270
Views
42
CrossRef citations to date
0
Altmetric
Review

Voltage-gated sodium channel blockers for the treatment of neuropathic pain

&
Pages 1597-1612 | Published online: 09 Jan 2014

References

  • Backonja MM. Defining neuropathic pain. Anesth. Analg.97(3), 785–790 (2003).
  • Namaka M, Gramlich CR, Ruhlen D, Melanson M, Sutton I, Major J. A treatment algorithm for neuropathic pain. Clin. Ther.26(7), 951–979 (2004).
  • Djouhri L, Dawbarn D, Robertson A, Newton R, Lawson SN. Time course and nerve growth factor dependence of inflammation-induced alterations in electrophysiological membrane properties in nociceptive primary afferent neurons. J. Neurosci.21, 8722–8733 (2001).
  • Wall PD, Gutnick M. Ongoing activity in peripheral nerves: the physiology and pharmacology of impulses originating from a neuroma. Exp. Neurol.43(3), 580–593 (1974).
  • Zhang JM, Donnelly DF, Song XJ, Lamotte RH. Axotomy increases the excitability of dorsal root ganglion cells with unmyelinated axons. J. Neurophysiol.78(5), 2790–2794 (1997).
  • Zhang JM, Song XJ, LaMotte RH. An in vitro study of ectopic discharge generation and adrenergic sensitivity in the intact, nerve-injured rat dorsal root ganglion. Pain72, 51–57 (1997).
  • Kim YI, Na HS, Kim SH et al. Cell type-specific changes of the membrane properties of peripherally-axotomized dorsal root ganglion neurons in a rat model of neuropathic pain. Neuroscience86, 301–309 (1998).
  • Ma C, Lamotte RH. Enhanced excitability of dissociated primary sensory neurons after chronic compression of the dorsal root ganglion in the rat. Pain113(1–2), 106–112 (2005).
  • Xu GY, Zhao ZQ. Change in excitability and phenotype of substance P and its receptor in cat Aβ sensory neurons following peripheral inflammation. Brain Res.923, 112–119 (2001).
  • Mao J, Chen LL. Systemic lidocaine for neuropathic pain relief. Pain87(1), 7–17 (2000).
  • Strichartz GR, Zhou Z, Sinnott C, Khodorova A. Therapeutic concentrations of local anaesthetics unveil the potential role of sodium channels in neuropathic pain. Novartis Found. Symp.241, 189–201 (2002).
  • Massey GV, Pedigo S, Dunn NL, Grossman NJ, Russell EC. Continuous lidocaine infusion for the relief of refractory malignant pain in a terminally ill pediatric cancer patient. J. Pediatr. Hematol. Oncol.24, 566–568 (2002).
  • Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron26, 13–25 (2000).
  • Goldin AL. Resurgence of sodium channel research. Annu. Rev. Physiol.63, 871–894 (2001).
  • Amir R, Argoff CE, Bennett GJ et al. The role of sodium channels in chronic inflammatory and neuropathic pain. J. Pain7(5 Suppl. 3), S1–S29 (2006).
  • Rush AM, Cummins TR, Waxman SG. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J. Physiol.579(1), 1–14 (2007).
  • George AL Jr. Inherited disorders of voltage-gated sodium channels. J. Clin. Invest.115(8), 1990–1999 (2005).
  • Waxman SG. Transcriptional channelopathies: an emerging class of disorders. Nat. Rev. Neurosci.2(9), 652–659 (2001).
  • Herzog RI, Cummins TR, Ghassemi F, Dib-Hajj SD, Waxman SG. Distinct repriming and closed-state inactivation kinetics of Nav1.6 and Nav1.7 sodium channels in mouse spinal sensory neurons. J. Physiol.551(3), 741–750 (2003).
  • Isom LL. Sodium channel β-subunits: anything but auxiliary. Neuroscientist7(1), 42–54 (2001).
  • Yu FH, Westenbroek RE, Silos-Santiago I et al. Sodium channel β4, a new disulfide-linked auxiliary subunit with similarity to β2. J. Neurosci.23(20), 7577–7585 (2003).
  • Goldin AL, Barchi RL, Caldwell JH et al. Nomenclature of voltage-gated sodium channels. Neuron28, 365–368 (2000).
  • Akopian AN, Souslova V, Sivilotti L, Wood JN. Structure and distribution of a broadly expressed atypical sodium channel. FEBS Lett.400(2), 183–187 (1997).
  • Hiyama TY, Watanabe E, Ono K et al. Nax channel involved in CNS sodium-level sensing. Nat. Neurosci.5(6), 511–512 (2002).
  • Felts PA, Yokoyama S, Dib-Hajj S, Black JA, Waxman SG. Sodium channel α-subunit mRNAs I, II, III, NaG, Na6 and hNE (PN1): different expression patterns in developing rat nervous system. Mol. Brain Res.45, 71–82 (1997).
  • Trimmer JS, Rhodes KJ. Localization of voltage-gated ion channels in mammalian brain. Annu. Rev. Physiol.66, 477–519 (2004).
