202
Views
18
CrossRef citations to date
0
Altmetric
Perspective

Gray and normal-appearing white matter in multiple sclerosis: an MRI perspective

&
Pages 271-279 | Published online: 09 Jan 2014

References

  • Ludwin SK. The pathogenesis of multiple sclerosis: relating human pathology to experimental studies. J. Neuropathol. Exp. Neurol.65, 305–318 (2006).
  • Prat A, Antel J. Pathogenesis of multiple sclerosis. Curr. Opin. Neurol.18, 225–230 (2005).
  • Barkhof F, Filippi M, Miller DH et al. Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain120, 2059–2069 (1997).
  • Barkhof F. The clinico-radiological paradox in multiple sclerosis revisited. Curr. Opin. Neurol.15, 239–245 (2002).
  • Kutzelnigg A, Lucchinetti CF, Stadelmann C et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain128, 2705–2712 (2005).
  • Kutzelnigg A, Lassmann H. Cortical demyelination in multiple sclerosis: a substrate for cognitive deficits? J. Neurol. Sci.245, 123–126 (2006).
  • Tofts PS (Ed.).Quantitative MRI of the Brain: Measuring Changes Caused by Disease. John Wiley & Sons, Inc., IN, USA (2003).
  • van Waesberghe JH, Castelijns JA, Scheltens P et al. Comparison of four potential MR parameters for severe tissue destruction in multiple sclerosis lesions. Magn. Reson. Imaging15, 155–162 (1997).
  • van Waesberghe JH, Kamphorst W, De Groot CJ et al. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann. Neurol.46, 747–754 (1999).
  • Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann. Neurol.56, 407–415 (2004).
  • Filippi M, Campi A, Dousset V et al. A magnetization transfer imaging study of normal-appearing white matter in multiple sclerosis. Neurology45, 478–482 (1995).
  • Loevner LA, Grossman RI, Cohen JA, Lexa FJ, Kessler D, Kolson DL. Microscopic disease in normal-appearing white matter on conventional MR images in patients with multiple sclerosis: assessment with magnetization-transfer measurements. Radiology196, 511–515 (1995).
  • Catalaa I, Grossman RI, Kolson DL et al. Multiple sclerosis: magnetization transfer histogram analysis of segmented normal-appearing white matter. Radiology216, 351–355 (2000).
  • Cercignani M, Bozzali M, Iannucci G, Comi G, Filippi M. Magnetisation transfer ratio and mean diffusivity of normal appearing white and grey matter from patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry70, 311–317 (2001).
  • Dehmeshki J, Chard DT, Leary SM et al. The normal appearing grey matter in primary progressive multiple sclerosis: a magnetisation transfer imaging study. J. Neurol.250, 67–74 (2003).
  • Ge Y, Grossman RI, Udupa JK, Babb JS, Mannon LJ, McGowan JC. Magnetization transfer ratio histogram analysis of normal-appearing gray matter and normal-appearing white matter in multiple sclerosis. J. Comput. Assist. Tomogr.26, 62–68 (2002).
  • Allen IV, McQuaid S, Mirakhur M, Nevin G. Pathological abnormalities in the normal-appearing white matter in multiple sclerosis. Neurol. Sci.22, 141–144 (2001).
  • Evangelou N, Esiri MM, Smith S, Palace J, Matthews PM. Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann. Neurol.47, 391–395 (2000).
  • Kornek B, Storch MK, Weissert R et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am. J. Pathol.157, 267–276 (2000).
  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med.338, 278–285 (1998).
  • Fazekas F, Ropele S, Enzinger C, Seifert T, Strasser-Fuchs S. Quantitative magnetization transfer imaging of pre-lesional white-matter changes in multiple sclerosis. Mult. Scler.8, 479–484 (2002).
  • Filippi M, Rocca MA, Martino G, Horsfield MA, Comi G. Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann. Neurol.43, 809–814 (1998).
  • Goodkin DE, Rooney WD, Sloan R et al. A serial study of new MS lesions and the white matter from which they arise. Neurology51, 1689–1697 (1998).
  • Pike GB, de Stefano N, Narayanan S et al. Multiple sclerosis: magnetization transfer MR imaging of white matter before lesion appearance on T2-weighted images. Radiology215, 824–830 (2000).
  • Henkelman RM, Huang X, Xiang QS, Stanisz GJ, Swanson SD, Bronskill MJ. Quantitative interpretation of magnetization transfer. Magn. Reson. Med.29, 759–766 (1993).
  • Pike GB. Pulsed magnetization transfer contrast in gradient echo imaging: a two-pool analytic description of signal response. Magn. Reson. Med.36, 95–103 (1996).
