. Neuromyelitis optica: current concepts. Front Biosci.9, 834–840 (2004).
  • Jeffery DR, Lefkowitz DS, Crittenden JP. Treatment of Marburg variant multiple sclerosis with mitoxantrone. J. Neuroimaging14(1), 58–62 (2004).
  • Garell PC, Menezes AH, Baumbach G et al. Presentation, management and follow-up of Schilder's disease. Pediatr. Neurosurg.29(2), 86–91 (1998).
  • Lennon VA, Wingerchuk DM, Kryzer TJ et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet364(9451), 2106–2112 (2004).
  • Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J. Exp. Med.202(4), 473–477 (2005).
  • Kikuchi S, Fukazawa T. "OSMS is NMO, but not MS": confirmed by NMO-IgG? Lancet Neurol.4(10), 594–595 (2005).
  • Nakashima I, Fujihara K, Miyazawa I et al. Clinical and MRI features of Japanese MS patients with NMO-IgG. J. Neurol. Neurosurg. Psychiatry (2006) [Epub ahead of print].
  • De Stefano N, Matthews PM, Fu L et al. Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain121(Pt 8), 1469–1477 (1998).
  • Turner B, Lin X, Calmon G, Roberts N, Blumhardt LD. Cerebral atrophy and disability in relapsing–remitting and secondary progressive multiple sclerosis over four years. Mult. Scler.9(1), 21–27 (2003).
  • Sormani MP, Bruzzi P, Comi G, Filippi M. MRI metrics as surrogate markers for clinical relapse rate in relapsing–remitting MS patients. Neurology58(3), 417–421 (2002).
  • Confavreux C, Vukusic S, Moreau T, Adeleine P. Relapses and progression of disability in multiple sclerosis. N. Engl. J. Med.343(20), 1430–1438 (2000).
  • Bjartmar C, Wujek JR, Trapp BD. Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J. Neurol. Sci.206(2), 165–171 (2003).
  • Teunissen CE, Dijkstra C, Polman C. Biological markers in CSF and blood for axonal degeneration in multiple sclerosis. Lancet Neurol.4(1), 32–41 (2005).
  • Fuchs E, Cleveland DW. A structural scaffolding of intermediate filaments in health and disease. Science279(5350), 514–519 (1998).
  • Lycke JN, Karlsson JE, Andersen O, Rosengren LE. Neurofilament protein in cerebrospinal fluid: a potential marker of activity in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry64(3), 402–404 (1998).
  • Haghighi S, Andersen O, Oden A, Rosengren L. Cerebrospinal fluid markers in MS patients and their healthy siblings. Acta. Neurol. Scand.109(2), 97–99 (2004).
  • Malmestrom C, Haghighi S, Rosengren L, Andersen O, Lycke J. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology61(12), 1720–1725 (2003).
  • Norgren N, Rosengren L, Stigbrand T. Elevated neurofilament levels in neurological diseases. Brain Res.987(1), 25–31 (2003).
  • Semra YK, Seidi OA, Sharief MK. Heightened intrathecal release of axonal cytoskeletal proteins in multiple sclerosis is associated with progressive disease and clinical disability. J. Neuroimmunol.122(1–2), 132–139 (2002).
  • Norgren N, Sundstrom P, Svenningsson A et al. Neurofilament and glial fibrillary acidic protein in multiple sclerosis. Neurology63(9), 1586–1590 (2004).
  • Reiber H, Lange P. Quantification of virus-specific antibodies in cerebrospinal fluid and serum: sensitive and specific detection of antibody synthesis in brain. Clin. Chem.37(7), 1153–1160 (1991).
  • Eikelenboom MJ, Petzold A, Lazeron RHC et al. Multiple sclerosis - neurofilament light chain antibodies are correlated to cerebral atrophy. Neurology60(2), 219–223 (2003).
  • Silber E, Semra YK, Gregson NA, Sharief MK. Patients with progressive multiple sclerosis have elevated antibodies to neurofilament subunit. Neurology58(9), 1372–1381 (2002).