  • Renganathan M, Dib-Hajj S, Waxman SG. Nav 1.5 underlies the ‘third TTX-R sodium current’ in rat small DRG neurons. Brain Res. Mol. Brain Res.106(1–2), 70–82 (2002).
  • Black JA, Dib-Hajj S, McNabola K et al. Spinal sensory neurons express multiple sodium channel α-subunit mRNAs. Brain Res. Mol. Brain Res.43(1–2), 117–131 (1996).
  • Amaya F, Decosterd I, Samad TA et al. Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2. Mol. Cell Neurosci.15(4), 331–342 (2000).
  • Beckh S, Noda M, Lubbert H, Numa S. Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J.8(12), 3611–3616 (1989).
  • Waxman SG, Kocsis JD, Black JA. Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is re-expressed following axotomy. J. Neurophysiol.72, 466–470 (1994).
  • Boucher TJ, Okuse K, Bennett DL, Munson JB, Wood JN, McMahon SB. Potent analgesic effects of GDNF in neuropathic pain states. Science290(5489), 124–127 (2000).
  • Craner MJ, Newcombe J, Black JA, Hartle C, Cuzner ML, Waxman SG. Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc. Natl Acad. Sci. USA101(21), 8168–8173 (2004).
  • Catterall WA. Molecular properties of brain sodium channels: an important target for anticonvulsant drugs. Adv. Neurol.79, 441–456 (1999).
  • Cestele S, Catterall WA. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie82(9–10), 883–892 (2000).
  • Penzotti JL, Fozzard HA, Lipkind GM, Dudley SC Jr. Differences in saxitoxin and tetrodotoxin binding revealed by mutagenesis of the Na+ channel outer vestibule. Biophys. J.75(6), 2647–2657 (1998).
  • Leffler A, Herzog RI, Dib-Hajj SD, Waxman SG, Cummins TR. Pharmacological properties of neuronal TTX-resistant sodium channels and the role of a critical serine pore residue. Pflugers Arch.451(3), 454–463 (2005).
  • Satin J, Kyle JW, Chen M et al. A mutant of TTX-resistant cardiac sodium channels with TTX-sensitive properties. Science256, 1202–1205 (1992).
  • Sivilotti L, Okuse K, Akopian AN, Moss S, Wood JN. A single serine residue confers tetrodotoxin insensitivity on the rat sensory-neuron-specific sodium channel SNS. FEBS Lett.409, 49–52 (1997).
  • Cummins TR, Aglieco F, Dib-Hajj SD. Critical molecular determinants of voltage-gated sodium channel sensitivity to μ-conotoxins GIIIA/B. Mol. Pharmacol.61, 1192–1201 (2002).
  • Li RA, Ennis IL, Xue T et al. Molecular basis of isoform-specific micro-conotoxin block of cardiac, skeletal muscle, and brain Na+ channels. J. Biol. Chem.278(10), 8717–8724 (2003).
  • Jain KK. An evaluation of intrathecal ziconotide for the treatment of chronic pain. Expert Opin. Investig. Drugs9(10), 2403–2410 (2000).
  • Ekberg J, Jayamanne A, Vaughan CW et al. muO-conotoxin MrVIB selectively blocks Nav1.8 sensory neuron specific sodium channels and chronic pain behavior without motor deficits. Proc. Natl Acad. Sci. USA103(45), 17030–17035 (2006).
  • Bulaj G, Zhang MM, Green BR et al. Synthetic muO-conotoxin MrVIB blocks TTX-resistant sodium channel Nav1.8 and has a long-lasting analgesic activity. Biochemistry45(23), 7404–7414 (2006).
  • Blumenthal KM, Seibert AL. Voltage-gated sodium channel toxins: poisons, probes, and future promise. Cell Biochem. Biophys.38(2), 215–238 (2002).
  • Liang S. An overview of peptide toxins from the venom of the Chinese bird spider Selenocosmia huwena Wang [=Ornithoctonus huwena (Wang)]. Toxicon43, 575–585 (2004).
  • Middleton RE, Warren VA, Kraus RL et al. Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry41(50), 14734–14747 (2002).
  • Clare JJ, Tate SN, Nobbs M, Romanos MA. Voltage-gated sodium channels as therapeutic targets. Drug Discov. Today5, 506–520 (2000).
  • Ragsdale DS, Avoli M. Sodium channels as molecular targets for antiepileptic drugs. Brain Res. Brain Res. Rev.26(1), 16–28 (1998).
  • Ragsdale DS, McPhee JC, Scheuer T, Catterall WA. Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc. Natl Acad. Sci. USA93(17), 9270–9275 (1996).
  • Yarov-Yarovoy V, Brown J, Sharp EM, Clare JJ, Scheuer T, Catterall WA. Molecular determinants of voltage-dependent gating and binding of pore-blocking drugs in transmembrane segment IIIS6 of the Na+ channel α subunit. J. Biol. Chem.276(1), 20–27 (2001).
