109
Views
21
CrossRef citations to date
0
Altmetric
Review

Pathogenic role of mitochondrial amyloid-β peptide

&
Pages 1517-1525 | Published online: 09 Jan 2014

References

  • Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol.82(4), 239–259 (1991).
  • Mirra SS, Heyman A, McKeel D et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology41(4), 479–486 (1991).
  • Goate A, Chartier-Harlin MC, Mullan M et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature349(6311), 704–706 (1991).
  • Group AsDC. The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nat. Genet.11(2), 219–222 (1995).
  • Levy-Lahad E, Wasco W, Poorkaj P et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science269(5226), 973–977 (1995).
  • De Strooper B. Aph-1, Pen-2, and nicastrin with presenilin generate an active γ-secretase complex. Neuron38(1), 9–12 (2003).
  • Strittmatter WJ, Saunders AM, Schmechel D et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA90(5), 1977–1981 (1993).
  • Hsiao K, Chapman P, Nilsen S et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science274(5284), 99–102 (1996).
  • Mucke L, Masliah E, Yu GQ et al. High-level neuronal expression of Aβ1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci.20(11), 4050–4058 (2000).
  • Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun.120(3), 885–890 (1984).
  • Hartmann T, Bieger SC, Bruhl B et al. Distinct sites of intracellular production for Alzheimer’s disease Aβ40/42 amyloid peptides. Nat. Med.3(9), 1016–1020 (1997).
  • Cook DG, Forman MS, Sung JC et al. Alzheimer’s Aβ1–42 is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nat. Med.3(9), 1021–1023 (1997).
  • Greenfield JP, Tsai J, Gouras GK et al. Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer β-amyloid peptides. Proc. Natl Acad. Sci. USA96(2), 742–747 (1999).
  • El Khoury J, Hickman SE, Thomas CA et al. Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils. Nature382(6593), 716–719 (1996).
  • Yan SD, Chen X, Fu J et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature382(6593), 685–691 (1996).
  • Wertkin AM, Turner RS, Pleasure SJ et al. Human neurons derived from a teratocarcinoma cell line express solely the 695-amino acid amyloid precursor protein and produce intracellular β-amyloid or A4 peptides. Proc. Natl Acad. Sci. USA90(20), 9513–9517 (1993).
  • Mochizuki A, Tamaoka A, Shimohata A, Komatsuzaki Y, Shoji S. Aβ42-positive non-pyramidal neurons around amyloid plaques in Alzheimer’s disease. Lancet355(9197), 42–43 (2000).
  • Nagele RG, D’Andrea MR, Anderson WJ, Wang HY. Intracellular accumulation of β-amyloid1–42 in neurons is facilitated by the α7 nicotinic acetylcholine receptor in Alzheimer’s disease. Neuroscience110(2), 199–211 (2002).
  • D’Andrea MR, Nagele RG, Wang HY, Lee DH. Consistent immunohistochemical detection of intracellular β-amyloid42 in pyramidal neurons of Alzheimer’s disease entorhinal cortex. Neuroscience Lett.333(3), 163–166 (2002).
  • Bancher C, Grundke-Iqbal I, Iqbal K, Kim KS, Wisniewski HM. Immunoreactivity of neuronal lipofuscin with monoclonal antibodies to the amyloid-β protein. Neurobiol. Aging10(2), 125–132 (1989).
  • Takahashi RH, Milner TA, Li F et al. Intraneuronal Alzheimer Aβ42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am. J. Pathol.161(5), 1869–1879 (2002).
  • Allsop D, Haga S, Bruton C, Ishii T, Roberts GW. Neurofibrillary tangles in some cases of dementia pugilistica share antigens with amyloid β-protein of Alzheimer’s disease. Am. J. Pathol.136(2), 255–260 (1990).
  • Wegiel J, Kuchna I, Nowicki K et al. Intraneuronal Aβ immunoreactivity is not a predictor of brain amyloidosis-β or neurofibrillary degeneration. Acta Neuropathol.113(4), 389–402 (2007).
  • LaFerla FM, Green KN, Oddo S. Intracellular amyloid-β in Alzheimer’s disease. Nat. Rev. Neurosci.8(7), 499–509 (2007).
  • Caspersen C, Wang N, Yao J et al. Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J.19(14), 2040–2041 (2005).
  • Sciaky N, Presley J, Smith C et al. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J. Cell Biol.139(5), 1137–1155 (1997).
  • Caporaso GL, Takei K, Gandy SE et al. Morphologic and biochemical analysis of the intracellular trafficking of the Alzheimer β/A4 amyloid precursor protein. J. Neurosci.14(5 Pt 2), 3122–3138 (1994).
  • Manczak M, Anekonda TS, Henson E et al. Mitochondria are a direct site of Aβ accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum. Mol. Genet.15(9), 1437–1449 (2006).
