129
Views
48
CrossRef citations to date
0
Altmetric
Review

Anticytokine therapy in neuropathic pain management

&
Pages 1613-1627 | Published online: 09 Jan 2014

References

  • George A, Bühl A, Sommer C. Wallerian degeneration after crush injury of rat sciatic nerve increases endo- and epineurial tumor necrosis factor-α protein. Neurosci. Lett.372(3), 215–219 (2004).
  • Kleinschnitz C, Brinkhoff J, Zelenka M, Sommer C, Stoll G. The extent of cytokine induction in peripheral nerve lesions depends on the mode of injury and NMDA receptor signaling. J. Neuroimmunol.149(1–2), 77–83 (2004).
  • Murphy PG, Ramer MS, Borthwick L et al. Endogenous interleukin-6 contributes to hypersensitivity to cutaneous stimuli and changes in neuropeptides associated with chronic nerve constriction in mice. Eur. J. Neurosci.11(7), 2243–2253 (1999).
  • Okamoto K, Martin DP, Schmelzer JD, Mitsui Y, Low PA. Pro- and anti-inflammatory cytokine gene expression in rat sciatic nerve chronic constriction injury model of neuropathic pain. Exp. Neurol.169(2), 386–391 (2001).
  • Wagner R, Myers RR. Schwann cells produce tumor necrosis factor α: expression in injured and non-injured nerves. Neuroscience73(3), 625–629 (1996).
  • Murphy PG, Grondin J, Altares M, Richardson PM. Induction of interleukin-6 in axotomized sensory neurons. J. Neurosci.15(7 Pt 2), 5130–5138 (1995).
  • Schäfers M, Geis C, Svensson CI, Luo ZD, Sommer C. Selective increase of tumour necrosis factor-α in injured and spared myelinated primary afferents after chronic constrictive injury of rat sciatic nerve. Eur. J. Neurosci.17(4), 791–804 (2003).
  • Arruda JL, Colburn RW, Rickman AJ, Rutkowski MD, DeLeo JA. Increase of interleukin-6 mRNA in the spinal cord following peripheral nerve injury in the rat: potential role of IL-6 in neuropathic pain. Brain Res. Mol. Brain Res.62(2), 228–235 (1998).
  • DeLeo JA, Colburn RW, Nichols M, Malhotra A. Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model. J. Interferon Cytokine Res.16(9), 695–700 (1996).
  • DeLeo JA, Colburn RW, Rickman AJ. Cytokine and growth factor immunohistochemical spinal profiles in two animal models of mononeuropathy. Brain Res.759(1), 50–57 (1997).
  • Hashizume H, Rutkowski MD, Weinstein JN, DeLeo JA. Central administration of methotrexate reduces mechanical allodynia in an animal model of radiculopathy/sciatica. Pain87(2), 159–169 (2000).
  • Winkelstein BA, DeLeo JA. Nerve root injury severity differentially modulates spinal glial activation in a rat lumbar radiculopathy model: considerations for persistent pain. Brain Res.956(2), 294–301 (2002).
  • Raghavendra V, Tanga F, Rutkowski MD, DeLeo JA. Anti-hyperalgesic and morphine-sparing actions of propentofylline following peripheral nerve injury in rats: mechanistic implications of spinal glia and proinflammatory cytokines. Pain104(3), 655–664 (2003).
  • Winkelstein BA, Rutkowski MD, Sweitzer SM, Pahl JL, DeLeo JA. Nerve injury proximal or distal to the DRG induces similar spinal glial activation and selective cytokine expression but differential behavioral responses to pharmacologic treatment. J. Comp. Neurol.439(2), 127–139 (2001).
  • Milligan ED, Mehmert KK, Hinde JL et al. Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein, gp120. Brain Res.861(1), 105–116 (2000).
  • Milligan ED, O’Connor KA, Nguyen KT et al. Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines. J. Neurosci.21(8), 2808–2819 (2001).
  • Watkins LR, Hutchinson MR, Ledeboer A et al. Norman Cousins Lecture. Glia as the “bad guys”: implications for improving clinical pain control and the clinical utility of opioids. Brain Behav. Immun.21(2), 131–146 (2007).
  • Anderson LC, Rao RD. Interleukin-6 and nerve growth factor levels in peripheral nerve and brainstem after trigeminal nerve injury in the rat. Arch. Oral Biol.46(7), 633–640 (2001).