  • Yarov-Yarovoy V, McPhee JC, Idsvoog D, Pate C, Scheuer T, Catterall WA. Role of amino acid residues in transmembrane segments IS6 and IIS6 of the Na+ channel α subunit in voltage-dependent gating and drug block. J. Biol. Chem.277, 35393–35401 (2002).
  • Nau C, Wang GK. Interactions of local anesthetics with voltage-gated Na+ channels. J. Membr. Biol.201(1), 1–8 (2004).
  • Sills GJ, Brodie MJ. Update on the mechanisms of action of antiepileptic drugs. Epileptic Disord.3(4), 165–172 (2001).
  • Ritter AM, Ritchie C, Martin WJ. Relationship between the firing frequency of injured peripheral neurons and inhibition of firing by sodium channel blockers. J. Pain8(4), 287–295 (2007).
  • Beyreuther BK, Freitag J, Heers C, Krebsfanger N, Scharfenecker U, Stohr T. Lacosamide: a review of preclinical properties. CNS Drug Rev.13(1), 21–42 (2007).
  • Kawagoe H, Yamaoka K, Kinoshita E et al. Molecular basis for exaggerated sensitivity to mexiletine in the cardiac isoform of the fast Na channel. FEBS Lett.513(2–3), 235–241 (2002).
  • Leffler A, Reiprich A, Mohapatra DP, Nau C. Use-dependent block by lidocaine but not amitriptyline is more pronounced in tetrodotoxin (TTX)-resistant Nav1.8 than in TTX-sensitive Na+ channels. J. Pharmacol. Exp. Ther.320(1), 354–364 (2007).
  • Rush AM, Elliott JR. Phenytoin and carbamazepine: differential inhibition of sodium currents in small cells from adult rat dorsal root ganglia. Neurosci. Lett.226(2), 95–98 (1997).
  • Lai J, Hunter JC, Porreca F. The role of voltage-gated sodium channels in neuropathic pain. Curr. Opin. Neurobiol.13(3), 291–297 (2003).
  • Wu G, Ringkamp M, Murinson BB et al. Degeneration of myelinated efferent fibers induces spontaneous activity in uninjured C-fiber afferents. J. Neurosci.22(17), 7746–7753 (2002).
  • Liu CN, Michaelis M, Amir R, Devor M. Spinal nerve injury enhances subthreshold membrane potential oscillations in DRG neurons: relation to neuropathic pain. J. Neurophysiol.84(1), 205–215 (2000).
  • Michaelis M, Liu X, Janig W. Axotomized and intact muscle afferents but no skin afferents develop ongoing discharges of dorsal root ganglion origin after peripheral nerve lesion. J. Neurosci.20(7), 2742–2748 (2000).
  • Lai J, Porreca F, Hunter JC, Gold MS. Voltage-gated sodium channels and hyperalgesia. Annu. Rev. Pharmacol. Toxicol.44, 371–397 (2004).
  • Devor M, Wall PD, Catalan N. Systemic lidocaine silences ectopic neuroma and DRG discharge without blocking nerve conduction. Pain48(2), 261–268 (1992).
  • Yang Y, Wang Y, Li S et al. Mutations in SCN9A, encoding a sodium channel α-subunit, in patients with primary erythermalgia. J. Med. Genet.41, 171–174 (2004).
  • Michiels JJ, te Morsche RH, Jansen JB, Drenth JP. Autosomal dominant erythermalgia associated with a novel mutation in the voltage-gated sodium channel α subunit Nav1.7. Arch. Neurol.62, 1587–1590 (2005).
  • Dib-Hajj SD, Rush AM, Cummins TR et al. Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain128, 1847–1854 (2005).
  • Han C, Rush AM, Dib-Hajj SD et al. Sporadic onset of erythermalgia: a gain-of-function mutation in Nav1.7. Ann. Neurol.59, 553–558 (2006).
  • Harty TP, Dib-Hajj SD, Tyrrell L et al. Nav1.7 mutant A863P in erythromelalgia: effects of altered activation and steady-state inactivation on excitability of nociceptive dorsal root ganglion neurons. J. Neurosci.26, 12566–12575 (2006).
  • Lee MJ, Yu HS, Hsieh ST, Stephenson DA, Lu CJ, Yang CC. Characterization of a familial case with primary erythromelalgia from Taiwan. J. Neurol.254, 210–214 (2007).
  • Cummins TR, Dib-Hajj SD, Waxman SG. Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J. Neurosci.24(38), 8232–8236 (2004).
  • Lampert A, Dib-Hajj SD, Tyrrell L, Waxman SG. Size matters: erythromelalgia mutation S241T in Nav1.7 alters channel gating. J. Biol. Chem.281(47), 36029–36035 (2006).
  • Sheets PL, Jackson Ii JO, Waxman SG, Dib-Hajj S, Cummins TR. A Nav1.7 channel mutation associated with hereditary erythromelalgia contributes to neuronal hyperexcitability and displays reduced lidocaine sensitivity. J. Physiol.581(3), 1019–1031 (2007).