  • Ropele S, Strasser-Fuchs S, Augustin M et al. A comparison of magnetization transfer ratio, magnetization transfer rate, and the native relaxation time of water protons related to relapsing–remitting multiple sclerosis. AJNR Am. J. Neuroradiol.21, 1885–1891 (2000).
  • Rovaris M, Bozzali M, Iannucci G et al. Assessment of normal-appearing white and gray matter in patients with primary progressive multiple sclerosis: a diffusion-tensor magnetic resonance imaging study. Arch. Neurol.59, 1406–1412 (2002).
  • Cercignani M, Bozzali M, Iannucci G, Comi G, Filippi M. Intra-voxel and inter-voxel coherence in patients with multiple sclerosis assessed using diffusion tensor MRI. J. Neurol.249, 875–883 (2002).
  • Filippi M, Iannucci G, Cercignani M, Assunta RM, Pratesi A, Comi G. A quantitative study of water diffusion in multiple sclerosis lesions and normal-appearing white matter using echo-planar imaging. Arch. Neurol.57, 1017–1021 (2000).
  • Werring DJ, Clark CA, Barker GJ, Thompson AJ, Miller DH. Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology52, 1626–1632 (1999).
  • Ciccarelli O, Werring DJ, Wheeler-Kingshott CA et al. Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations. Neurology56, 926–933 (2001).
  • Vrenken H, Pouwels PJW, Geurts JJG et al. Altered diffusion tensor in multiple sclerosis normal-appearing brain tissue: cortical diffusion changes seem related to clinical deterioration. J. Magn. Reson. Imaging23, 628–636 (2006).
  • Griffin CM, Parker GJ, Barker GJ, Thompson AJ, Miller DH. MTR and T1 provide complementary information in MS NAWM, but not in lesions. Mult. Scler.6, 327–331 (2000).
  • Parry A, Clare S, Jenkinson M, Smith S, Palace J, Matthews PM. White matter and lesion T1 relaxation times increase in parallel and correlate with disability in multiple sclerosis. J. Neurol.249, 1279–1286 (2002).
  • Vaithianathar L, Tench CR, Morgan PS, Lin X, Blumhardt LD. White matter T(1) relaxation time histograms and cerebral atrophy in multiple sclerosis. J. Neurol. Sci.197, 45–50 (2002).
  • van Walderveen MA, van Schijndel RA, Pouwels PJW, Polman CH, Barkhof F. Multislice T1 relaxation time measurements in the brain using IR-EPI: reproducibility, normal values, and histogram analysis in patients with multiple sclerosis. J. Magn. Reson. Imaging18, 656–664 (2003).
  • Vrenken H, Geurts JJG, Knol DL et al. Whole-brain T1 mapping in multiple sclerosis: global changes of normal-appearing gray and white matter. Radiology240, 811–820 (2006).
  • Vrenken H, Rombouts SA, Pouwels PJW, Barkhof F. Voxel-based analysis of quantitative T1 maps demonstrates that multiple sclerosis acts throughout the normal-appearing white matter. AJNR Am. J. Neuroradiol.27, 868–874 (2006).
  • MacKay A, Whittall K, Adler J, Li D, Paty D, Graeb D. In vivo visualization of myelin water in brain by magnetic resonance. Magn. Reson. Med.31, 673–677 (1994).
  • MacKay A, Laule C, Vavasour I, Bjarnason T, Kolind S, Madler B. Insights into brain microstructure from the T2 distribution. Magn. Reson. Imaging24, 515–525 (2006).
  • de Stefano N, Narayanan S, Francis GS et al. Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch. Neurol.58, 65–70 (2001).
  • Fu L, Matthews PM, de Stefano N et al. Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain121, 103–113 (1998).
  • Birken DL, Oldendorf WH. N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci. Biobehav. Rev.13, 23–31 (1989).
  • Chard DT, Griffin CM, McLean MA et al. Brain metabolite changes in cortical grey and normal-appearing white matter in clinically early relapsing-remitting multiple sclerosis. Brain125, 2342–2352 (2002).
  • Leary SM, Davie CA, Parker GJ et al.1H magnetic resonance spectroscopy of normal appearing white matter in primary progressive multiple sclerosis. J. Neurol.246, 1023–1026 (1999).
  • Suhy J, Rooney WD, Goodkin DE et al.1H MRSI comparison of white matter and lesions in primary progressive and relapsing–remitting MS. Mult. Scler.6, 148–155 (2000).
  • Sarchielli P, Presciutti O, Pelliccioli GP et al. Absolute quantification of brain metabolites by proton magnetic resonance spectroscopy in normal-appearing white matter of multiple sclerosis patients. Brain122, 513–521 (1999).
  • van Walderveen MA, Barkhof F, Pouwels PJW, van Schijndel RA, Polman CH, Castelijns JA. Neuronal damage in T1-hypointense multiple sclerosis lesions demonstrated in vivo using proton magnetic resonance spectroscopy. Ann. Neurol.46, 79–87 (1999).
