341
Views
51
CrossRef citations to date
0
Altmetric
Review

GSK-3 inhibitors for Alzheimer’s disease

&
Pages 1527-1533 | Published online: 09 Jan 2014

References

  • Alzheimer A. Ueber eigenartige Krankheitsfaelle des spaeteren Alters. Z. Gesamte Neurol. Psychiatr.4, 356–386 (1911).
  • Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RN, Beyreuther K. Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J.4, 2757–2763 (1985).
  • Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun.120, 885–890 (1984).
  • Price DL, Sisodia SS. Mutant genes in familial Alzheimer’s disease and transgenic models. Annu. Rev. Neurosci.21, 479–505 (1998).
  • Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl Acad. Sci. USA83, 4913–4917 (1986).
  • Morishima-Kawashima M, Hasegawa M, Takio K et al. Proline-directed and non-proline-directed phosphorylation of PHF-tau. J. Biol. Chem.270, 823–829 (1995).
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science297, 353–356 (2002).
  • Murayama O, Tomita T, Nihonmatsu N et al. Enhancement of amyloid-β 42 secretion by 28 different presenilin 1 mutations of familial Alzheimer’s disease. Neurosci. Lett.265, 61–63 (1999).
  • Dermaut B, Kumar-Singh S, Engelborghs S et al. A novel presenilin 1 mutation associated with Pick’s disease but not β-amyloid plaques. Ann. Neurol.55, 617–626 (2004).
  • Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. (Berl.)82, 239–259 (1991).
  • Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology42, 631–639 (1992).
  • Tomlinson BE, Blessed G, Roth M. Observations on the brains of demented old people. J. Neurol. Sci.11, 205–242 (1970).
  • Alafuzoff I, Iqbal K, Friden H, Adolfsson R, Winblad B. Histopathological criteria for progressive dementia disorders: clinical-pathological correlation and classification by multivariate data analysis. Acta Neuropathol. (Berl.)74, 209–225 (1987).
  • Santacruz K, Lewis J, Spires T et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science309, 476–481 (2005).
  • Avila J. Tau phosphorylation and aggregation in Alzheimer’s disease pathology. FEBS Lett.580, 2922–2927 (2006).
  • Gomez-Ramos A, Diaz-Hernandez M, Cuadros R, Hernandez F, Avila J. Extracellular tau is toxic to neuronal cells. FEBS Lett.580, 4842–4850 (2006).
  • Alonso A C, Li B, Grundke-Iqbal I, Iqbal K. Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proc. Natl Acad. Sci. USA103, 8864–8869 (2006).
  • Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur. J. Biochem.107, 519–527 (1980).
  • Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J.9, 2431–2438 (1990).
  • Hansen L, Arden KC, Rasmussen SB et al. Chromosomal mapping and mutational analysis of the coding region of the glycogen synthase kinase-3α and β isoforms in patients with NIDDM. Diabetologia40, 940–946 (1997).
  • Shaw PC, Davies AF, Lau KF et al. Isolation and chromosomal mapping of human glycogen synthase kinase-3α and -3β encoding genes. Genome41, 720–727 (1998).
  • Mukai F, Ishiguro K, Sano Y, Fujita SC. Alternative splicing isoform of tau protein kinase I/glycogen synthase kinase 3β. J. Neurochem.81, 1073–1083 (2002).
  • Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci.29, 95–102 (2004).
  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature378, 785–789 (1995).
  • Lochhead PA, Kinstrie R, Sibbet G, Rawjee T, Morrice N, Cleghon VA. Chaperone-dependent GSK3β transitional intermediate mediates activation-loop autophosphorylation. Mol. Cell24, 627–633 (2006).
  • Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. β-catenin is a target for the ubiquitin-proteasome pathway. EMBO J.16, 3797–3804 (1997).
  • Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase-3β in cellular signaling. Prog. Neurobiol.65, 391–426 (2001).
  • Hernandez F, Perez M, Lucas JJ, Mata AM, Bhat R, Avila J. Glycogen synthase kinase-3 plays a crucial role in tau exon 10 splicing and intranuclear distribution of SC35. Implications for Alzheimer’s disease. J. Biol. Chem.279, 3801–3806 (2004).
  • ter Haar E, Coll JT, Austen DA, Hsiao HM, Swenson L, Jain J. Structure of GSK3β reveals a primed phosphorylation mechanism. Nat. Struct. Biol.8, 593–596 (2001).
  • Dajani R, Fraser E, Roe SM et al. Crystal structure of glycogen synthase kinase 3β: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell105, 721–732 (2001).
  • Li T, Hawkes C, Qureshi HY, Kar S, Paudel HK. Cyclin-dependent protein kinase 5 primes microtubule-associated protein tau site-specifically for glycogen synthase kinase 3β. Biochemistry45, 3134–3145 (2006).
  • Noble W, Olm V, Takata K et al. Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron38, 555–565 (2003).
