184
Views
24
CrossRef citations to date
0
Altmetric
Review

New advances in the rehabilitation of CNS diseases applying rTMS

&
Pages 165-177 | Published online: 09 Jan 2014

References

  • Duncan PW, Horner RD, Reker DM. Adherence to post acute rehabilitation guidelines is associated with functional recovery in stroke. Stroke33(1), 167–177 (2002).
  • Stineman M, Maislin G, Fiedler RC, Granger CV. A prediction model for functional recovery in stroke. Stroke28, 550–556 (1997).
  • Duncan PW, Goldstein LB, Matcher D, Divine GW, Feussner J. Measurement of motor recovery after stroke: outcome assessment and sample size requirements. Stroke23, 1084–1089 (1992).
  • Studenski SA, Wallace D, Duncan PW, Rymer M, Lai SM. Predicting stroke recovery: three- and six-month rates of patient-centred functional outcomes based on the Orpington prognostic scale. J. Am. Geriatr. Soc.49(3), 308–312 (2001).
  • Barker AT, Jalinous R, Freeston H. Non-invasive stimulation of the human motor cortex. Lancet11, 1106–1107 (1985).
  • Barker AT. The history and basic principles of magnetic nerve stimulation. In: Transcranial Magnetic Stimulation. Paulus W, Hallett M, Rossini PM, Rothwell JC (Eds). Elsevier, Amsterdam, The Netherlands, 3–29 (1999).
  • Ferrarelli F, Haraldsson HM, Branhart TE et al. A [17F]-fluoromethane PET/TMS study of effective connectivity. Brain Res. Bull.64, 103–113 (2004).
  • Rossini PM, Rossi S. Clinical applications of motor evoked potentials. Electroencephalogr. Clin. Neurophysiol.106, 180–194 (1998).
  • Pascual-Leone A, Cohen LG, Brasil-Neto JP, Hallett M. Non-invasive differentiation of motor cortical representation of hand muscles by mapping of optimal current directions. Electroencephalogr. Clin. Neurophysiol.93, 42–48 (1994).
  • Kujirai T, Caramia MD, Rothwell JC. Corticocortical inhibition in human motor cortex. J. Physiol.471, 501–519 (1993).
  • Di Lazzaro V, Olivero A, Meglio M et al. Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin. Neurophysiol.111, 794–799 (2000).
  • Chen R. Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp. Brain Res.154, 1–10 (2004).
  • Chollet F, DiPiero V, Wise RJS, Brooks DJ, Dolan RJ, Frackowiak RSJ. The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann. Neurol.29, 63–71 (1991).
  • Ward NS, Brown MM, Thompson AJ, Frackowiak RSJ. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain126, 2476–2496 (2003).
  • Foltys H, Krings T, Meister IG et al. Motor representation in patients rapidly recovering after stroke; a functional magnetic resonance imaging and transcranial magnetic stimulation study. Clin. Neurophysiol.114, 2404–2415 (2003).
  • Ward NS, Brown MM, Thompson AJ, Frackowiak RSJ. The influence of time after stroke on brain activations during a motor task. Ann. Neurol.55, 829–834 (2004).
  • Classen J, Schnitzler A, Binkofski F et al. The motor syndrome associated with exaggerated inhibition with the primary motor cortex of patients with hemiparetic stroke. Brain120, 605–619 (1997).
  • von Giesen HJ, Roick H, Benecke R. Inhibitory action of motor cortex following unilateral brain lesions as studied by magnetic brain stimulation. Exp. Brain Res.99, 84–96 (1994).
  • Manganotti P, Patuzzo S, Cortese F, Palermo A, Smania N, Fiaschi A. Motor disinhibition in affected and unaffected hemisphere in the early period of recovery after stroke. Clin. Neurophysiol.113, 936–943 (2002).
  • Liepert J, Restemeyer C, Kucinski T, Zittel S, Weiller C. Motor strokes: the lesion location determines motor excitability changes. Stroke36, 2648–2653 (2005).
  • Bütefisch CM, Netz J, Wessling M, Seitz RJ, Hömberg V. Remote changes in cortical excitability after stroke. Brain126, 470–481 (2003).