  • Rush AM, Dib-Hajj SD, Liu S, Cummins TR, Black JA, Waxman SG. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc. Natl Acad. Sci. USA103(21), 8245–8250 (2006).
  • Fertleman CR, Baker MD, Parker KA et al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron52(5), 767–774 (2006).
  • Cox JJ, Reimann F, Nicholas AK et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature444, 894–898 (2006).
  • Ahmad S, Dahllund L, Eriksson AB et al. A stop codon mutation in SCN9A causes lack of pain sensation. Hum. Mol. Genet.16(17), 2114–2121 (2007).
  • Goldberg YP, MacFarlane J, MacDonald ML et al. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin. Genet.71(4), 311–319 (2007).
  • Toledo-Aral JJ, Moss BL, He ZJ et al. Identification of PN1, a predominant voltage-dependent sodium channel expressed principally in peripheral neurons. Proc. Natl Acad. Sci. USA94(4), 1527–1532 (1997).
  • Djouhri L, Newton R, Levinson SR, Berry CM, Carruthers B, Lawson SN. Sensory and electrophysiological properties of guinea-pig sensory neurons expressing Nav1.7 (PN1) Na+ channel α subunit protein. J. Physiol.546(2), 565–576 (2003).
  • Nassar MA, Stirling LC, Forlani G, et al. Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc. Natl Acad. Sci. USA101(34), 12706–12711 (2004).
  • Cummins TR, Waxman SG. Down-regulation of tetrodotoxin-resistant sodium currents and up-regulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J. Neurosci.17, 3503–3514 (1997).
  • Rush AM, Brau ME, Elliott AA, Elliott JR. Electrophysiological properties of sodium current subtypes in small cells from adult rat dorsal root ganglia. J. Physiol.511(3), 771–789 (1998).
  • Akopian AN, Sivilotti L, Wood JN. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature379, 257–262 (1996).
  • Dib-Hajj SD, Tyrrell L, Black JA, Waxman SG. NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc. Natl Acad. Sci. USA95, 8963–8968 (1998).
  • Tate S, Benn S, Hick C et al. Two sodium channels contribute to the TTX-R sodium current in primary sensory neurons. Nat. Neurosci.1, 653–655 (1998).
  • Cummins TR, Dib-Hajj SD, Black JA, Akopian AN, Wood JN, Waxman SG. A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J. Neurosci.19(24), RC43 (1999).
  • Priest BT, Murphy BA, Lindia JA et al. Contribution of the tetrodotoxin-resistant voltage-gated sodium channel Nav1.9 to sensory transmission and nociceptive behavior. Proc. Natl Acad. Sci. USA102, 9382–9387 (2005).
  • Amaya F, Wang H, Costigan M et al. The voltage-gated sodium channel Nav1.9 is an effector of peripheral inflammatory pain hypersensitivity. J. Neurosci.26(50), 12852–12860 (2006).
  • Dib-Hajj S, Black JA, Cummins TR, Waxman SG. NaN/Nav1.9: a sodium channel with unique properties. Trends Neurosci.25(5), 253–259 (2002).
  • Rugiero F, Mistry M, Sage D et al. Selective expression of a persistent tetrodotoxin-resistant Na+ current and Nav1.9 subunit in myenteric sensory neurons. J. Neurosci.23, 2715–2725 (2003).
  • Herzog RI, Cummins TR, Waxman SG. Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons. J. Neurophysiol.86, 1351–1364 (2001).
  • Fang X, Djouhri L, Black JA, Dib-Hajj SD, Waxman SG, Lawson SN. The presence and role of the tetrodotoxin-resistant sodium channel Nav1.9 (NaN) in nociceptive primary afferent neurons. J. Neurosci.22(17), 7425–7433 (2002).
  • Rush AM, Waxman SG. PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins. Brain Res.1023(2), 264–271 (2004).
  • Gold MS. Tetrodotoxin-resistant Na+ currents and inflammatory hyperalgesia. Proc. Natl Acad. Sci. USA96(14), 7645–7649 (1999).
  • Lai J, Gold MS, Kim CS et al. Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, Nav1.8. Pain95(1–2), 143–152 (2002).
  • Gold MS, Weinreich D, Kim CS et al. Redistribution of Nav1.8 in uninjured axons enables neuropathic pain. J. Neurosci.23(1), 158–166 (2003).
  • Dong XW, Goregoaker S, Engler H et al. Small interfering RNA-mediated selective knockdown of Nav1.8 tetrodotoxin-resistant sodium channel reverses mechanical allodynia in neuropathic rats. Neuroscience146(2), 812–821 (2007).
  • Renganathan M, Cummins TR, Waxman SG. Contribution of Nav1.8 sodium channels to action potential electrogenesis in DRG neurons. J. Neurophysiol.86(2), 629–640 (2001).
  • Akopian AN, Souslova V, England S et al. The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat. Neurosci.2, 541–548 (1999).
  • Khasar SG, Gold MS, Levine JD. A tetrodotoxin-resistant sodium current mediates inflammatory pain in the rat. Neurosci. Lett.256, 17–20 (1998).