  • Crouch PJ, Blake R, Duce JA et al. Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-β1–42. J. Neurosci.25(3), 672–679 (2005).
  • Langui D, Girardot N, El Hachimi KH et al. Subcellular topography of neuronal Aβ peptide in APPxPS1 transgenic mice. Am. J. Clin. Pathol.165(5), 1465–1477 (2004).
  • Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J. Cell Biol.161(1), 41–54 (2003).
  • Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J. Neurosci.26(35), 9057–9068 (2006).
  • Park HJ, Kim SS, Seong YM et al. β-amyloid precursor protein is a direct cleavage target of HtrA2 serine protease. Implications for the physiological function of HtrA2 in the mitochondria. J. Biol. Chem.281(45), 34277–34287 (2006).
  • Hansson CA, Frykman S, Farmery MR et al. Nicastrin, presenilin, APH-1, and PEN-2 form active γ-secretase complexes in mitochondria. J. Biol. Chem.279(49), 51654–51660 (2004).
  • Vetrivel KS, Thinakaran G. Amyloidogenic processing of β-amyloid precursor protein in intracellular compartments. Neurology66(2 Suppl. 1), S69–S73 (2006).
  • Lustbader JW, Cirilli M, Lin C et al. ABAD directly links Aβ to mitochondrial toxicity in Alzheimer’s disease. Science304(5669), 448–452 (2004).
  • Lawson CA, Yan SD, Yan SF et al. Monocytes and tissue factor promote thrombosis in a murine model of oxygen deprivation. J. Clin. Invest.99(7), 1729–1738 (1997).
  • Yan SD, Chen X, Lustbader J, Arancio O, Wu H. ABAD: mitochondrial target for amyloid-induced cellular perturbation relevant to Alzheimer disease. In: Research Progress in Alzheimer Disease and Dementia. Sun M-K (Ed.). Nova Science Publishers, Inc., NY, USA 175–189 (2006).
  • Yan Y, Liu Y, Sorci M et al. Surface plasmon resonance and nuclear magnetic resonance studies of ABAD–Aβ interaction. Biochemistry46(7), 1724–1731 (2007).
  • Yan SD, Fu J, Soto C et al. An intracellular protein that binds amyloid-β peptide and mediates neurotoxicity in Alzheimer’s disease. Nature389(6652), 689–695 (1997).
  • Takuma K, Yao J, Huang J et al. ABAD enhances Aβ-induced cell stress via mitochondrial dysfunction. FASEB J.19(6), 597–598 (2005).
  • Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science285(5433), 1569–1572 (1999).
  • Aarts M, Liu Y, Liu L et al. Treatment of ischemic brain damage by perturbing NMDA receptor–PSD-95 protein interactions. Science298(5594), 846–850 (2002).
  • Silverman DH, Small GW, Chang CY et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA286(17), 2120–2127 (2001).
  • Mosconi L, Herholz K, Prohovnik I et al. Metabolic interaction between ApoE genotype and onset age in Alzheimer’s disease: implications for brain reserve. J. Neurol. Neurosurg. Psychiatr.76(1), 15–23 (2005).
  • Mosconi L, Nacmias B, Sorbi S et al. Brain metabolic decreases related to the dose of the ApoE ε4 allele in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatr.75(3), 370–376 (2004).
  • Mosconi L, Sorbi S, Nacmias B et al. Age and ApoE genotype interaction in Alzheimer’s disease: an FDG-PET study. Psychiatry Res.130(2), 141–151 (2004).
  • Hirai K, Aliev G, Nunomura A et al. Mitochondrial abnormalities in Alzheimer’s disease. J. Neurosci.21(9), 3017–3023 (2001).
  • Zhu X, Perry G, Moreira PI et al. Mitochondrial abnormalities and oxidative imbalance in Alzheimer disease. J. Alzheimers Dis.9(2), 147–153 (2006).
  • Moreira PI, Santos MS, Seica R, Oliveira CR. Brain mitochondrial dysfunction as a link between Alzheimer’s disease and diabetes. J. Neurol. Sci.257(1–2), 206–214 (2007).
  • Perry EK, Perry RH, Tomlinson BE, Blessed G, Gibson PH. Coenzyme A-acetylating enzymes in Alzheimer’s disease: possible cholinergic ‘compartment’ of pyruvate dehydrogenase. Neurosci. Lett.18(1), 105–110 (1980).
  • Sorbi S, Bird ED, Blass JP. Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann. Neurol.13(1), 72–78 (1983).
  • Butterworth RF, Besnard AM. Thiamine-dependent enzyme changes in temporal cortex of patients with Alzheimer’s disease. Metab. Brain Dis.5(4), 179–184 (1990).
  • Krugel U, Bigl V, Eschrich K, Bigl M. Deafferentation of the septo–hippocampal pathway in rats as a model of the metabolic events in Alzheimer’s disease. Int. J. Dev. Neurosci.19(3), 263–277 (2001).
