102
Views
27
CrossRef citations to date
0
Altmetric
Drug Profile

Fampridine-SR for multiple sclerosis and spinal cord injury

Pages 453-461 | Published online: 09 Jan 2014

References

  • Waxman SG. Multiple Sclerosis as a Neuronal Disease. Elsevier Academic Press, Amsterdam, The Netherlands (2005).
  • Bunge RP, Puckett WR, Becerra JL, Marcillo A, Quencer RM. Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. In: Advances in Neurology. Seil FJ (Ed.). Raven Press, NY, USA (1993).
  • Guest JD, Hiester ED, Bunge RP. Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp. Neurol.192(2), 384–393 (2005).
  • Totoiu MO,Keirstead HS. Spinal cord injury is accompanied by chronic progressive demyelination. J. Comp. Neurol.486(4), 373–383 (2005).
  • Smith KJ, Waxman SG. The conduction properties of demyelinated and remyelinated axons. In: Multiple Sclerosis as a Neuronal Disease. Waxman S (Ed.). Elsevier Academic Press, Amsterdam, The Netherlands (2005).
  • Hemmer B, Archelos JJ, Hartung HP. New concepts in the immunopathogenesis of multiple sclerosis. Nat. Rev. Neurosci.3(4), 291–301 (2002).
  • Trapp BD, Ransohoff R, Rudick R. Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr. Opin. Neurol.12(3), 295–302 (1999).
  • Tasaki I. Nervous Transmission. Charles C (Ed.). Thomas, Springfield, IL, USA (1953).
  • Blight AR. Effect of 4-aminopyridine on axonal conduction-block in chronic spinal cord injury. Brain Res. Bull.22(1), 47–52 (1989).
  • Bostock H, Sherratt RM, Sears TA. Overcoming conduction failure in demyelinated nerve fibres by prolonging action potentials. Nature274, 385–387 (1978).
  • Bowe CM, Kocsis JD, Targ EF, Waxman SG. Physiological effects of 4-aminopyridine on demyelinated mammalian motor and sensory fibers. Ann. Neurol.22(2), 264–268 (1987).
  • Sherratt RM, Bostock H, Sears TA. Effects of 4-aminopyiridine on normal and demyelinated mammalian nerve fibres. Nature283(7), 570–572 (1980).
  • Targ EF, Kocsis JD. 4-aminopyridine leads to restoration of conduction in demyelinated rat sciatic nerve. Brain Res.328, 358–361 (1985).
  • Bever CT Jr. 4-Aminopyridine: use in multiple sclerosis. CNS Drug Rev.1(2), 261–279 (1995).
  • Hayes KC. 4-Aminopyridine and spinal cord injury: a review. Rest. Neurol. Neurosci.6, 259–270 (1994).
  • Bever CT Jr, Young D, Anderson PA et al. The effects of 4-aminopyridine in multiple sclerosis patients: results of a randomized, placebo-controlled, double-blind, concentration-controlled, crossover trial. Neurology44(6), 1054–1059 (1994).
  • Bever CT Jr, Katz E, Tierney D, Johnson K. Experience with slow release 4-aminopyridine in multiple sclerosis patients: Long term tolerability and safety. J. Neuroimmunol.1(Suppl.), 58 (1995).
  • Hayes KC, Potter PJ, Hansebout RR et al. Pharmacokinetic studies of single and multiple oral doses of Fampridine-SR (sustained-release 4-aminopyridine) in patients with chronic spinal cord injury. Clin. Neuropharmacol.26(4), 185–192 (2003).
  • Compston A,Coles A. Multiple sclerosis. Lancet359(9313), 1221–1231 (2002).
  • Weinshenker BG, Bass B, Rice GP et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain112(Pt 1), 133–146 (1989).
  • Pickett GE, Campos-Benitez M, Keller JL, Duggal N. Epidemiology of traumatic spinal cord injury in Canada. Spine31(7), 799–805 (2006).
  • Wyndaele M,Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord44(9), 523–529 (2006).
  • Burks J. Interferon-β1b for multiple sclerosis. Expert Rev. Neurother.5(2), 153–164 (2005).