  • Joshi SK, Mikusa JP, Hernandez G et al. Involvement of the TTX-resistant sodium channel Nav1.8 in inflammatory and neuropathic, but not post-operative, pain states. Pain123, 75–82 (2006).
  • Gold MS, Reichling DB, Shuster MJ, Levine JD. Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc. Natl Acad. Sci. USA93, 1108–1112 (1996).
  • Zhang YH, Vasko MR, Nicol GD. Ceramide, a putative second messenger for nerve growth factor, modulates the TTX-resistant Na+ current and delayed rectifier K+ current in rat sensory neurons. J. Physiol.544, 385–402 (2002).
  • Zhang YH, Fehrenbacher JC, Vasko MR, Nicol GD. Sphingosine-1-phosphate via activation of a G-protein-coupled receptor(s) enhances the excitability of rat sensory neurons. J. Neurophysiol.96, 1042–1052 (2006).
  • Kerr BJ, Souslova V, McMahon SB, Wood JN. A role for the TTX-resistant sodium channel Nav1.8 in NGF-induced hyperalgesia, but not neuropathic pain. Neuroreport12, 3077–3080 (2001).
  • Nassar MA, Levato A, Stirling LC, Wood JN. Neuropathic pain develops normally in mice lacking both Nav1.7 and Nav1.8. Mol. Pain1, 24 (2005).
  • Jarvis MF, Honore P, Shieh CC et al. A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc. Natl Acad. Sci. USA104(20), 8520–8525 (2007).
  • Hains BC, Klein JP, Saab CY, Craner MJ, Black JA, Waxman SG. Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J. Neurosci.23(26), 8881–8892 (2003).
  • Nassar MA, Baker MD, Levato A et al. Nerve injury induces robust allodynia and ectopic discharges in Nav1.3 null mutant mice. Mol. Pain2, 33 (2006).
  • Amir R, Liu CN, Kocsis JD, Devor M. Oscillatory mechanism in primary sensory neurones. Brain125(2), 421–435 (2002).
  • Fozzard HA, Lee PJ, Lipkind GM. Mechanism of local anesthetic drug action on voltage-gated sodium channels. Curr. Pharm. Des.11(21), 2671–2686 (2005).
  • Yanagidate F, Strichartz GR. Local anesthetics. Handb. Exp. Pharmacol.177, 95–127 (2007).
  • Scholz A, Vogel W. Tetrodotoxin-resistant action potentials in dorsal root ganglion neurons are blocked by local anesthetics. Pain89(1), 47–52 (2000).
  • Brau ME, Dreimann M, Olschewski A, Vogel W, Hempelmann G. Effect of drugs used for neuropathic pain management on tetrodotoxin-resistant Na+ currents in rat sensory neurons. Anesthesiology94(1), 137–144 (2001).
  • Persaud N, Strichartz GR. Micromolar lidocaine selectively blocks propagating ectopic impulses at a distance from their site of origin. Pain99(1–2), 333–340 (2002).
  • Chabal C, Russell LC, Burchiel KJ. The effect of intravenous idocaine, tocainide, and mexiletine on spontaneously active fibers originating in rat sciatic neuromas. Pain38(3), 333–338 (1989).
  • Smith LJ, Shih A, Miletic G, Miletic V. Continual systemic infusion of lidocaine provides analgesia in an animal model of neuropathic pain. Pain97(3), 267–273 (2002).
  • Meier T, Wasner G, Faust M et al. Efficacy of lidocaine patch 5% in the treatment of focal peripheral neuropathic pain syndromes: a randomized, double-blind, placebo-controlled study. Pain106(1–2), 151–158 (2003).
  • Barbano RL, Herrmann DN, Hart-Gouleau S, Pennella-Vaughan J, Lodewick PA, Dworkin RH. Effectiveness, tolerability, and impact on quality of life of the 5% lidocaine patch in diabetic polyneuropathy. Arch. Neurol.61(6), 914–918 (2004).
  • Herrmann DN, Barbano RL, Hart-Gouleau S, Pennella-Vaughan J, Dworkin RH. An open-label study of the lidocaine patch 5% in painful idiopathic sensory polyneuropathy. Pain Med.6(5), 379–384 (2005).
  • Galer BS, Jensen MP, Ma T, Davies PS, Rowbotham MC. The lidocaine patch 5% effectively treats all neuropathic pain qualities: results of a randomized, double-blind, vehicle-controlled, 3-week efficacy study with use of the neuropathic pain scale. Clin. J. Pain18(5), 297–301 (2002).
  • Hans GH, Robert DN, Van Maldeghem KN. Treatment of an acute severe central neuropathic pain syndrome by topical application of lidocaine 5% patch: a case report. Spinal Cord (2007) (Epub ahead of print).
  • Hines R, Keaney D, Moskowitz MH, Prakken S. Use of lidocaine patch 5% for chronic low back pain: a report of four cases. Pain Med.3(4), 361–365 (2002).