  • Gibson GE, Haroutunian V, Zhang H et al. Mitochondrial damage in Alzheimer’s disease varies with apolipoprotein E genotype. Ann. Neurol.48(3), 297–303 (2000).
  • Gibson GE, Sheu KF, Blass JP. Abnormalities of mitochondrial enzymes in Alzheimer disease. J. Neural Transm.105(8–9), 855–870 (1998).
  • Gibson GE, Zhang H, Sheu KF et al. α-ketoglutarate dehydrogenase in Alzheimer brains bearing the APP670/671 mutation. Ann. Neurol.44(4), 676–681 (1998).
  • Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE. Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann. Neurol.57(5), 695–703 (2005).
  • Parker WD Jr, Filley CM, Parks JK. Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology40(8), 1302–1303 (1990).
  • Parker WD Jr, Parks J, Filley CM, Kleinschmidt-DeMasters BK. Electron transport chain defects in Alzheimer’s disease brain. Neurology44(6), 1090–1096 (1994).
  • Parker WD Jr, Parks JK. Cytochrome c oxidase in Alzheimer’s disease brain: purification and characterization. Neurology45(3 Pt 1), 482–486 (1995).
  • Kish SJ, Bergeron C, Rajput A et al. Brain cytochrome oxidase in Alzheimer’s disease. J. Neurochem.59(2), 776–779 (1992).
  • Valla J, Berndt JD, Gonzalez-Lima F. Energy hypometabolism in posterior cingulate cortex of Alzheimer’s patients: superficial laminar cytochrome oxidase associated with disease duration. J. Neurosci.21(13), 4923–4930 (2001).
  • Cardoso SM, Santos S, Swerdlow RH, Oliveira CR. Functional mitochondria are required for amyloid β-mediated neurotoxicity. FASEB J.15(8), 1439–1441 (2001).
  • Cardoso SM, Santana I, Swerdlow RH, Oliveira CR. Mitochondria dysfunction of Alzheimer’s disease cybrids enhances Aβ toxicity. J. Neurochem.89(6), 1417–1426 (2004).
  • Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA. β-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J. Neurochem.80(1), 91–100 (2002).
  • Torroja L, Ortuno-Sahagun D, Ferrus A, Hammerle B, Barbas JA. scully, an essential gene of Drosophila, is homologous to mammalian mitochondrial type II L-3-hydroxyacyl-CoA dehydrogenase/amyloid-β peptide-binding protein. J. Cell Biol.141(4), 1009–1017 (1998).
  • Gibson KM, Burlingame TG, Hogema B et al. 2-methylbutyryl-coenzyme A dehydrogenase deficiency: a new inborn error of L-isoleucine metabolism. Pediatr. Res.47(6), 830–833 (2000).
  • Olpin SE, Pollitt RJ, McMenamin J et al. 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency in a 23-year-old man. J. Inherit. Metab. Dis.25(6), 477–482 (2002).
  • Sutton VR, O’Brien WE, Clark GD, Kim J, Wanders RJ. 3-hydroxy-2-methylbutyryl-CoA dehydrogenase deficiency. J. Inherit. Metab. Dis.26(1), 69–71 (2003).
  • Zschocke J, Ruiter JP, Brand J et al. Progressive infantile neurodegeneration caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: a novel inborn error of branched-chain fatty acid and isoleucine metabolism. Pediatr. Res.48(6), 852–855 (2000).
  • Korman SH. Inborn errors of isoleucine degradation: a review. Mol. Genet. Metab.89(4), 289–299 (2006).
  • Burlina AB, Gibson KM, Ruitenbeek W, Bonafe L, Bennett MJ. Profound neurological phenotype in a patient presenting with disordered isoleucine and energy metabolism. J. Inherit. Metab. Dis.21(8), 864–866 (1998).
  • Ensenauer R, Niederhoff H, Ruiter JP et al. Clinical variability in 3-hydroxy-2-methylbutyryl-CoA dehydrogenase deficiency. Ann. Neurol.51(5), 656–659 (2002).
  • Lenski C, Kooy RF, Reyniers E et al. The reduced expression of the HADH2 protein causes X-linked mental retardation, choreoathetosis, and abnormal behavior. Am. J. Hum. Genet.80(2), 372–377 (2007).
  • Chen X, Yan SD. Mitochondrial Aβ: a potential cause of metabolic dysfunction in Alzheimer’s disease. IUBMB Life58(12), 686–694 (2006).
  • Kissinger CR, Rejto PA, Pelletier LA et al. Crystal structure of human ABAD/HSD10 with a bound inhibitor: implications for design of Alzheimer’s disease therapeutics. J. Mol. Biol.342(3), 943–952 (2004).
  • Xie Y, Deng S, Chen Z, Yan S, Landry DW. Identification of small-molecule inhibitors of the Aβ–ABAD interaction. Bioorg. Med. Chem. Lett.16(17), 4657–4660 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.