  • Emery E, Aldana P, Bunge MB et al. Apoptosis after traumatic human spinal cord injury. J. Neurosurg.89(6), 911–920 (1998).
  • Griffiths IR, McCulloch MC. Nerve fibres in spinal cord impact injuries. Part 1. Changes in the myelin sheath during the initial 5 weeks. J. Neurol. Sci.58(3), 335–349 (1983).
  • Gledhill RF, Harrison BM, McDonald WI. Demyelination and remyelination after acute spinal cord compression. Exp. Neurol.38(3), 472–487 (1973).
  • Harrison BM, McDonald WI. Remyelination after transient experimental compression of the spinal cord. Ann. Neurol.1(6), 542–551 (1977).
  • Salgado-Ceballos H, Guizar-Sahagun G, Feria-Velasco A et al. Spontaneous long-term remyelination after traumatic spinal cord injury in rats. Brain Res.782(1–2), 126–135 (1998).
  • Chiu SY. The roles of potassium and calcium channels in physiology and pathophysiology of axons. In: Multiple Sclerosis as a Neuronal Disease. Waxman S (Ed.). Elsevier Academic Press, Amsterdam, The Netherlands (2005).
  • Waxman SG, Kocsis JD, Stys PK. The Axon: Structure, Function and Pathophysiology. Oxford University Press, New York, USA (1995).
  • Reid G, Scholz A, Bostock H, Vogel W. Human axons contain at least five types of voltage-dependent potassium channel. J. Physiol.518(Pt 3), 681–696 (1999).
  • Judge SI, Bever CT Jr. Potassium channel blockers in multiple sclerosis: neuronal Kv channels and effects of symptomatic treatment. Pharmacol. Ther.111(1), 224–259 (2006).
  • Hille B. Ionic Channels in Excitable Membranes. Sinauer Associates, Sunderland, MA, USA (2001).
  • Stuhmer W, Ruppersberg JP, Schroter KH et al. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J.8(11), 3235–3244 (1989).
  • Bostock H, Sears TA, Sherratt RM. The effects of 4-aminopyridine and tetraethylammonium ions on normal and demyelinated mammalian nerve fibres. J. Physiol.313, 301–315 (1981).
  • Kim YI, Goldner MM, Sanders DB. Facilitatory effects of 4-aminopyridine on normal neuromuscular transmission. Muscle Nerve3(2), 105–111 (1980).
  • Lundh H. Effects of 4-aminopyridine on neuromuscular transmission. Brain Res.153, 307–318 (1978).
  • Molgo J, Lundh H, Thesleff S. Potency of 3,4-diaminopyridine and 4-aminopyridine on mammalian neuromuscular transmission and the effect of pH changes. Eur. J. Clin. Pharmacol.61, 25–34 (1980).
  • Kim YI, Goldner MM, Sanders DB. Facilitatory effects of 4-aminopyridine on neuromuscular transmission in disease states. Muscle Nerve3(2), 112–119 (1980).
  • Smith KJ, Felts PA, John GR. Effects of 4-aminopyridine on demyelinated axons, synapses and muscle tension. Brain123(Pt 1), 171–184 (2000).
  • Paskov DS, Agoston S, Bowman WC. 4-aminopyridine hydrochloride (Pymadin). New neuromuscluar blocking agents – basic and applied aspects. In: Handbook of Experimental Pharmacology. Charkavich DA (Ed.). Springer-Verlag (1986).
  • Davis FA, Stefoski D, Quandt FN. Mechanism of action of 4-aminopyridine in the symptomatic treatment of multiple sclerosis. Ann. Neurol.37(5), 684 (1995).
  • Felts PA, Smith KJ. The use of potassium channel blocking agents in the therapy of demyelinating diseases. Ann. Neurol.36(3), 454 (1994).
  • Shi R, Blight AR. Differential effects of low and high concentrations of 4-aminopyridine on axonal conduction in normal and injured spinal cord. Neuroscience77(2), 553–562 (1997).