  • Gammaitoni AR, Alvarez NA, Galer BS. Safety and tolerability of the lidocaine patch 5%, a targeted peripheral analgesic: a review of the literature. J. Clin. Pharmacol.43(2), 111–117 (2003).
  • Tremont-Lukats IW, Hutson PR, Backonja MM. A randomized, double-masked, placebo-controlled pilot trial of extended iv lidocaine infusion for relief of ongoing neuropathic pain. Clin. J. Pain22(3), 266–271 (2006).
  • Bean BP, Cohen CJ, Tsien RW. Lidocaine block of cardiac sodium channels. J. Gen. Physiol.81(5), 613–642 (1983).
  • Gottrup H, Bach FW, Juhl G, Jensen TS. Differential effect of ketamine and lidocaine on spontaneous and mechanical evoked pain in patients with nerve injury pain. Anesthesiology104(3), 527–536 (2006).
  • Hollmann MW, Gross A, Jelacin N, Durieux ME. Local anesthetic effects on priming and activation of human neutrophils. Anesthesiology95(1), 113–122 (2001).
  • Hollmann MW, Ritter CH, Henle P, de Klaver M, Kamatchi GL, Durieux ME. Inhibition of m3 muscarinic acetylcholine receptors by local anaesthetics. Br. J. Pharmacol.133(1), 207–216 (2001).
  • Hollmann MW, McIntire WE, Garrison JC, Durieux ME. Inhibition of mammalian Gq protein function by local anesthetics. Anesthesiology97(6), 1451–1457 (2002).
  • Benkwitz C, Garrison JC, Linden J, Durieux ME, Hollmann MW. Lidocaine enhances Gαi protein function. Anesthesiology99(5), 1093–1101 (2003).
  • Hollmann MW, Herroeder S, Kurz KS et al. Time-dependent inhibition of G protein-coupled receptor signaling by local anesthetics. Anesthesiology100(4), 852–860 (2004).
  • Tzeng JI, Cheng KI, Huang KL et al. The cutaneous analgesic effect of class I antiarrhythmic drugs. Anesth. Analg.104(4), 955–958 (2007).
  • Erichsen HK, Hao JX, Xu XJ, Blackburn-Munro G. A comparison of the antinociceptive effects of voltage-activated Na+ channel blockers in two rat models of neuropathic pain. Eur. J. Pharmacol.458(3), 275–282 (2003).
  • Oskarsson P, Ljunggren JG, Lins PE. Efficacy and safety of mexiletine in the treatment of painful diabetic neuropathy. The Mexiletine Study Group. Diabetes Care20(10), 1594–1597 (1997).
  • Adriaensen H, Plaghki L, Mathieu C, Joffroy A, Vissers K. Critical review of oral drug treatments for diabetic neuropathic pain-clinical outcomes based on efficacy and safety data from placebo-controlled and direct comparative studies. Diabetes Metab. Res. Rev.21(3), 231–240 (2005).
  • Eisenberg E, River Y, Shifrin A, Krivoy N. Antiepileptic drugs in the treatment of neuropathic pain. Drugs67(9), 1265–1289 (2007).
  • Lipkind GM, Fozzard HA. Molecular modeling of local anesthetic drug binding by voltage-gated sodium channels. Mol. Pharmacol.68(6), 1611–1622 (2005).
  • Cardenas CA, Cardenas CG, de Armendi AJ, Scroggs RS. Carbamazepine interacts with a slow inactivation state of Nav1.8-like sodium channels. Neurosci. Lett.408(2), 129–134 (2006).
  • Wiffen PJ, McQuay HJ, Moore RA. Carbamazepine for acute and chronic pain. Cochrane Database Syst. Rev.3, CD005451 (2005).
  • Beydoun A, Kutluay E. Oxcarbazepine. Expert Opin. Pharmacother.3(1), 59–71 (2002).
  • Jang Y, Kim ES, Park SS, Lee J, Moon DE. The suppressive effects of oxcarbazepine on mechanical and cold allodynia in a rat model of neuropathic pain. Anesth. Analg.101(3), 800–806 (2005).
  • Magenta P, Arghetti S, Di Palma F et al. Oxcarbazepine is effective and safe in the treatment of neuropathic pain: pooled analysis of seven clinical studies. Neurol. Sci.26(4), 218–226 (2005).
  • Solaro C, Restivo D, Mancardi GL, Tanganelli P. Oxcarbazepine for treating paroxysmal painful symptoms in multiple sclerosis: a pilot study. Neurol. Sci.28(3), 156–158 (2007).
  • Beydoun A, Shaibani A, Hopwood M, Wan Y. Oxcarbazepine in painful diabetic neuropathy: results of a dose-ranging study. Acta Neurol. Scand.113(6), 395–404 (2006).
  • Dogra S, Beydoun S, Mazzola J, Hopwood M, Wan Y. Oxcarbazepine in painful diabetic neuropathy: a randomized, placebo-controlled study. Eur. J. Pain9(5), 543–554 (2005).