  • Vania Apkarian A, Lavarello S, Randolf A et al. Expression of IL-1β in supraspinal brain regions in rats with neuropathic pain. Neurosci. Lett.407(2), 176–181 (2006).
  • Covey WC, Ignatowski TA, Renauld AE et al. Expression of neuron-associated tumor necrosis factor α in the brain is increased during persistent pain. Reg. Anesth. Pain Med.27(4), 357–366 (2002).
  • Spengler RN, Sud R, Knight PR, Ignatowski TA. Antinociception mediated by α2-adrenergic activation involves increasing tumor necrosis factor α (TNFα) expression and restoring TNFα and α2-adrenergic inhibition of norepinephrine release. Neuropharmacology52(2), 576–589 (2007).
  • Covey WC, Ignatowski TA, Knight PR, Spengler RN. Brain-derived TNFα: involvement in neuroplastic changes implicated in the conscious perception of persistent pain. Brain Res.859(1), 113–122 (2000).
  • Ignatowski TA, Covey WC, Knight PR et al. Brain-derived TNFα mediates neuropathic pain. Brain Res.841(1–2), 70–77 (1999).
  • Liu J, Feng X, Yu M et al. Pentoxifylline attenuates the development of hyperalgesia in a rat model of neuropathic pain. Neurosci. Lett.412(3), 268–272 (2007).
  • Cunha FQ, Poole S, Lorenzetti BB, Ferreira SH. The pivotal role of tumour necrosis factor α in the development of inflammatory hyperalgesia. Br. J. Pharmacol.107(3), 660–664 (1992).
  • Perkins MN, Kelly D, Davis AJ. Bradykinin B1 and B2 receptor mechanisms and cytokine-induced hyperalgesia in the rat. Can. J. Physiol. Pharmacol.73(7), 832–836 (1995).
  • Junger H, Sorkin LS. Nociceptive and inflammatory effects of subcutaneous TNFα. Pain85(1–2), 145–151 (2000).
  • Sorkin LS, Xiao WH, Wagner R, Myers RR. Tumour necrosis factor-α induces ectopic activity in nociceptive primary afferent fibres. Neuroscience81(1), 255–262 (1997).
  • Wagner R, Myers RR. Endoneurial injection of TNF-α produces neuropathic pain behaviors. Neuroreport7(18), 2897–2901 (1996).
  • Zelenka M, Schäfers M, Sommer C. Intraneural injection of interleukin-1β and tumor necrosis factor-α into rat sciatic nerve at physiological doses induces signs of neuropathic pain. Pain116(3), 257–263 (2005).
  • Liu B, Li H, Brull SJ, Zhang JM. Increased sensitivity of sensory neurons to tumor necrosis factor α in rats with chronic compression of the lumbar ganglia. J. Neurophysiol.88(3), 1393–1399 (2002).
  • Ozaktay AC, Kallakuri S, Takebayashi T et al. Effects of interleukin-1β, interleukin-6, and tumor necrosis factor on sensitivity of dorsal root ganglion and peripheral receptive fields in rats. Eur. Spine J.15(10), 1529–1537 (2006).
  • Schäfers M, Lee DH, Brors D, Yaksh TL, Sorkin LS. Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-α after spinal nerve ligation. J. Neurosci.23(7), 3028–3038 (2003).
  • Zhang JM, Li H, Liu B, Brull SJ. Acute topical application of tumor necrosis factor α evokes protein kinase A-dependent responses in rat sensory neurons. J. Neurophysiol.88(3), 1387–1392 (2002).
  • Falchi M, Ferrara F, Gharib C, Dib B. Hyperalgesic effect of intrathecally administered interleukin-1 in rats. Drugs Exp. Clin. Res.27(3), 97–101 (2001).
  • Reeve AJ, Patel S, Fox A, Walker K, Urban L. Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur. J. Pain4(3), 247–257 (2000).
  • Sung CS, Wen ZH, Chang WK et al. Intrathecal interleukin-1β administration induces thermal hyperalgesia by activating inducible nitric oxide synthase expression in the rat spinal cord. Brain Res.1015(1–2), 145–153 (2004).
  • Hori T, Oka T, Hosoi M, Aou S. Pain modulatory actions of cytokines and prostaglandin E2 in the brain. Ann. NY Acad. Sci.840, 269–281 (1998).