  • Perry VH, Phil D. Inflammation and axon degeneration. In: Multiple Sclerosis as a Neuronal Disease. Waxman S (Ed.). Elsevier Academic Press, Amsterdam, The Netherlands (2005).
  • Devaux J, Beeton C, Beraud E, Crest M. Ion channels and demyelination: basis of a treatment of experimental autoimmune encephalomyelitis (EAE) by potassium channel blockers. Rev. Neurol. (Paris)160(5 Pt 2), S16–S27 (2004).
  • Judge SI, Lee JM, Bever CT Jr, Hoffman PM. Voltage-gated potassium channels in multiple sclerosis: overview and new implications for treatment of central nervous system inflammation and degeneration. J. Rehabil. Res. Dev.43(1), 111–122 (2006).
  • Wulff H, Beeton C, Chandy KG. Potassium channels as therapeutic targets for autoimmune disorders. Curr. Opin. Drug Discov. Devel.6(5), 640–647 (2003).
  • Davis FA, Stefoski D, Rush J. Orally administered 4-aminopyridine improves clinical signs in multiple sclerosis. Ann. Neurol.27(2), 186–192 (1990).
  • Stefoski D, Davis FA, Fitzsimmons WE et al. 4-Aminopyridine in multiple sclerosis: prolonged administration. Neurology41, 1344–1348 (1991).
  • Evenhuis J, Agoston S, Salt PJ et al. Pharmacokinetics of 4-aminopyridine in human volunteers: a preliminary study using a new GLC method for its estimation. Br. J. Anaesth.53, 567–570 (1981).
  • Hayes KC, Katz MA, Devane JG et al. Pharmacokinetics of an immediate-release oral formulation of Fampridine (4-aminopyridine) in normal subjects and patients with spinal cord injury. J. Clin. Pharmacol43(4), 379–385 (2003).
  • Uges DRA, Sohn YJ, Greijdanus B, Scaf AHJ, Agoston S. 4-aminopyridine kinetics. Clin. Pharmacol. Ther.31(5), 587–593 (1982).
  • Lemeignan M, Millart H, Lamiable D, Molgo J, Lechat P. Evaluation of 4-aminopyridine and 3,4-diaminopyridine penetrability into cerebrospinal fluid in anesthetized rats. Brain Res.304(1), 166–169 (1984).
  • Bever CT Jr, Young D, Tierney D et al. The pharmacokinetics and tolerability of a slow-release formulation of 4-aminopyridine in multiple sclerosis patients. Neurology45(Suppl. 4), A351 (1995).
  • Segal JL, Hayes KC, Brunnemann SR et al. Absorption characteristics of sustained-release 4-aminopyridine (Fampridine SR) in patients with chronic spinal cord injury. J. Clin. Pharmacol.40(4), 402–409 (2000).
  • Hayes KC, Potter PJ, Hsieh JT et al. Pharmacokinetics and safety of multiple oral doses of sustained-release 4-aminopyridine (Fampridine-SR) in subjects with chronic, incomplete spinal cord injury. Arch. Phys. Med. Rehabil.85, 29–34 (2004).
  • van Diemen HA, Polman CH, van Dongen MM et al. 4-Aminopyridine induces functional improvement in multiple sclerosis patients: a neurophysiological study. J. Neurol. Sci.116(2), 220–226 (1993).
  • Johnson NC,Morgan MW. An unusual case of 4-aminopyridine toxicity. J. Emerg. Med.30(2), 175–177 (2006).
  • Smeets JW, Kunst MW. Severe poisoning by 4-aminopyridine in a body builder. Ned. Tijdschr. Geneeskd.139(51), 2667–2669 (1995).
  • Spyker DA, Lynch C, Shabanowitz J, Sinn JA. Poisoning with 4-aminopyridine: report of three cases. Clin. Toxicol.16(4), 487–497 (1980).
  • Velez L, Shirazi F, Goto C, Shepherd G, Roth BA. Opisthotonic posturing with neuromuscular irritability attributable to 4-aminopyridine ingestion by a healthy pediatric patient. Pediatrics111(1), E82–E84 (2003).