  • Grosskopf J, Mazzola J, Wan Y, Hopwood M. A randomized, placebo-controlled study of oxcarbazepine in painful diabetic neuropathy. Acta Neurol. Scand.114(3), 177–180 (2006).
  • Cheung H, Kamp D, Harris E. An in vitro investigation of the action of lamotrigine on neuronal voltage-activated sodium channels. Epilepsy Res.13(2), 107–112 (1992).
  • Vinik AI, Tuchman M, Safirstein B et al. Lamotrigine for treatment of pain associated with diabetic neuropathy: results of two randomized, double-blind, placebo-controlled studies. Pain128(1–2), 169–179 (2007).
  • Atli A, Dogra S. Zonisamide in the treatment of painful diabetic neuropathy: a randomized, double-blind, placebo-controlled pilot study. Pain Med.6(3), 225–234 (2005).
  • Hofer D, Lohberger B, Steinecker B, Schmidt K, Quasthoff S, Schreibmayer W. A comparative study of the action of tolperisone on seven different voltage dependent sodium channel isoforms. Eur. J. Pharmacol.538(1–3), 5–14 (2006).
  • Kishore-Kumar R, Max MB, Schafer SC et al. Desipramine relieves postherpetic neuralgia. Neurology47, 305–312 (1990).
  • Max MB, Schafer SC, Culnane M, Smoller B, Dubner R, Gracely RH. Amitriptyline, but not lorazepam, relieves postherpetic neuralgia. Neurology38, 1427–1432 (1998).
  • Watson CP, Evans RJ, Reed K, Merskey H, Goldsmith L, Warsh J. Amitriptyline versus placebo in postherpetic neuralgia. Neurology32, 671–673 (1982).
  • Sindrup SH, Otto M, Finnerup NB, Jensen TS. Antidepressants in the treatment of neuropathic pain. Basic Clin. Pharmacol. Toxicol.96(6), 399–409 (2005).
  • Chen YW, Huang KL, Liu SY et al. Intrathecal tri-cyclic antidepressants produce spinal anesthesia. Pain112(1–2), 106–112 (2004).
  • Song JH, Ham SS, Shin YK, Lee CS. Amitriptyline modulation of Na+ channels in rat dorsal root ganglion neurons. Eur. J. Pharmacol.401(3), 297–305 (2000).
  • Wang GK, Russell C, Wang SY. State-dependent block of voltage-gated Na+ channels by amitriptyline via the local anesthetic receptor and its implication for neuropathic pain. Pain110, 166–174 (2004).
  • Dick IE, Brochu RM, Purohit Y, Kaczorowski GJ, Martin WJ, Priest BT. Sodium channel blockade may contribute to the analgesic efficacy of antidepressants. J. Pain8(4), 315–324 (2007).
  • Nau C, Seaver M, Wang SY, Wang GK. Block of human heart hH1 sodium channels by amitriptyline. J. Pharmacol. Exp. Ther.292(3), 1015–1023 (2000).
  • Sheets PL, Gerner P, Wang CF, Wang SY, Wang GK, Cummins TR. Inhibition of Nav1.7 and Nav1.4 sodium channels by trifluoperazine involves the local anesthetic receptor. J. Neurophysiol.96(4), 1848–1859 (2006).
  • Golbidi S, Moriuchi H, Irie T, Ghafghazi T, Hajhashemi V. Involvement of calmodulin inhibition in analgesia induced with low doses of intrathecal trifluoperazine. Jpn J. Pharmacol.88(2), 151–157 (2002).
  • Levin RM, Weiss B. Selective binding of antipsychotics and other psychoactive agents to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. J. Pharmacol. Exp. Ther.208(3), 454–459 (1979).
  • Ilyin VI, Hodges DD, Whittemore ER, Carter RB, Cai SX, Woodward RM. V102862 (Co 102862): a potent, broad-spectrum state-dependent blocker of mammalian voltage-gated sodium channels. Br. J. Pharmacol.144(6), 801–812 (2005).
  • Ilyin VI, Pomonis JD, Whiteside GT et al. Pharmacology of 2-[4-(4-chloro-2-fluorophenoxy)phenyl]-pyrimidine-4-carboxamide: a potent, broad-spectrum state-dependent sodium channel blocker for treating pain states. J. Pharmacol. Exp. Ther.318(3), 1083–1093 (2006).
  • Ko SH, Jochnowitz N, Lenkowski PW et al. Reversal of neuropathic pain by α-hydroxyphenylamide: a novel sodium channel antagonist. Neuropharmacology50(7), 865–873 (2006).
  • Jones PJ, Wang Y, Smith MD et al. Hydroxyamide analogs of propofol exhibit state-dependent block of sodium channels in hippocampal neurons: implications for anticonvulsant activity. J. Pharmacol. Exp. Ther.320(2), 828–836 (2007).
  • Stummann TC, Salvati P, Fariello RG, Faravelli L. The anti-nociceptive agent ralfinamide inhibits tetrodotoxin-resistant and tetrodotoxin-sensitive Na+ currents in dorsal root ganglion neurons. Eur. J. Pharmacol.510(3), 197–208 (2005).