  • Liepert J, Hamzei F, Weiler C. Motor cortex disinhibition of the unaffected hemisphere after acute stroke. Muscle Nerve23, 1761–1763 (2000).
  • Shimizu T, Hosaki A, Hino T et al. Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain125, 1896–1907 (2002).
  • Gangitano M, Valero-Cabre A, Tormos JM, Mottaghy M, Romero J, Pascual-Leone A. Modulation of input-output curves by low and high frequency repetitive transcranial magnetic stimulation of the motor cortex. Clin. Neurophysiol.113, 1249–1257 (2002).
  • Traversa R, Cicinelli P, Bassi A, Rossini PM, Bernardi G. Mapping of motor cortical reorganization after stroke. Stroke28, 110–117 (1997).
  • Trompetto C, Assini A, Buccolieri A, Archese R, Abbruzzese G. Motor recovery following stroke: a transcranial magnetic stimulation study. Clin. Neurophysiol.111, 1860–1867 (2000).
  • Cicinelli P, Traversa R, Rossini PM. Post-stroke reorganization of brain motor output to the hand: a 2–4 month follow-up with focal magnetic transcranial stimulation. Electroencephalogr. Clin. Neurophysiol.105, 438–450 (1997).
  • Delvaux V, Alagona G, Gerard P, Pasqua VD, Pennisi G, Noordhout AM. Post-stroke reorganization of hand motor area: a 1–year prospective follow-up with focal transcranial magnetic stimulation. Clin. Neurophysiol.114, 1217–1225 (2003).
  • Rossini PM, Caltagirone C, Castriota-Scanderberg A et al. Hand motor cortical area reorganization in stroke: a study with fMRI, MEG and TCS maps. NeuroReport2141–2146 (1998).
  • Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment –induced cortical reorganization after stroke in humans. Stroke31, 1210–1216 (2000).
  • Byrnes ML, Thickbroom GW, Phillips BA, Mastaglia FL. Long-term changes in motor cortical organisation after recovery from subcortical stroke. Brain Res.889, 278–287 (2001).
  • Fridman EA, Hanakawa T, Chung M et al. Reorganization of the human ipsilesional premotor cortex after stroke. Brain127, 747–758 (2004).
  • Kim YH, Jang SH, Byun WM, An BS, Lee KH, Ahn SH. Ipsilateral motor pathway confirmed by combined brain mapping of a patient with hemiparetic stroke: a case report. Arch. Phys. Med. Rehabil.85, 1351–1353 (2004).
  • Netz J, Lammers T, Homberg V. Reorganization of motor output in the non-affected hemisphere after stroke. Brain120(Pt 9), 1579–1586 (1997).
  • Caramia MD, Palmiery MG, Giacomini P, Iani C, Dally L, Silvestrini M. Ipsilateral activation of the unaffected motor cortex in patients with hemiparetic srtoke. Clin. Neurophysiol.111, 1990–1996 (2000).
  • Werhahn KJ, Conforro AB, Kadom N, Hallett M, Cohen LG. Contribution of the ipsilateral motor cortex to recovery after chronic stroke. Ann. Neurol.54, 464–472 (2003).
  • Carr LJ, Harrison LM, Evans AL, Stephens JA. Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain116, 1223–1247 (1993).
  • Eyre JA, Taylor JP, Villagra F, Smith M, Miller S. Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology57, 1543–1554 (2001).
  • Friedman EA, Hanakawa T, Chung M, Hummel F, Leiguarda RC, Cohen LG. Reorganization of the human ipsilesional premotor cortex after stroke. Brain127(Pt 4), 747–758 (2004).
  • Johansen-Berg H, Rushworth MF, Bogdanovic D, Kischka U, Wimalaratna S, Matthews PM. The role of ipsilateral premotor cortex in hand movement after stroke. Proc. Natl Acad. Sci. USA99, 14518–14523, (2002).
  • Nardone R, Tezzon F. Inhibitory and excitatory circuits of cerebral cortex after ischaemic stroke: prognostic value of the transcranial magnetic stimulation. Electromyogr. Clin. Neurophysiol.42(3), 131–136 (2002).