  • Hampel H, Mitchell A, Blennow K et al. Core biological marker candidates of Alzheimer's disease - perspectives for diagnosis, prediction of outcome and reflection of biological activity. J. Neural. Transm.111(3), 247–272 (2004).
  • Uchihara T, Duyckaerts C, Seilhean D et al. Exclusive induction of tau2 epitope in microglia/macrophages in inflammatory lesions-tautwopathy distinct from degenerative tauopathies. Acta Neuropathol.109(2), 159–164 (2005).
  • Brettschneider J, Maier M, Arda S et al. Tau protein level in cerebrospinal fluid is increased in patients with early multiple sclerosis. Mult. Scler.11(3), 261–265 (2005).
  • Martinez-Yelamos A, Saiz A, Bas J et al. Tau protein in cerebrospinal fluid: a possible marker of poor outcome in patients with early relapsing-remitting multiple sclerosis. Neurosci. Lett.363(1), 14–17 (2004).
  • Bartosik-Psujek H, Archelos JJ. Tau protein and 14–3-3 are elevated in the cerebrospinal fluid of patients with multiple sclerosis and correlate with intrathecal synthesis of IgG. J. Neurol.251(4), 414–420 (2004).
  • Leoni V, Masterman T, Diczfalusy U et al. Changes in human plasma levels of the brain specific oxysterol 24S-hydroxycholesterol during progression of multiple sclerosis. Neurosci. Lett.331(3), 163–166 (2002).
  • Leoni V, Masterman T, Mousavi FS et al. Diagnostic use of cerebral and extracerebral oxysterols. Clin. Chem. Lab. Med.42(2), 186–191 (2004).
  • Teunissen CE, Dijkstra CD, Polman CH et al. Decreased levels of the brain specific 24S-hydroxycholesterol and cholesterol precursors in serum of multiple sclerosis patients. Neurosci. Lett.347(3), 159–162 (2003).
  • Rahman A, Akterin S, Flores-Morales A et al. High cholesterol diet induces tau hyperphosphorylation in apolipoprotein E deficient mice. FEBS Lett.579(28), 6411–6416 (2005).
  • Masterman T, Zhang Z, Hellgren D et al. APOE genotypes and disease severity in multiple sclerosis. Mult. Scler.8(2), 98–103 (2002).
  • Amato MP, Bartolozzi ML, Nacmias B et al. Differences in brain atrophy between early relapsing-remitting multiple sclerosis patients with different apoe genotypes. Neurology58(7), A206 (2002).
  • Masterman T, Hillert J. The telltale scan: APOE 4 in multiple sclerosis. Lancet Neurol.3(6), 331 (2004).
  • Enzinger C, Ropele S, Smith S et al. Accelerated evolution of brain atrophy and "black holes" in MS patients with APOE ε 4. Ann. Neurol.55(4), 563–569 (2004).
  • Karussis D, Michaelson DM, Grigoriadis N et al. Lack of apolipoprotein-E exacerbates experimental allergic encephalomyelitis. Mult. Scler.9(5), 476–480 (2003).
  • Pirttila T, Haanpaa M, Mehta PD, Lehtimaki T. Apolipoprotein E (APOE) phenotype and APOE concentrations in multiple sclerosis and acute herpes zoster. Acta. Neurol. Scand.102(2), 94–98 (2000).
  • Mancardi G, Hart B, Roccatagliata L et al. Demyelination and axonal damage in a non-human primate model of multiple sclerosis. J. Neurol. Sci.184(1), 41–49 (2001).
  • Tokuda T, Oide T, Tamaoka A et al. Prednisolone (30–60 mg/day) for diseases other than AD decreases amyloid β-peptides in CSF. Neurology58(9), 1415–1418 (2002).
  • Kawamoto Y, Akiguchi I, Kovacs GG, Flicker H, Budka H. Increased 14–3-3 Immunoreactivity in glial elements in patients with multiple sclerosis. Acta. Neuropathol.107(2), 137–143 (2004).
  • Satoh J, Yamamura T, Arima K. The 14–3-3 protein epsilon isoform expressed in reactive astrocytes in demyelinating lesions of multiple sclerosis binds to vimentin and glial fibrillary acidic protein in cultured human astrocytes. Am. J. Pathol.165(2), 577–592 (2004).