  • Fukuoka H, Kawatani M, Hisamitsu T, Takeshige C. Cutaneous hyperalgesia induced by peripheral injection of interleukin-1β in the rat. Brain Res.657(1–2), 133–140 (1994).
  • Opree A, Kress M. Involvement of the proinflammatory cytokines tumor necrosis factor-α, IL-1β, and IL-6 but not IL-8 in the development of heat hyperalgesia: effects on heat-evoked calcitonin gene-related peptide release from rat skin. J. Neurosci.20(16), 6289–6293 (2000).
  • Obreja O, Rathee PK, Lips KS, Distler C, Kress M. IL-1β potentiates heat-activated currents in rat sensory neurons: involvement of IL-1RI, tyrosine kinase, and protein kinase C. FASEB J.16(12), 1497–1503 (2002).
  • Lindholm D, Heumann R, Meyer M, Thoenen H. Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature330(6149), 658–659 (1987).
  • Safieh-Garabedian B, Poole S, Allchorne A, Winter J, Woolf CJ. Contribution of interleukin-1 β to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia. Br. J. Pharmacol.115(7), 1265–1275 (1995).
  • Inoue A, Ikoma K, Morioka N et al. Interleukin-1β induces substance P release from primary afferent neurons through the cyclooxygenase-2 system. J. Neurochem.73(5), 2206–2213 (1999).
  • Thompson SW, Priestley JV, Southall A. gp130 cytokines, leukemia inhibitory factor and interleukin-6, induce neuropeptide expression in intact adult rat sensory neurons in vivo: time-course, specificity and comparison with sciatic nerve axotomy. Neuroscience84(4), 1247–1255 (1998).
  • Sorkin LS, Doom CM. Epineurial application of TNF elicits an acute mechanical hyperalgesia in the awake rat. J. Peripher. Nerv. Syst.5(2), 96–100 (2000).
  • Ozaktay AC, Cavanaugh JM, Asik I, DeLeo JA, Weinstein JN. Dorsal root sensitivity to interleukin-1 β, interleukin-6 and tumor necrosis factor in rats. Eur. Spine J.11(5), 467–475 (2002).
  • Cuellar JM, Montesano PX, Carstens E. Role of TNF-α in sensitization of nociceptive dorsal horn neurons induced by application of nucleus pulposus to L5 dorsal root ganglion in rats. Pain110(3), 578–587 (2004).
  • Onda A, Hamba M, Yabuki S, Kikuchi S. Exogenous tumor necrosis factor-α induces abnormal discharges in rat dorsal horn neurons. Spine27(15), 1618–1624; discussion 1624 (2002).
  • Onda A, Yabuki S, Kikuchi S. Effects of neutralizing antibodies to tumor necrosis factor-α on nucleus pulposus-induced abnormal nociresponses in rat dorsal horn neurons. Spine28(10), 967–972 (2003).
  • MacEwan DJ. TNF receptor subtype signalling: differences and cellular consequences. Cell Signal.14(6), 477–492 (2002).
  • Dubovy P, Jancalek R, Klusakova I, Svizenska I, Pejchalova K. Intra- and extraneuronal changes of immunofluorescence staining for TNF- and TNFR1 in the dorsal root ganglia of rat peripheral neuropathic pain models. Cell. Mol. Neurobiol.26(7–8), 1205–1217 (2006).
  • George A, Buehl A, Sommer C. Tumor necrosis factor receptor 1 and 2 proteins are differentially regulated during Wallerian degeneration of mouse sciatic nerve. Exp. Neurol.192(1), 163–166 (2005).
  • Ohtori S, Takahashi K, Moriya H, Myers RR. TNF-α and TNF-α receptor type 1 upregulation in glia and neurons after peripheral nerve injury: studies in murine DRG and spinal cord. Spine29(10), 1082–1088 (2004).
  • Schäfers M, Sorkin LS, Geis C, Shubayev VI. Spinal nerve ligation induces transient upregulation of tumor necrosis factor receptors 1 and 2 in injured and adjacent uninjured dorsal root ganglia in the rat. Neurosci. Lett.347(3), 179–182 (2003).
  • Xu JT, Xin WJ, Zang Y, Wu CY, Liu XG. The role of tumor necrosis factor-α in the neuropathic pain induced by Lumbar 5 ventral root transection in rat. Pain123(3), 306–321 (2006).