  • Sengupta A, Wu Q, Grundke-Iqbal I, Iqbal K, Singh TJ. Potentiation of GSK-3-catalyzed Alzheimer-like phosphorylation of human tau by cdk5. Mol. Cell. Biochem.167, 99–105 (1997).
  • Nishimura I, Yang Y, Lu B. PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell116, 671–682 (2004).
  • Amit S, Hatzubai A, Birman Y et al. Axin-mediated CKI phosphorylation of β-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev.16, 1066–1076 (2002).
  • Liu SJ, Zhang AH, Li HL et al. Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J. Neurochem.87, 1333–1344 (2003).
  • Singh TJ, Zaidi T, Grundke-Iqbal I, Iqbal K. Modulation of GSK-3-catalyzed phosphorylation of microtubule-associated protein tau by non-proline-dependent protein kinases. FEBS Lett.358, 4–8 (1995).
  • Goñi-Oliver P, Lucas JJ, Avila J, Hernandez F. N-terminal cleavage of GSK-3 by Calpain: a new form of GSK-3 regulation. J. Biol. Chem.282, 22406–22413 (2007).
  • Takashima A, Noguchi K, Sato K, Hoshino T, Imahori K. Tau protein kinase I is essential for amyloid β-protein-induced neurotoxicity. Proc. Natl Acad. Sci. USA90, 7789–7793 (1993).
  • Phiel CJ, Wilson CA, Lee VM, Klein PS. GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature423, 435–439 (2003).
  • Uemura K, Kuzuya A, Shimozono Y et al. GSK3β activity modifies the localization and function of presenilin 1. J. Biol. Chem.282, 15823–15832 (2007).
  • Takashima A, Murayama M, Murayama O et al. Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau. Proc. Natl Acad. Sci. USA95, 9637–9641 (1998).
  • Zhang Z, Hartmann H, Do VM et al. Destabilization of β-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature395, 698–702 (1998).
  • Baki L, Shioi J, Wen P et al. PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: effects of FAD mutations. EMBO J.23, 2586–2596 (2004).
  • Munoz-Montano JR, Moreno FJ, Avila J, Diaz-Nido J. Lithium inhibits Alzheimer’s disease-like tau protein phosphorylation in Neurons.FEBS Lett.411, 183–188 (1997).
  • Alvarez G, Munoz-Montano JR, Satrustegui J, Avila J, Bogonez E, Diaz-Nido J. Lithium protects cultured Neurons against β-amyloid-induced neurodegeneration. FEBS Lett.453, 260–264 (1999).
  • Takashima A, Honda T, Yasutake K et al. Activation of tau protein kinase I/glycogen synthase kinase-3β by amyloid-β peptide (25–35) enhances phosphorylation of tau in hippocampal Neurons. Neurosci. Res.31, 317–323 (1998).
  • Wang ZF, Li HL, Li XC et al. Effects of endogenous β-amyloid overproduction on tau phosphorylation in cell culture. J. Neurochem.98, 1167–1175 (2006).
  • Perez M, Hernandez F, Lim F, Diaz-Nido J, Avila J. Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. J. Alzheimers Dis.5, 301–308 (2003).
  • Noble W, Planel E, Zehr C et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc. Natl Acad. Sci. USA102, 6990–6995 (2005).
  • Ishiguro K, Omori A, Takamatsu M et al. Phosphorylation sites on tau by tau protein kinase I, a bovine derived kinase generating an epitope of paired helical filaments. Neurosci. Lett.148, 202–206 (1992).
  • Ishiguro K, Shiratsuchi A, Sato S et al. Glycogen synthase kinase-3β is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett.325, 167–172 (1993).
  • Avila J, Lucas JJ, Perez M, Hernandez F. Role of tau protein in both physiological and pathological conditions. Physiol. Rev.84, 361–384 (2004).
  • Ferrer I, Barrachina M, Puig B. Glycogen synthase kinase-3 is associated with Neuronal and glial hyperphosphorylated tau deposits in Alzheimer’s disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol. (Berl.)104, 583–591 (2002).
  • Pei JJ, Braak E, Braak H et al. Distribution of active glycogen synthase kinase 3β (GSK-3β) in brains staged for Alzheimer disease neurofibrillary changes. J. Neuropathol. Exp. Neurol.58, 1010–1019 (1999).
  • Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I. Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J. Neuropathol. Exp. Neurol.56, 70–78 (1997).
  • Yamaguchi H, Ishiguro K, Uchida T, Takashima A, Lemere CA, Imahori K. Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3β and cyclin-dependent kinase 5, a component of TPK II. Acta Neuropathol. (Berl.)92, 232–241 (1996).
  • Jackson GR, Wiedau-Pazos M, Sang TK et al. Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron34, 509–519 (2002).
  • Brownlees J, Irving NG, Brion JP et al. Tau phosphorylation in transgenic mice expressing glycogen synthase kinase-3β transgenes. Neuroreport8, 3251–3255 (1997).