  • Schubert F, Seifert F, Elster C et al. Serial 1H-MRS in relapsing–remitting multiple sclerosis: effects of interferon-β therapy on absolute metabolite concentrations. MAGMA14, 213–222 (2002).
  • Helms G, Stawiarz L, Kivisakk P, Link H. Regression analysis of metabolite concentrations estimated from localized proton MR spectra of active and chronic multiple sclerosis lesions. Magn. Reson. Med.43, 102–110 (2000).
  • Vrenken H, Barkhof F, Uitdehaag BM, Castelijns JA, Polman CH, Pouwels PJW. MR spectroscopic evidence for glial increase but not for neuro-axonal damage in MS normal-appearing white matter. Magn. Reson. Med.53, 256–266 (2005).
  • Brand A, Richter-Landsberg C, Leibfritz D. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev. Neurosci.15, 289–298 (1993).
  • Evangelou N, Konz D, Esiri MM, Smith S, Palace J, Matthews PM. Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain123, 1845–1849 (2000).
  • Castriota-Scanderbeg A, Fasano F, Filippi M, Caltagirone C. T1 relaxation maps allow differentiation between pathologic tissue subsets in relapsing–remitting and secondary progressive multiple sclerosis. Mult. Scler.10, 556–561 (2004).
  • Vrenken H, Geurts JJG, Knol DL et al. Normal-appearing white matter changes vary with distance to lesions in multiple sclerosis. AJNR Am. J. Neuroradiol.27, 2005–2011 (2006).
  • Simon JH, Zhang S, Laidlaw DH et al. Identification of fibers at risk for degeneration by diffusion tractography in patients at high risk for MS after a clinically isolated syndrome. J. Magn. Reson. Imaging24, 983–988 (2006).
  • Mottershead JP, Schmierer K, Clemence M et al. High field MRI correlates of myelin content and axonal density in multiple sclerosis – a post-mortem study of the spinal cord. J. Neurol.250, 1293–1301 (2003).
  • Dawson JW. The histology of multiple sclerosis. Trans. R. Soc. Edinb. Earth Sci.50, 517–740 (1916).
  • Peterson JW, Bo L, Mork S, Chang A, Trapp BD. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol.50, 389–400 (2001).
  • Bo L, Vedeler CA, Nyland H, Trapp BD, Mork SJ. Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult. Scler.9, 323–331 (2003).
  • Bo L, Vedeler CA, Nyland HI, Trapp BD, Mork SJ. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J. Neuropathol. Exp. Neurol.62, 723–732 (2003).
  • Bo L, Geurts JJG, van der Valk P, Polman C, Barkhof F. Lack of correlation between cortical demyelination and white matter pathologic changes in multiple sclerosis. Arch. Neurol.64, 76–80 (2007).
  • Brownell B, Hughes JT. The distribution of plaques in the cerebrum in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry25, 315–320 (1962).
  • Kidd D, Barkhof F, McConnell R, Algra PR, Allen IV, Revesz T. Cortical lesions in multiple sclerosis. Brain122, 17–26 (1999).
  • Geurts JJG, Bo L, Pouwels PJW, Castelijns JA, Polman CH, Barkhof F. Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology. AJNR Am. J. Neuroradiol.26, 572–577 (2005).
  • McDonald WI, Compston A, Edan G et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol.50, 121–127 (2001).
  • Moriarty DM, Blackshaw AJ, Talbot PR et al. Memory dysfunction in multiple sclerosis corresponds to juxtacortical lesion load on fast fluid-attenuated inversion-recovery MR images. AJNR Am. J. Neuroradiol.20, 1956–1962 (1999).
  • Lazeron RH, Langdon DW, Filippi M et al. Neuropsychological impairment in multiple sclerosis patients: the role of (juxta)cortical lesion on FLAIR. Mult. Scler.6, 280–285 (2000).
  • Rovaris M, Filippi M, Minicucci L et al. Cortical/subcortical disease burden and cognitive impairment in patients with multiple sclerosis. AJNR Am. J. Neuroradiol.21, 402–408 (2000).
  • Sokic DV, Stojsavljevic N, Drulovic J et al. Seizures in multiple sclerosis. Epilepsia42, 72–79 (2001).
  • Feinstein A, Roy P, Lobaugh N, Feinstein K, O’Connor P, Black S. Structural brain abnormalities in multiple sclerosis patients with major depression. Neurology62, 586–590 (2004).
  • Dalton CM, Chard DT, Davies GR et al. Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes. Brain127, 1101–1107 (2004).
  • Benedict RH, Zivadinov R, Carone DA et al. Regional lobar atrophy predicts memory impairment in multiple sclerosis. AJNR Am. J. Neuroradiol.26, 1824–1831 (2005).