  • Kyle DJ, Ilyin VI. Sodium channel blockers. J. Med. Chem.50(11), 2583–2588 (2007).
  • Brochu RM, Dick IE, Tarpley JW et al. Block of peripheral nerve sodium channels selectively inhibits features of neuropathic pain in rats. Mol. Pharmacol.69(3), 823–832 (2006).
  • Hoyt SB, London C, Gorin D et al. Discovery of a novel class of benzazepinone Nav1.7 blockers: potential treatments for neuropathic pain. Bioorg. Med. Chem. Lett.17(16), 4630–4634 (2007).
  • Stohr T, Kupferberg HJ, Stables JP et al. Lacosamide, a novel anti-convulsant drug, shows efficacy with a wide safety margin in rodent models for epilepsy. Epilepsy Res.74(2–3), 147–154 (2007).
  • Hao JX, Stohr T, Selve N, Wiesenfeld-Hallin Z, Xu XJ. Lacosamide, a new anti-epileptic, alleviates neuropathic pain-like behaviors in rat models of spinal cord or trigeminal nerve injury. Eur. J. Pharmacol.553(1–3), 135–140 (2006).
  • Beyreuther B, Callizot N, Stohr T. Antinociceptive efficacy of lacosamide in a rat model for painful diabetic neuropathy. Eur. J. Pharmacol.539(1–2), 64–70 (2006).
  • Beyreuther BK, Callizot N, Brot MD, Feldman R, Bain SC, Stohr T. Antinociceptive efficacy of lacosamide in rat models for tumor- and chemotherapy-induced cancer pain. Eur. J. Pharmacol.565(1–3), 98–104 (2007).
  • Errington AC, Coyne L, Stohr T, Selve N, Lees G. Seeking a mechanism of action for the novel anticonvulsant lacosamide. Neuropharmacology50(8), 1016–1029 (2006).
  • Rauck RL, Shaibani A, Biton V, Simpson J, Koch B. Lacosamide in painful diabetic peripheral neuropathy: a Phase II double-blind placebo-controlled study. Clin. J. Pain23(2), 150–158 (2007).
  • Omana-Zapata I, Khabbaz MA, Hunter Clarke DE, Bley KR. Tetrodotoxin inhibits neuropathic ectopic activity in neuromas, dorsal root ganglia and dorsal horn neurons. Pain72(1–2), 41–49 (1997).
  • Marcil J, Walczak JS, Guindon J, Ngoc AH, Lu S, Beaulieu P. Antinociceptive effects of tetrodotoxin (TTX) in rodents. Br. J. Anaesth.96(6), 761–768 (2006).
  • Rodriguez-Navarro AJ, Lagos N, Lagos M et al. Neosaxitoxin as a local anesthetic: preliminary observations from a first human trial. Anesthesiology106(2), 339–345 (2007).
  • Kohane DS, Smith SE, Louis DN et al. Prolonged duration local anesthesia from tetrodotoxin-enhanced local anesthetic microspheres. Pain104(1–2), 415–421 (2003).
  • Kohane DS, Yieh J, Lu NT, Langer R, Strichartz GR, Berde CB. A re-examination of tetrodotoxin for prolonged duration local anesthesia. Anesthesiology89(1), 119–131 (1998).
  • Rosker C, Lohberger B, Hofer D, Steinecker B, Quasthoff S, Schreibmayer W. The TTX metabolite 4,9-anhydro-TTXx is a highly specific blocker of the Nav1.6 Voltage dependent sodium channel. Am. J. Physiol. Cell Physiol.293(2), C783–C789 (2007).
  • Yeomans DC, Levinson SR, Peters MC et al. Decrease in inflammatory hyperalgesia by herpes vector-mediated knockdown of Nav1.7 sodium channels in primary afferents. Hum. Gene Ther.16(2), 271–277 (2005).
  • Mikami M, Yang J. Short hairpin RNA-mediated selective knockdown of Nav1.8 tetrodotoxin-resistant voltage-gated sodium channel in dorsal root ganglion neurons. Anesthesiology103(4), 828–836 (2005).
  • Shah BS, Stevens EB, Gonzalez MI et al. β3, a novel auxiliary subunit for the voltage-gated sodium channel, is expressed preferentially in sensory neurons and is upregulated in the chronic constriction injury model of neuropathic pain. Eur. J. Neurosci.12, 3985–3990 (2000).
  • Lopez-Santiago LF, Pertin M, Morisod X et al. Sodium channel β2 subunits regulate tetrodotoxin-sensitive sodium channels in small dorsal root ganglion neurons and modulate the response to pain. J. Neurosci.26(30), 7984–7994 (2006).
  • Hong S, Morrow TJ, Paulson PE, Isom LL, Wiley JW. Early painful diabetic neuropathy is associated with differential changes in tetrodotoxin-sensitive and -resistant sodium channels in dorsal root ganglion neurons in the rat. J. Biol. Chem.279(28), 29341–29350 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.