  • Stork CM, Hoffman RS. Characterization of 4-aminopyridine in overdose. J. Toxicol. Clin. Toxicol.32(5), 583–587 (1994).
  • Pickett TA, Enns R. Atypical presentation of 4-aminopyridine overdose. Ann. Emerg. Med.27(3), 382–385 (1996).
  • Goodman AD, Cohen J, Vollmer T et al. Phase 2 trial of Fampridine-SR in multiple sclerosis. Mult. Scler.10(Suppl. 2), P695 (2004).
  • Schwid SR, Petrie MD, McDermott MP et al. Quantitative assessment of sustained release 4-aminopyridine for symptomatic treatment of multiple sclerosis. Neurology48, 817–821 (1997).
  • Hayes KC. The use of 4-aminopyridine (Fampridine) in demyelinating disease. CNS Drug Rev.10(4), 295–316 (2004).
  • Goodman AD, Blight A, Cohen JA et al. Placebo-controlled double-blinded dose ranging study of Fampridine-SR in multiple sclerosis. Neurology60(Suppl. 1), A167 (2003).
  • Potter PJ, Hayes KC, Segal JL et al. Randomized double-blind crossover trial of Fampridine-SR (sustained release 4-aminopyridine) in patients with incomplete spinal cord injury. J. Neurotrauma15(10), 837–849 (1998).
  • Ditunno JF Jr, Graziani V, Katz MA, Blight AR, Group S-S. Double-blind, placebo-controlled, dose-escalating study evaluating the safety and efficacy of oral doses of Fampridine-SR (sustained-release 4-aminopyridine) in patinets with chronic spinal cord injury. J. Spinal Cord. Med.25, S1–S38 (2002).
  • Cardenas DD, Ditunno J, Graziani V et al. Phase 2 trial of sustained-release Fampridine in chronic spinal cord injury. Spinal Cord45(2), 158–168 (2007).
  • McBride JM, Smith DT, Byrn SR, Borgens RB, Shi R. Dose responses of three 4-aminopyridine derivatives on axonal conduction in spinal cord trauma. Eur. J. Pharm. Sci.27(2–3), 237–242 (2006).
  • Smith DT, Shi R, Borgens RB et al. Development of novel 4-aminopyridine derivatives as potential treatments for neurological injury and disease. Eur. J. Med. Chem.40(9), 908–917 (2005).
  • Meythaler JM, Guin-Renfroe S, Johnson A, Brunner RM. The safety and efficacy of 4-aminopyridine for motor weakness due to Guillain–Barré Syndrome: a double-blind cross-over Phase I drug trial. Arch. Phys. Med. Rehabil.81, 1293 (2000).
  • Glasauer S, Kalla R, Buttner U, Strupp M, Brandt T. 4-aminopyridine restores visual ocular motor function in upbeat nystagmus. J. Neurol. Neurosurg. Psychiatry76(3), 451–453 (2005).
  • Rucker JC. Current treatment of nystagmus. Curr. Treat. Options. Neurol.7(1), 69–77 (2005).
  • Strupp M, Kalla R, Dichgans M et al. Treatment of episodic ataxia type 2 with the potassium channel blocker 4-aminopyridine. Neurology62(9), 1623–1625 (2004).
  • Weisz CJ, Raike RS, Soria-Jasso LE, Hess EJ. Potassium channel blockers inhibit the triggers of attacks in the calcium channel mouse mutant tottering. J. Neurosci.25(16), 4141–4145 (2005).
  • Halter JA, Blight AR, Donovan WH, Calvillo O. Intrathecal administration of 4-aminopyridine in chronic spinal injured patients. Spinal Cord38(12), 728–732 (2000).
  • Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol. Rev.52(4), 557–594 (2000).
  • Wickenden A. K+ channels as therapeutic drug targets. Pharmacol. Ther.94(1–2), 157–182 (2002).
  • Solari A, Uitdehaag B, Giuliani G, Pucci E, Taus C. Aminopyridines for symptomatic treatment in multiple sclerosis. Cochrane Database Syst. Rev. (2), CD001330 (2003).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.