  • Holmes GM, Hebert SL, Rogers RC, Hermann GE. Immunocytochemical localization of TNF type 1 and type 2 receptors in the rat spinal cord. Brain Res.1025(1–2), 210–219 (2004).
  • Pollock J, McFarlane SM, Connell MC et al. TNF-α receptors simultaneously activate Ca2+ mobilisation and stress kinases in cultured sensory neurones. Neuropharmacology42(1), 93–106 (2002).
  • Jin X, Gereau RWT. Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-α. J. Neurosci.26(1), 246–255 (2006).
  • Takahashi N, Kikuchi S, Shubayev VI, Campana WM, Myers RR. TNF-α and phosphorylation of ERK in DRG and spinal cord: insights into mechanisms of sciatica. Spine31(5), 523–529 (2006).
  • Diem R, Meyer R, Weishaupt JH, Bahr M. Reduction of potassium currents and phosphatidylinositol 3-kinase-dependent AKT phosphorylation by tumor necrosis factor-α rescues axotomized retinal ganglion cells from retrograde cell death in vivo. J. Neurosci.21(6), 2058–2066 (2001).
  • Furukawa K, Mattson MP. The transcription factor NF-κB mediates increases in calcium currents and decreases in NMDA- and AMPA/kainate-induced currents induced by tumor necrosis factor-α in hippocampal neurons. J. Neurochem.70(5), 1876–1886 (1998).
  • Soliven B, Albert J. Tumor necrosis factor modulates Ca2+ currents in cultured sympathetic neurons. J. Neurosci.12(7), 2665–2671 (1992).
  • Baldwin RL, Stolowitz ML, Hood L, Wisnieski BJ. Structural changes of tumor necrosis factor α associated with membrane insertion and channel formation. Proc. Natl Acad. Sci. USA93(3), 1021–1026 (1996).
  • Kagan BL, Baldwin RL, Munoz D, Wisnieski BJ. Formation of ion-permeable channels by tumor necrosis factor-α. Science255(5050), 1427–1430 (1992).
  • Ignatowski TA, Sud R, Reynolds JL, Knight PR, Spengler RN. The dissipation of neuropathic pain paradoxically involves the presence of tumor necrosis factor-α (TNF). Neuropharmacology48(3), 448–460 (2005).
  • Reynolds JL, Ignatowski TA, Gallant S, Spengler RN. Amitriptyline administration transforms tumor necrosis factor-α regulation of norepinephrine release in the brain. Brain Res.1023(1), 112–120 (2004).
  • Reynolds JL, Ignatowski TA, Sud R, Spengler RN. Brain-derived tumor necrosis factor-α and its involvement in noradrenergic neuron functioning involved in the mechanism of action of an antidepressant. J. Pharmacol. Exp. Ther.310(3), 1216–1225 (2004).
  • Reynolds JL, Ignatowski TA, Sud R, Spengler RN. An antidepressant mechanism of desipramine is to decrease tumor necrosis factor-α production culminating in increases in noradrenergic neurotransmission. Neuroscience133(2), 519–531 (2005).
  • Sud R, Ignatowski TA, Lo CP, Spengler RN. Uncovering molecular elements of brain–body communication during development and treatment of neuropathic pain. Brain Behav. Immun.21(1), 112–124 (2007).
  • Renauld AE, Spengler RN. Tumor necrosis factor expressed by primary hippocampal neurons and SH-SY5Y cells is regulated by α2-adrenergic receptor activation. J. Neurosci. Res.67(2), 264–274 (2002).
  • Reynolds JL, Ignatowski TA, Spengler RN. Effect of tumor necrosis factor-α on the reciprocal G-protein-induced regulation of norepinephrine release by the α2-adrenergic receptor. J. Neurosci. Res.79(6), 779–787 (2005).
  • Nicol GD, Lopshire JC, Pafford CM. Tumor necrosis factor enhances the capsaicin sensitivity of rat sensory neurons. J. Neurosci.17(3), 975–982 (1997).
  • Finnerup NB, Otto M, McQuay HJ, Jensen TS, Sindrup SH. Algorithm for neuropathic pain treatment: an evidence based proposal. Pain118(3), 289–305 (2005).
  • Ignatowski TA, Noble BK, Wright JR et al. Neuronal-associated tumor necrosis factor (TNF α): its role in noradrenergic functioning and modification of its expression following antidepressant drug administration. J. Neuroimmunol.79(1), 84–90 (1997).