  • Colucci M, Roccatagliata L, Capello E et al. The 14–3-3 Protein in multiple sclerosis: a marker of disease severity. Mult. Scler.10(5), 477–481 (2004).
  • Martinez-Yelamos A, Saiz A, Sanchez-Valle R et al. 14–3-3 protein in the CSF as prognostic marker in early multiple sclerosis. Neurology57(4), 722–724 (2001).
  • Rudick RA, Stuart WH, Calabresi PA et al. Natalizumab plus interferon β-1a for relapsing multiple sclerosis. N. Engl. J. Med.354(9), 911–923 (2006).
  • Natalizumab: AN 100226, anti-4α integrin monoclonal antibody. Drugs RD5(2), 102–107 (2004).
  • Miller DH, Khan OA, Sheremata WA et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med.348(1), 15–23 (2003).
  • Langer-Gould A, Atlas SW, Green AJ, Bollen AW, Pelletier D. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N. Engl. J. Med.353(4), 375–381 (2005).
  • Kleinschmidt-DeMasters BK, Tyler KL. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon β-1a for multiple sclerosis. N. Engl. J. Med.353(4), 369–374 (2005).
  • Yousry TA, Major EO, Ryschkewitsch C et al. Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N. Engl. J. Med.354(9), 924–933 (2006).
  • Weiner HL, Mackin GA, Matsui M et al. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science259(5099), 1321–1324 (1993).
  • Sette A, Alexander J, Ruppert J et al. Antigen analogs/MHC complexes as specific T cell receptor antagonists. Annu. Rev. Immunol.12413–431 (1994).
  • Bielekova B, Goodwin B, Richert N et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a Phase II clinical trial with an altered peptide ligand. Nat. Med.6(10), 1167–1175 (2000).
  • Anderton SM, Kissler S, Lamont AG, Wraith DC. Therapeutic potential of TCR antagonists is determined by their ability to modulate a diverse repertoire of autoreactive T cells. Eur. J. Immunol.29(6), 1850–1857 (1999).
  • Kappos L, Comi G, Panitch H et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nat. Med.6(10), 1176–1182 (2000).
  • Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat. Med.6(2), 114 (2000).
  • Calabresi PA, Fields NS, Maloni HW et al. Phase 1 trial of transforming growth factor β 2 in chronic progressive MS. Neurology51(1), 289–292 (1998).
  • Zhang JZ, Rivera VM, Tejada-Simon MV et al. T cell vaccination in multiple sclerosis: results of a preliminary study. J. Neurol.249(2), 212–218 (2002).
  • Vandenbark AA, Chou YK, Whitham R et al. Treatment of multiple sclerosis with T-cell receptor peptides: results of a double-blind pilot trial. Nat. Med.2(10), 1109–1115 (1996).
  • Sorensen PS, Deisenhammer F, Duda P et al. Guidelines on use of anti-IFN-β antibody measurements in multiple sclerosis: report of an EFNS task force on IFN-β antibodies in multiple sclerosis. Eur. J. Neurol.12(11), 817–827 (2005).
  • Reindl M, Khantane S, Ehling R et al. Serum and cerebrospinal fluid antibodies to Nogo-A in patients with multiple sclerosis and acute neurological disorders. J. Neuroimmunol.145(1–2), 139–147 (2003).
  • Karnezis T, Mandemakers W, McQualter JL et al. The neurite outgrowth inhibitor Nogo A is involved in autoimmune-mediated demyelination. Nat. Neurosci.7(7), 736–744 (2004).
  • Fazekas F, Barkhof F, Filippi M et al. The contribution of magnetic resonance imaging to the diagnosis of multiple sclerosis. Neurology53(3), 448–456 (1999).

Websites

  • US food and drug administration. 2006. www.fda.gov/bbs/topics/news/2006/NEW 01319.html.
  • Lolli, F. and AINI committee. Linee Guida AINI per l'esame del liquido cerebrospinale. 2004. www.aini.it

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.