  • Talelli P, Greenwood RJ, Rothwell JC. Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clin. Neurophysiol.117, 1641–1659 (2006).
  • Carel C, Loubinoux I, Boulanouar K. Neuroral substrate for the effects of passive training on sensorimotor representation: a study with functional magnetic resonance imaging in healthy subjects. J. Cereb. Blood Flow Metab.20, 478–484 (2000).
  • Lewis GN, Byblow WD. The effects of repetitive proprioceptive stimulation on corticomotor representation in intact and hemiplegic individuals. Clin. Neurophysiol.115, 765–773 (2004).
  • Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller G. Treatment-induced cortical reorganization after stroke in humans. Stroke6, 1210–1216 (2000).
  • Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG. Motor learning elicited by voluntary drive. Brain126, 866–872 (2003).
  • Papathanassiou I, Filipovic SR, Whurr R, Jahanshahi M. Plasticity of motor cortex excitability induced by rehabilitation therapy for writing. Neurology61, 977–980 (2003).
  • Taub E, Miller NE, Novack TA et al. Technique to improve chronic motor deficit after stroke. Arch. Phys. Med. Rehabil.74, 347–354 (1993).
  • Wittenberg GF, Chen R, Ishii K et al. Constraint-induced therapy in stroke: magnetic-stimulation motor maps and cerebral activation. Neurorehabil. Neural Repair17(1), 48–57 (2003).
  • Pascual-Leone A, Grafman J, Hallett M. Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science263, 1287–1289 (1994).
  • Takeuchi N, Chuma T, Matsuo Y, Watanabe I, Ikoma K. Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke36, 2681–2686 (2005).
  • Mansur CG, Fregni F, Boggio PS et al. A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology64, 1802–1804 (2005).
  • Fregni F, Boggio PS, Valle AC et al. A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke37, 2115–2122 (2006).
  • Kobayashi M, Hutchinson S, Théoret H, Schlaug G, Pascual-Leone A. Repetitive TMS of the motor cortex improves ipsilateral sequential simple finger movements. Neurology62, 91–98 (2004).
  • Kim YH, You SH, Ko MH et al. Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke37, 1471–1476 (2006).
  • Khedr EM, Ahmed MA, Fathy N, Rothwell JC. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology65, 466–468 (2005).
  • Boggio PS, Alonso-Alonso M, Mansur CG et al. Hand function improvement with low-frequency repetitive transcranial magnetic stimulation of the unaffected hemisphere in a severe case of stroke. Am. J. Phys. Med. Rehabil.85(11), 927–930 (2006).
  • Lee L, Siebner HR,Rowe JB et al. Acute remapping with the motor system induced low-frequency repetitive transcranial magnetic stimulation. J. Neurosci.23(12), 5308–5318 (2003).
  • Brighina F, Bisiach E, Oliveri M et al. 1 Hz repetitive transcranial magnetic stimulation of the unaffected hemisphere ameliorates contralesional visuospatial neglect in humans. Neurosci. Lett.336, 131–133 (2003).
  • Shindo K, Sugiyama K, Huabao L, Nishijima K, Kondo T, Izumi S. Long-term effect of low-frequency repetitive transcranial magnetic stimulation over the unaffected posterior parietal cortex in patients with unilateral spatial neglect. J. Rehabil. Med.38(1), 65–67 (2006).
  • Czopf J. Über die rolle der nicht dominanten Hemisphäre in der Restitution der Sprache der Aphasischen. Arch. Psychiat. Nervenkr.216, 162–171 (1972).
  • Meister IG, Sparing R, Foltys H et al. Functional connectivity between cortical hand motor and language areas during recovery from aphasia. J. Neurol. Sci.247(2), 165–168 (2006).
  • Saur D, Lange R, Baumgaertner A. Dynamics of language reorganization after stroke. Brain129(Pt 6) 1371–1384 (2006).
  • Naeser MA, Martin PI, Nicholas M et al. Improved naming after TMS treatments in a chronic, global aphasia patient-case-report. Neurocase11(3), 182–193 (2005).
  • Naeser MA, Martin PI, Nicholas M et al. Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: an open-protocol study. Brain Lang.93, 95–105 (2005).