  • Spittaels K, Van den Haute C, Van Dorpe J et al. Neonatal Neuronal overexpression of glycogen synthase kinase-3β reduces brain size in transgenic mice. Neuroscience113, 797–808 (2002).
  • Li B, Ryder J, Su Y et al. Overexpression of GSK3βS9A resulted in tau hyperphosphorylation and morphology reminiscent of pretangle-like neurons in the brain of PDGSK3β transgenic mice. Transgenic Res.13, 385–396 (2004).
  • Lucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J. Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice. EMBO J.20, 27–39 (2001).
  • Hernandez F, Borrell J, Guaza C, Avila J, Lucas JJ. Spatial learning deficit in transgenic mice that conditionally over-express GSK-3β in the brain but do not form tau filaments. J. Neurochem.83, 1529–1533 (2002).
  • Engel T, Hernandez F, Avila J, Lucas JJ. Full reversal of Alzheimer’s disease-like phenotype in a mouse model with conditional overexpression of glycogen synthase kinase-3. J. Neurosci.26, 5083–5090 (2006).
  • Engel T, Lucas JJ, Gomez-Ramos P, Moran MA, Avila J, Hernandez, F. Cooexpression of FTDP-17 tau and GSK-3β in transgenic mice induce tau polymerization and neurodegeneration. Neurobiol. Aging27, 1258–1268 (2006).
  • Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett, J.R. Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature406, 86–90 (2000).
  • Gomez-Sintes R, Hernandez F, Bortolozzi A et al. Neuronal apoptosis and reversible motor deficit in dominant-negative GSK-3 conditional transgenic mice. EMBO J.26, 2743–2754 (2007).
  • Meares GP, Jope RS. Resolution of the nuclear localization mechanism of glycogen synthase kinase-3: functional effects in apoptosis. J. Biol. Chem.282, 16989–17001 (2007).
  • Dominguez I, Itoh K, Sokol SY. Role of glycogen synthase kinase-3β as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc. Natl Acad. Sci. USA92, 8498–8502 (1995).
  • Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc. Natl Acad. Sci. USA93, 8455–8459 (1996).
  • Ryves WJ, Dajani R, Pearl L, Harwood AJ. Glycogen synthase kinase-3 inhibition by lithium and beryllium suggests the presence of two magnesium binding sites. Biochem. Biophys. Res. Commun.290, 967–972 (2002).
  • Nakashima H, Ishihara T, Suguimoto P et al. Chronic lithium treatment decreases tau lesions by promoting ubiquitination in a mouse model of tauopathies. Acta Neuropathol. (Berl.)110, 547–556 (2005).
  • Engel T, Goni-Oliver P, Lucas JJ, Avila J, Hernandez F. Chronic lithium administration to FTDP-17 tau and GSK-3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J. Neurochem.99, 1445–1455 (2006).
  • Caccamo A, Oddo S, Tran LX, LaFerla FM. Lithium reduces tau phosphorylation but not Aβ or working memory deficits in a transgenic model with both plaques and tangles. Am. J. Pathol.170, 1669–1675 (2007).
  • Bhat R, Xue Y, Berg S et al. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J. Biol. Chem.278, 45937–45945 (2003).
  • Leclerc S, Garnier M, Hoessel R et al. Indirubins inhibit glycogen synthase kinase-3β and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. A property common to most cyclin-dependent kinase inhibitors? J. Biol. Chem.276, 251–260 (2001).
  • Coghlan MP, Culbert AA, Cross DA et al. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem. Biol.7, 793–803 (2000).
  • Martinez A, Alonso M, Castro A, Perez C, Moreno FJ. First non-ATP competitive glycogen synthase kinase 3β (GSK-3β) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J. Med. Chem.45, 1292–1299 (2002).
  • Rao KV, Donia MS, Peng J et al. Manzamine B and E and Ircinal A related alkaloids from an Indonesian Acnthostrong ylophora sponge and their activity against infectious, tropical parasitic, and Alzheimer’s disease. J. Nat. Prod.69(7), 1034–1040 (2006).
  • Mazanetz MP, Fischer PM. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat. Rev. Drug Discov.6, 464–479 (2007).
  • Hooper C, Markevich V, Plattner F et al. Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J. Neurosci.25, 81–86 (2007).
  • Peineau S, Taghibiglou C, Bradley C et al. LTP inhibits LTD in the hippocampus via regulation of GSK3β. Neuron53, 703–717 (2007).
  • Son H, Yu IT, Hwang SJ et al. Lithium enhances long-term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus. J. Neurochem.85, 872–881 (2003).
  • Lau KF, Miller CC, Anderton BH, Shaw PC. Molecular cloning and characterization of the human glycogen synthase kinase-3β promoter. Genomics60, 121–128 (1999).
  • Russ C, Lovestone S, Powell JF. Identification of sequence variants and analysis of the role of the glycogen synthase kinase-3β gene and promoter in late onset Alzheimer’s disease. Mol. Psychiatry6, 320–324 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.