  • de Stefano N, Matthews PM, Filippi M et al. Evidence of early cortical atrophy in MS: relevance to white matter changes and disability. Neurology60, 1157–1162 (2003).
  • Chen JT, Narayanan S, Collins DL, Smith SM, Matthews PM, Arnold DL. Relating neocortical pathology to disability progression in multiple sclerosis using MRI. Neuroimage23, 1168–1175 (2004).
  • Sailer M, Fischl B, Salat D et al. Focal thinning of the cerebral cortex in multiple sclerosis. Brain126, 1734–1744 (2003).
  • Charil A, Dagher A, Lerch JP, Zijdenbos AP, Worsley KJ, Evans AC. Focal cortical atrophy in multiple sclerosis: relation to lesion load and disability. Neuroimage34(2), 509–517 (2007).
  • Bozzali M, Cercignani M, Sormani MP, Comi G, Filippi M. Quantification of brain gray matter damage in different MS phenotypes by use of diffusion tensor MR imaging. AJNR Am. J. Neuroradiol.23, 985–988 (2002).
  • Ge Y, Grossman RI, Udupa JK, Babb JS, Kolson DL, McGowan JC. Magnetization transfer ratio histogram analysis of gray matter in relapsing–remitting multiple sclerosis. AJNR Am. J. Neuroradiol.22, 470–475 (2001).
  • Geurts JJG, Reuling IE, Vrenken H et al. MR spectroscopic evidence for thalamic and hippocampal, but not cortical, damage in multiple sclerosis. Magn. Reson. Med.55, 478–483 (2006).
  • Davies GR, Ramio-Torrenta L, Hadjiprocopis A et al. Evidence for grey matter MTR abnormality in minimally disabled patients with early relapsing–remitting multiple sclerosis. J. Neurol. Neurosurg. Psychiatry75, 998–1002 (2004).
  • Rocca MA, Mezzapesa DM, Ghezzi A et al. A widespread pattern of cortical activations in patients at presentation with clinically isolated symptoms is associated with evolution to definite multiple sclerosis. AJNR Am. J. Neuroradiol.26, 1136–1139 (2005).
  • Agosta F, Rovaris M, Pagani E, Sormani MP, Comi G, Filippi M. Magnetization transfer MRI metrics predict the accumulation of disability 8 years later in patients with multiple sclerosis. Brain129, 2620–2627 (2006).
  • Rovaris M, Judica E, Gallo A et al. Grey matter damage predicts the evolution of primary progressive multiple sclerosis at 5 years. Brain129, 2628–2634 (2006).
  • Audoin B, Ibarrola D, Ranjeva JP et al. Compensatory cortical activation observed by fMRI during a cognitive task at the earliest stage of MS. Hum. Brain Mapp.20, 51–58 (2003).
  • Filippi M, Rocca MA. MRI evidence for multiple sclerosis as a diffuse disease of the central nervous system. J. Neurol.252(Suppl. 5), V16–V24 (2005).
  • Lee M, Reddy H, Johansen-Berg H et al. The motor cortex shows adaptive functional changes to brain injury from multiple sclerosis. Ann. Neurol.47, 606–613 (2000).
  • Rocca MA, Mezzapesa DM, Falini A et al. Evidence for axonal pathology and adaptive cortical reorganization in patients at presentation with clinically isolated syndromes suggestive of multiple sclerosis. Neuroimage18, 847–855 (2003).
  • Hellwig B. How the myelin picture of the human cerebral cortex can be computed from cytoarchitectural data. A bridge between von Economo and Vogt. J. Hirnforsch.34, 387–402 (1993).
  • Brink BP, Veerhuis R, Breij EC, van der Valk P, Dijkstra CD, Bo L. The pathology of multiple sclerosis is location-dependent: no significant complement activation is detected in purely cortical lesions. J. Neuropathol. Exp. Neurol.64, 147–155 (2005).
  • Geurts JJG, Pouwels PJW, Uitdehaag BM, Polman CH, Barkhof F, Castelijns JA. Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology236, 254–260 (2005).
  • Bedell BJ, Narayana PA. Implementation and evaluation of a new pulse sequence for rapid acquisition of double inversion recovery images for simultaneous suppression of white matter and CSF. J. Magn. Reson. Imaging8, 544–547 (1998).
  • Mugler JP 3rd, Bao S, Mulkern RV et al. Optimized single-slab three-dimensional spin-echo MR imaging of the brain. Radiology216, 891–899 (2000).
  • Pouwels PJW, Kuijer JP, Mugler JP III, Guttmann CR, Barkhof F. Human gray matter: feasibility of single-slab 3D double inversion-recovery high-spatial-resolution MR imaging. Radiology241, 873–879 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.