  • Tai YH, Wang YH, Wang JJ et al. Amitriptyline suppresses neuroinflammation and up-regulates glutamate transporters in morphine-tolerant rats. Pain124(1–2), 77–86 (2006).
  • Wu WP, Hao JX, Ongini E et al. A nitric oxide (NO)-releasing derivative of gabapentin, NCX 8001, alleviates neuropathic pain-like behavior after spinal cord and peripheral nerve injury. Br. J. Pharmacol.141(1), 65–74 (2004).
  • Beyreuther BK, Geis C, Stöhr T, Sommer C. Antihyperalgesic efficacy of lacosamide in a rat model for muscle pain induced by TNF. Neuropharmacology52(5), 1312–1317 (2007).
  • Sindrup SH, Graf A, Sfikas N. The NK1-receptor antagonist TKA731 in painful diabetic neuropathy: a randomised, controlled trial. Eur. J. Pain10(6), 567–571 (2006).
  • George A, Marziniak M, Schäfers M, Toyka KV, Sommer C. Thalidomide treatment in chronic constrictive neuropathy decreases endoneurial tumor necrosis factor-α, increases interleukin-10 and has long-term effects on spinal cord dorsal horn met-enkephalin. Pain88(3), 267–275 (2000).
  • Lindenlaub T, Teuteberg P, Hartung T, Sommer C. Effects of neutralizing antibodies to TNF-α on pain-related behavior and nerve regeneration in mice with chronic constriction injury. Brain Res.866(1–2), 15–22 (2000).
  • Sommer C, Schmidt C, George A. Hyperalgesia in experimental neuropathy is dependent on the TNF receptor 1. Exp. Neurol.151(1), 138–142 (1998).
  • Schäfers M, Brinkhoff J, Neukirchen S, Marziniak M, Sommer C. Combined epineurial therapy with neutralizing antibodies to tumor necrosis factor-α and interleukin-1 receptor has an additive effect in reducing neuropathic pain in mice. Neurosci. Lett.310(2–3), 113–116 (2001).
  • Watkins LR, Wiertelak EP, Goehler LE et al. Neurocircuitry of illness-induced hyperalgesia. Brain Res.639(2), 283–299 (1994).
  • Milligan ED, Twining C, Chacur M et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J. Neurosci.23(3), 1026–1040 (2003).
  • Sweitzer S, Martin D, DeLeo JA. Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain. Neuroscience103(2), 529–539 (2001).
  • Parada CA, Yeh JJ, Joseph EK, Levine JD. Tumor necrosis factor receptor type-1 in sensory neurons contributes to induction of chronic enhancement of inflammatory hyperalgesia in rat. Eur. J. Neurosci.17(9), 1847–1852 (2003).
  • Vogel C, Stallforth S, Sommer C. Altered pain behavior and regeneration after nerve injury in TNF receptor deficient mice. J. Peripher. Nerv. Syst.11(4), 294–303 (2006).
  • Cunha TM, Verri WA, Jr., Silva JS et al. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc. Natl Acad. Sci. USA102(5), 1755–1760 (2005).
  • Schäfers M, Svensson CI, Sommer C, Sorkin LS. Tumor necrosis factor-α induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J. Neurosci.23(7), 2517–2521 (2003).
  • Sommer C, Schäfers M, Marziniak M, Toyka KV. Etanercept reduces hyperalgesia in experimental painful neuropathy. J. Peripher. Nerv. Syst.6(2), 67–72 (2001).
  • Olmarker K, Nutu M, Storkson R. Changes in spontaneous behavior in rats exposed to experimental disc herniation are blocked by selective TNF-α inhibition. Spine28(15), 1635–1641; discussion 1642 (2003).
  • Hao S, Mata M, Glorioso JC, Fink DJ. Gene transfer to interfere with TNFα signaling in neuropathic pain. Gene Ther.14(13), 1010–1016 (2007).
  • Le Buanec H, Delavallee L, Bessis N et al. TNFα kinoid vaccination-induced neutralizing antibodies to TNFα protect mice from autologous TNFα-driven chronic and acute inflammation. Proc. Natl Acad. Sci. USA103(51), 19442–19447 (2006).
  • Sommer C, Petrausch S, Lindenlaub T, Toyka KV. Neutralizing antibodies to interleukin 1-receptor reduce pain associated behavior in mice with experimental neuropathy. Neurosci. Lett.270(1), 25–28 (1999).