  • Thomas SL, Gorassini MA. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. J. Neurophysiol.94, 2844–2855 (2005)
  • Nielsen JF, Sinkjaer T, Jakobsen J. Treatment of spasticity with repetitive magnetic stimulation; a double-blind placebo-controlled study. Multiple Sclerosis2, 227–232 (1996).
  • Poirrier A, Nyssen Y, Scholtes F et al. Repetitive transcranial magnetic stimulation improves open filed locomotor recovery after low but not high thoracic spinal cord compression-injury in adult rats. J. Neurosci. Res.75, 253–261 (2004).
  • Grafman J, Pascual-Leone A, Always D, Nichelli P, Gomez-Tortosa E, Hallett M. Induction of a recall deficit by rapid-rate transcranial magnetic stimulation. NeuroReport5, 1157–1160 (1994).
  • Mottaghy FM, Krause BJ, Kemna LJ et al. Modulation of the neuronal circuitry subserving working memory in healthy human subjects by repetitive transcranial magnetic stimulation. Neurosci. Lett.280, 167–170 (2000).
  • Mottaghy FM, Pascual-Leone A, Kemna LJ et al. Modulation of a brain-behaviour relationship in verbal working memory by rTMS. Cognitive Brain Res.15, 241–249 (2003).
  • Moser D, Jorge RE, Manes F, Paradise S, Benjamin ML, Robinson RG. Improved executive functioning following repetitive transcranial magnetic stimulation. Neurology58, 1288–1290 (2002).
  • Rektorova I, Megova S, Bares M, Rector I. Cognitive functioning after repetitive transcranial magnetic stimulation in patients with cerebrovascular diseases without dementia: a pilot study of seven patients. J. Neurol. Sci.229–230, 157–161 (2005).
  • Skrdlantová L, Horácek J, Dockery C et al. The influence of low-frequency left prefrontal repetitive transcranial magnetic stimulation on memory for words but not for faces. Physiol. Res.54, 123–128 (2005).
  • Boroojerdi B, Phipps M, Kopylev L, Wharton CM, Cohen LG, Grafman J. Enhancing analogical reasoning with rTMS over the left prefrontal cortex. Neurology56, 526–528 (2001).
  • Klimesch W, Sauseng P, Gerloff C. Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. Eur. J. Neurosci.17, 1129–1133 (2003).
  • Evers S, Böckermann I, Nyhuis PW. The impact of transcranial magnetic stimulation on cognitive processing: an event-related potential study. NeuroReport12, 2915–2918 (2001).
  • Jahanshabi M, Rothwell J. Transcranial magnetic stimulation studies of cognition: an emerging field. Exp. Brain Res.131, 1–9 (2000).
  • Robertson EM, Théoret H, Pascual-Leone A. Studies in cognition: the problems solved and created by transcranial magnetic stimulation. J. Cogn. Neurosci.15(7), 948–960 (2003).
  • Rossi S, Rossini PM. TMS in cognitive plasticity and the potential for rehabilitation. Trends Cogn. Sci.8, 273–279 (2004).
  • Floel A, Cohen LG. Contribution of non-invasive cortical stimulation to the study of memory functions. Brain Res. Rev. (2006) [Epub ahead of print].
  • Pascual-Leone A, Valls-Sol J, Brasil-Neto JP, Cohen LG, Hallett M. Akinesia in Parkinson’s disease. I. Shortening of simple reaction time with focal, single-pulse transcranial magnetic stimulation. Neurology44, 884–891 (1994).
  • Málly J, Stone TW. Lasting improvement in parkinsonian symptoms after repetitive transcranial magnetic stimulation. Med. Sci. Res.26, 521–523 (1998).
  • Málly J, Stone TW. Improvement in parkinsonian symptoms after repetitive transcranial magnetic stimulation. J. Neurol. Sci.162, 179–184 (1999).
  • Málly J, Stone TW. Therapeutic and “dose-dependent” effect of repetitive microelectroshock induced by transcranial magnetic stimulation in Parkinson’s disease. J. Neurosci. Res.57, 935–940 (1999).
  • Khedr EM, Farweez HM, Islam H. Therapeutic effect of repetitive transcranial magnetic stimulation on motor function in Parkinson’s disease patients. Eur. J. Neurol.10, 125–133 (2003).