  • Laughlin TM, Bethea JR, Yezierski RP, Wilcox GL. Cytokine involvement in dynorphin-induced allodynia. Pain84(2–3), 159–167 (2000).
  • Ledeboer A, Jekich BM, Sloane EM et al. Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain Behav. Immun.21(5), 686–698 (2007).
  • Honore P, Wade CL, Zhong C et al. Interleukin-1αβ gene-deficient mice show reduced nociceptive sensitivity in models of inflammatory and neuropathic pain but not post-operative pain. Behav Brain Res.167(2), 355–364 (2006).
  • Wolf G, Gabay E, Tal M, Yirmiya R, Shavit Y. Genetic impairment of interleukin-1 signaling attenuates neuropathic pain, autotomy, and spontaneous ectopic neuronal activity, following nerve injury in mice. Pain120(3), 315–324 (2006).
  • Arruda JL, Sweitzer S, Rutkowski MD, DeLeo JA. Intrathecal anti-IL-6 antibody and IgG attenuates peripheral nerve injury-induced mechanical allodynia in the rat: possible immune modulation in neuropathic pain. Brain Res.879(1–2), 216–225 (2000).
  • Ramer MS, Murphy PG, Richardson PM, Bisby MA. Spinal nerve lesion-induced mechanoallodynia and adrenergic sprouting in sensory ganglia are attenuated in interleukin-6 knockout mice. Pain78(2), 115–121 (1998).
  • Xu XJ, Hao JX, Andell-Jonsson S et al. Nociceptive responses in interleukin-6-deficient mice to peripheral inflammation and peripheral nerve section. Cytokine9(12), 1028–1033 (1997).
  • Ma W, Quirion R. Increased calcitonin gene-related peptide in neuroma and invading macrophages is involved in the up-regulation of interleukin-6 and thermal hyperalgesia in a rat model of mononeuropathy. J. Neurochem.98(1), 180–192 (2006).
  • Flatters SJ, Fox AJ, Dickenson AH. Spinal interleukin-6 (IL-6) inhibits nociceptive transmission following neuropathy. Brain Res.984(1–2), 54–62 (2003).
  • Flatters SJ, Fox AJ, Dickenson AH. Nerve injury alters the effects of interleukin-6 on nociceptive transmission in peripheral afferents. Eur. J. Pharmacol.484(2–3), 183–191 (2004).
  • Wieseler-Frank J, Maier SF, Watkins LR. Central proinflammatory cytokines and pain enhancement. Neurosignals14(4), 166–174 (2005).
  • Hao S, Mata M, Glorioso JC, Fink DJ. HSV-mediated expression of interleukin-4 in dorsal root ganglion neurons reduces neuropathic pain. Mol. Pain2, 6 (2006).
  • Tu H, Juelich T, Smith EM et al. Evidence for endogenous interleukin-10 during nociception. J. Neuroimmunol.139(1–2), 145–149 (2003).
  • Wagner R, Janjigian M, Myers RR. Anti-inflammatory interleukin-10 therapy in CCI neuropathy decreases thermal hyperalgesia, macrophage recruitment, and endoneurial TNF-α expression. Pain74(1), 35–42 (1998).
  • Poole S, Cunha FQ, Selkirk S, Lorenzetti BB, Ferreira SH. Cytokine-mediated inflammatory hyperalgesia limited by interleukin-10. Br. J. Pharmacol.115(4), 684–688 (1995).
  • Yao MZ, Gu JF, Wang JH et al. Interleukin-2 gene therapy of chronic neuropathic pain. Neuroscience112(2), 409–416 (2002).
  • Yao MZ, Gu JF, Wang JH et al. Adenovirus-mediated interleukin-2 gene therapy of nociception. Gene Ther.10(16), 1392–1399 (2003).
  • Ledeboer A, Wierinckx A, Bol JG et al. Regional and temporal expression patterns of interleukin-10, interleukin-10 receptor and adhesion molecules in the rat spinal cord during chronic relapsing EAE. J. Neuroimmunol.136(1–2), 94–103 (2003).
  • Milligan ED, Langer SJ, Sloane EM et al. Controlling pathological pain by adenovirally driven spinal production of the anti-inflammatory cytokine, interleukin-10. Eur. J. Neurosci.21(8), 2136–2148 (2005).
  • Milligan ED, Sloane EM, Langer SJ et al. Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10. Mol. Pain1(1), 9 (2005).