  • Lomarev MP, Kanchana S, Bara-Jimenez W, Iyer M, Wassermann EM, Hallett M. Placebo-controlled study of rTMS for the treatment of Parkinson’s disease. Mov. Disord.21, 325–331 (2006).
  • Khedr EM, Rothwell JC, Shawky OA, Ahmed MA, Hamdy A. Effect of daily repetitive transcranial magnetic stimulation on motor performance in Parkinson’s disease. Mov. Disord.21(9), 1311–1316 (2006).
  • Málly J, Farkas R, Tóthfalusi L, Stone TW. Long-term follow-up study with repetitive transcranial magnetic stimulation (rTMS) in Parkinson’s disease. Brain Res. Bull.64, 259–263 (2004).
  • Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines. Electroenceph. Clin. Neurophysiol.108(1), 1–16 (1998).
  • Chen R, Classen J, Gerloff C et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology48, 1398–1403 (1997).
  • Muellbacher W, Ziemann U, Boroojerdi B, Hallett M. Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behaviour. Clin. Neurophysiol.111, 1002–1007 (2000).
  • Tsuji T, Rothwell JC. Long lasting effects of rTMS and associated peripheral sensory input on MEPs, SEPs and transcrortical reflex excitability in humans. J. Physiol.540(Pt 1), 367–376 (2002).
  • Pascual-Leone A, Valls-Sole J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain117, 847–858 (1994).
  • Maeda F, Keman JP, Tormos JM, Topka H, Pascual-Leone A. Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin. Neurophysiol.111, 800–805 (2000).
  • Fitzgerald PB, Brown TL, Daskalakis ZJ, Chen R, Kulkarni J. Intensity-dependent effects of 1 Hz rTMS on human corticospinal excitability. Clin. Neurophysiol.113, 1136–1141 (2002).
  • Lang N, Harms J, Weyh T et al. Stimulus intensity and coil characteristics influence the efficacy of rTMS to suppress cortical excitability. Clin. Neurophysiol.117(10), 2292–2302 (2006).
  • Nahas Z, Lomarev M, Roberts DR et al. Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI. Biol. Psychiatry50, 712–720 (2001).
  • Ogiue-Ikeda M, Kawato S, Ueno S. The effect of repetitive transcranial magnetic stimulation on long-term potentiation in rat hippocampus depends on stimulus intensity. Brain Res.993, 222–226 (2003).
  • Hedges DW, Salyer DL, Higginbotham BJ et al. Transcranial magnetic stimulation (TMS) effects on testosterone, prolactin and corticosteron in adult male rats. Biol. Psychiatry51, 417–421 (2002).
  • Keck ME, Sillaber I, Ebner K et al. Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. Eur. J. Nerosci.12, 3713–3720 (2000).
  • Post A, Keck ME. Transcranial magnetic stimulation as a therapeutic tool in psychiatry: what do we know about the neurobiological mechanisms? J. Psychiatry Res.35, 193–215 (2001).
  • Ohnishi T, Hayashi T, Okabe S et al. Endogenous dopamine release induced by repetitive transcranial magnetic stimulation over the primary motor cortex: an [11C] raclopride positron emission tomography study in anesthetized macaque monkeys. Biol. Psychiatry55, 484–489 (2004).
  • Strafella AP, Paus T, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J. Nerosci.21, 1–4 (2001).
  • Post A, Müller MB, Engelmann M, Keck ME. Repetitive transcranial magnetic stimulation in rats: evidence for a neuroprotective effect in vitro and in vivo. Eur. J. Neurosci.11(9), 3247–3254 (1999).
  • Arrias-Carrion O, Verdugo-Diaz L, Feria-Velasco A et al. Neurogenesis in the subventricular zone following transcranial magnetic field stimulation and nigrostriatal lesions. J. Neurosci. Res.78, 16–28 (2004).
  • Hömberg V, Netz J. Generalized seizures induced by transcranial magnetic stimulation of motor cortex (letter). Lancet2, 1223 (1988).
  • Wassermann EM. Side effects of repetitive transcranial magnetic stimulation. Depress. Anxiety12, 124–129 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.