  • Svensson CI, Schäfers M, Jones TL, Powell H, Sorkin LS. Spinal blockade of TNF blocks spinal nerve ligation-induced increases in spinal P-p38. Neurosci. Lett.379(3), 209–213 (2005).
  • Jin SX, Zhuang ZY, Woolf CJ, Ji RR. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J. Neurosci.23(10), 4017–4022 (2003).
  • Xu M, Bruchas MR, Ippolito DL, Gendron L, Chavkin C. Sciatic nerve ligation-induced proliferation of spinal cord astrocytes is mediated by kappa opioid activation of p38 mitogen-activated protein kinase. J. Neurosci.27(10), 2570–2581 (2007).
  • Sarno EN, Grau GE, Vieira LM, Nery JA. Serum levels of tumour necrosis factor-α and interleukin-1β during leprosy reactional states. Clin. Exp. Immunol.84(1), 103–108 (1991).
  • Barnes PF, Chatterjee D, Brennan PJ, Rea TH, Modlin RL. Tumor necrosis factor production in patients with leprosy. Infect. Immun.60(4), 1441–1446 (1992).
  • Apfel SC, Zochodne DW. Thalidomide neuropathy: too much or too long? Neurology62(12), 2158–2159 (2004).
  • Faber WR, Jensema AJ, Goldschmidt WF. Treatment of recurrent erythema nodosum leprosum with infliximab. N. Engl. J. Med.355(7), 739 (2006).
  • Empl M, Renaud S, Erne B et al. TNF-α expression in painful and nonpainful neuropathies. Neurology56(10), 1371–1377 (2001).
  • Lindenlaub T, Sommer C. Cytokines in sural nerve biopsies from inflammatory and non-inflammatory neuropathies. Acta Neuropathol. (Berl)105(6), 593–602 (2003).
  • Üçeyler N, Rogausch JP, Toyka KV, Sommer C. Differential expression of cytokines in painful and painless neuropathies. Neurology69(1), 42–49 (2007).
  • van Doorn PA, Ruts L. Treatment of chronic inflammatory demyelinating polyneuropathy. Curr. Opin. Neurol.17(5), 607–613 (2004).
  • Ching DW, McClintock A, Beswick F. Successful treatment with low-dose thalidomide in a patient with both Behcet’s disease and complex regional pain syndrome type I: case report. J. Clin. Rheumatol.9(2), 96–98 (2003).
  • Huygen FJ, Niehof S, Zijlstra FJ, van Hagen PM, van Daele PL. Successful treatment of CRPS 1 with anti-TNF. J. Pain Symptom Manage.27(2), 101–103 (2004).
  • Munnikes RJ, Muis C, Boersma M et al. Intermediate stage complex regional pain syndrome type 1 is unrelated to proinflammatory cytokines. Mediators Inflamm.2005(6), 366–372 (2005).
  • Maihöfner C, Handwerker HO, Neundorfer B, Birklein F. Mechanical hyperalgesia in complex regional pain syndrome: a role for TNF-α? Neurology65(2), 311–313 (2005).
  • Kotani N, Kudo R, Sakurai Y et al. Cerebrospinal fluid interleukin 8 concentrations and the subsequent development of postherpetic neuralgia. Am. J. Med.116(5), 318–324 (2004).
  • Rotty J, Heinzerling L, Schurmann D, Suttorp N. Interleukin-2: a potential treatment option for postherpetic neuralgia? Clin. Infect. Dis.43(12), E109–E110 (2006).
  • Ahn SH, Cho YW, Ahn MW et al. mRNA expression of cytokines and chemokines in herniated lumbar intervertebral discs. Spine27(9), 911–917 (2002).
  • Brisby H, Olmarker K, Larsson K, Nutu M, Rydevik B. Proinflammatory cytokines in cerebrospinal fluid and serum in patients with disc herniation and sciatica. Eur. Spine J.11(1), 62–66 (2002).
  • Burke JG, Watson RW, McCormack D et al. Intervertebral discs which cause low back pain secrete high levels of proinflammatory mediators. J. Bone Joint Surg. Br.84(2), 196–201 (2002).
  • Tobinick EL, Britschgi-Davoodifar S. Perispinal TNF-α inhibition for discogenic pain. Swiss Med. Wkly133(11–12), 170–177 (2003).
  • Korhonen T, Karppinen J, Paimela L et al. The treatment of disc-herniation-induced sciatica with infliximab: one-year follow-up results of FIRST II, a randomized controlled trial. Spine31(24), 2759–2766 (2006).
  • Genevay S, Guerne PA, Gabay C. Efficacy of tumor necrosis factor-α blockade for severe sciatica? Rev. Med. Suisse Romande124(9), 543–545 (2004).
  • Gorman JD, Sack KE, Davis JC Jr. Treatment of ankylosing spondylitis by inhibition of tumor necrosis factor α. N. Engl. J. Med.346(18), 1349–1356 (2002).
  • Karppinen J, Korhonen T, Malmivaara A et al. Tumor necrosis factor-α monoclonal antibody, infliximab, used to manage severe sciatica. Spine28(8), 750–753; discussion 753–754 (2003).
  • Mansfield JC, Parkes M, Hawthorne AB et al. A randomized, double-blind, placebo-controlled trial of lenalidomide in the treatment of moderately severe active Crohn’s disease. Aliment Pharmacol. Ther.26(3), 421–430 (2007).
  • Sweitzer SM, DeLeo JA. The active metabolite of leflunomide, an immunosuppressive agent, reduces mechanical sensitivity in a rat mononeuropathy model. J. Pain3(5), 360–368 (2002).
  • Watkins LR, Maier SF. Glia: a novel drug discovery target for clinical pain. Nat. Rev. Drug Discov.2(12), 973–985 (2003).
  • Ledeboer A, Hutchinson MR, Watkins LR, Johnson KW. Ibudilast (AV-411). A new class therapeutic candidate for neuropathic pain and opioid withdrawal syndromes. Expert Opin. Investig. Drugs16(7), 935–950 (2007).
  • Scheinfeld N. A comprehensive review and evaluation of the side effects of the tumor necrosis factor-α blockers etanercept, infliximab and adalimumab. J. Dermatol. Treat.15(5), 280–294 (2004).
  • Goss JR, Goins WF, Glorioso JC. Gene therapy applications for the treatment of neuropathic pain. Expert Rev. Neurotherapeutics7(5), 487–506 (2007).
  • Ferreira SH, Cunha FQ, Lorenzetti BB et al. Role of lipocortin-1 in the anti-hyperalgesic actions of dexamethasone. Br. J. Pharmacol.121(5), 883–888 (1997).
  • Sommer C, Schmidt C, George A, Toyka KV. A metalloprotease-inhibitor reduces pain associated behavior in mice with experimental neuropathy. Neurosci. Lett.237(1), 45–48 (1997).
  • Ribeiro RA, Vale ML, Ferreira SH, Cunha FQ. Analgesic effect of thalidomide on inflammatory pain. Eur. J. Pharmacol.391(1–2), 97–103 (2000).
  • Sommer C, Marziniak M, Myers RR. The effect of thalidomide treatment on vascular pathology and hyperalgesia caused by chronic constriction injury of rat nerve. Pain74(1), 83–91 (1998).
  • Murata Y, Olmarker K, Takahashi I, Takahashi K, Rydevik B. Effects of selective tumor necrosis factor-α inhibition to pain-behavioral changes caused by nucleus pulposus-induced damage to the spinal nerve in rats. Neurosci. Lett.382(1–2), 148–152 (2005).
  • Ghivizzani SC, Lechman ER, Kang R et al. Direct adenovirus-mediated gene transfer of interleukin 1 and tumor necrosis factor α soluble receptors to rabbit knees with experimental arthritis has local and distal anti-arthritic effects. Proc. Natl Acad. Sci. USA95(8), 4613–4618 (1998).
  • Vale ML, Marques JB, Moreira CA et al. Antinociceptive effects of interleukin-4, -10, and -13 on the writhing response in mice and zymosan-induced knee joint incapacitation in rats. J. Pharmacol. Exp. Ther.304(1), 102–108 (2003).
  • Lubberts E, Joosten LA, Chabaud M et al. IL-4 gene therapy for collagen arthritis suppresses synovial IL-17 and osteoprotegerin ligand and prevents bone erosion. J. Clin. Invest.105(12), 1697–1710 (2000).
  • Milligan ED, Sloane EM, Langer SJ et al. Repeated intrathecal injections of plasmid DNA encoding interleukin-10 produce prolonged reversal of neuropathic pain. Pain126(1–3), 294–308 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.